
HAL Id: hal-01431618
https://hal.science/hal-01431618v2

Submitted on 26 Jul 2017 (v2), last revised 30 Oct 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Subsampling for Factorizing Huge Matrices
Arthur Mensch, Julien Mairal, Bertrand Thirion, Gaël Varoquaux

To cite this version:
Arthur Mensch, Julien Mairal, Bertrand Thirion, Gaël Varoquaux. Stochastic Subsampling for Fac-
torizing Huge Matrices. IEEE Transactions on Signal Processing, 2017. �hal-01431618v2�

https://hal.science/hal-01431618v2
https://hal.archives-ouvertes.fr

Stochastic Subsampling for Factorizing Huge Matrices

Arthur Mensch
Inria Parietal
Saclay, France

arthur.mensch@m4x.org

Bertrand Thirion
Inria Parietal
Saclay, France

bertrand.thirion@inria.fr

Julien Mairal
Inria Thoth

Grenoble, France
julien.mairal@inria.fr

Gaël Varoquaux
Inria Parietal
Saclay, France

gael.varoquaux@inria.fr

July 26, 2017

Abstract

We present a matrix-factorization algorithm that scales to input matrices with both huge number
of rows and columns. Learned factors may be sparse or dense and/or non-negative, which makes
our algorithm suitable for dictionary learning, sparse component analysis, and non-negative matrix
factorization. Our algorithm streams matrix columns while subsampling them to iteratively learn
the matrix factors. At each iteration, the row dimension of a new sample is reduced by subsam-
pling, resulting in lower time complexity compared to a simple streaming algorithm. Our method
comes with convergence guarantees to reach a stationary point of the matrix-factorization problem.
We demonstrate its efficiency on massive functional Magnetic Resonance Imaging data (2 TB), and
on patches extracted from hyperspectral images (103 GB). For both problems, which involve dif-
ferent penalties on rows and columns, we obtain significant speed-ups compared to state-of-the-art
algorithms.

Index words. Matrix factorization, dictionary learning, non-negative, stochastic optimiza-
tion, majorization minimization, randomized methods, functional MRI, hyperspectral imag-
ing

1 Introduction

Matrix factorization is a flexible approach to uncover latent factors in low-rank or sparse models. With
sparse factors, it is used in dictionary learning, and has proven very effective for denoising and visual
feature encoding in signal and computer vision [see e.g., 1]. When the data admit a low-rank structure,
matrix factorization has proven very powerful for various tasks such as matrix completion [2, 3], word
embedding [4, 5], or network models [6]. It is flexible enough to accommodate a large set of constraints
and regularizations, and has gained significant attention in scientific domains where interpretability is
a key aspect, such as genetics [7] and neuroscience [8]. In this paper, our goal is to adapt matrix-
factorization techniques to huge-dimensional datasets, i.e., with large number of columns n and large
number of rows p. Specifically, our work is motivated by the rapid increase in sensor resolution, as in
hyperspectral imaging or fMRI, and the challenge that the resulting high-dimensional signals pose to
current algorithms.

As a widely-used model, the literature on matrix factorization is very rich and two main classes of
formulations have emerged. The first one addresses a convex-optimization problem with a penalty pro-
moting low-rank structures, such as the trace or max norms [2]. This formulation has strong theoretical

The research leading to these results was supported by the ANR (MACARON project, ANR-14-CE23-0003-01 NiCon-
nect project, ANR-11-BINF-0004NiConnect).

1

guarantees [3], but lacks scalability for huge datasets or sparse factors. For these reasons, our paper is
focused on a second type of approach, which relies on nonconvex optimization. Stochastic (or online)
optimization methods have been developed in this setting. Unlike classical alternate minimization proce-
dures, they learn matrix decompositions by observing a single matrix column (or row) at each iteration.
In other words, they stream data along one matrix dimension. Their cost per iteration is significantly
reduced, leading to faster convergence in various practical contexts. More precisely, two approaches have
been particularly successful: stochastic gradient descent [9] and stochastic majorization-minimization
methods [10, 11]. The former has been widely used for matrix completion [see 12, 13, 14, and references
therein], while the latter has been used for dictionary learning with sparse and/or structured regulariza-
tion [15]. Despite those efforts, stochastic algorithms for dictionary learning are currently unable to deal
efficiently with matrices that are large in both dimensions.

We propose a new matrix-factorization algorithm that can handle such matrices. It builds upon the
stochastic majorization-minimization framework of [10], which we generalize for our problem. In this
framework, the objective function is minimized by iteratively improving an upper-bound surrogate of
the function (majorization step) and minimizing it to obtain new estimates (minimization step). The
core idea of our algorithm is to approximate these steps to perform them faster. We carefully introduce
and control approximations, so to extend convergence results of [10] when neither the majorization nor
the minimization step is performed exactly.

For this purpose, we borrow ideas from randomized methods in machine learning and signal process-
ing. Indeed, quite orthogonally to stochastic optimization, efficient approaches to tackle the growth of
dataset dimension have exploited random projections [16, 17] or sampling, reducing data dimension while
preserving signal content. Large-scale datasets often have an intrinsic dimension which is significantly
smaller than their ambient dimension. Good examples are biological datasets [18] and physical acquisi-
tions with an underlying sparse structure enabling compressed sensing [19]. In this context, models can
be learned using only random data summaries, also called sketches. For instance, randomized methods
[see 20, for a review] are efficient to compute PCA [21], a classic matrix-factorization approach, and to
solve constrained or penalized least-square problems [22, 23]. On a theoretical level, recent works on
sketching [24, 25] have provided bounds on the risk of using random summaries in learning.

Using random projections as a pre-processing step is not appealing in our applicative context since
factors learned on reduced data are not interpretable. On the other hand, it is possible to exploit random
sampling to approximate the steps of online matrix factorization. Factors are learned in the original space
whereas the dimension of each iteration is reduced together with the computational cost per iteration.

Contribution. The contribution of this paper is both practical and theoretical. We introduce a new
matrix factorization algorithm, called subsampled online matrix factorization (somf), which is faster
than state-of-the-art algorithms by an order of magnitude on large real-world datasets (hyperspectral
images, large fMRI data). It leverages random sampling with stochastic optimization to learn sparse and
dense factors more efficiently. To prove the convergence of somf, we extend the stochastic majorization-
minimization framework [10] and make it robust to some time-saving approximations. We then show
convergence guarantees for somf under reasonable assumptions. Finally, we propose an extensive em-
pirical validation of the subsampling approach.

In a first version of this work [26] presented at the International Conference in Machine Learning
(icml), we proposed an algorithm similar to somf, without any theoretical guarantees. The algorithm
that we present here has such guarantees, which we express in a more general framework, stochastic
majorization-minimization. It is validated for new sparsity settings and a new domain of application.
An open-source efficient Python package is provided.

Notations. Matrices are written using bold capital letters and vectors using bold small letters (e.g., X, α).
We use superscript to specify the column (sample or component) number, and write X = [x(1), . . . ,x(n)].
We use subscripts to specify the iteration number, as in xt. The floating bar, as in ḡt, is used to stress
that a given value is an average over iterations, or an expectation. The superscript ? is used to denote
an exact value, when it has to be compared to an inexact value, e.g., to compare α?t (exact) to αt
(approximation).

2

2 Prior art: matrix factorization with stochastic majorization-
minimization

Below, we introduce the matrix-factorization problem and recall a specific stochastic algorithm to solve
it observing one column (or a mini-batch) at every iteration. We cast this algorithm in the stochastic
majorization-minimization framework [10], which we will use in the convergence analysis.

2.1 Problem statement

In our setting, the goal of matrix factorization is to decompose a matrix X ∈ Rp×n — typically n signals
of dimension p — as a product of two smaller matrices:

X ≈ DA with D ∈ Rp×k and A ∈ Rk×n,

with potential sparsity or structure requirements on D and A. In signal processing, sparsity is often
enforced on the code A, in a problem called dictionary learning [27]. In such a case, the matrix D is
called the “dictionary” and A the sparse code. We use this terminology throughout the paper.

Learning the factorization is typically performed by minimizing a quadratic data-fitting term, with
constraints and/or penalties over the code and the dictionary:

min
D∈C

A∈Rk×n

n∑
i=1

1

2

∥∥x(i) −Dα(i)
∥∥2

2
+ λΩ(α(i)), (1)

where A , [α(1), . . . ,α(n)], C is a column-wise separable convex set of Rp×k and Ω : Rp → R is a
penalty over the code. Both constraint set and penalty may enforce structure or sparsity, though C has
traditionally been used as a technical requirement to ensure that the penalty on A does not vanish with
D growing arbitrarily large. Two choices of C and Ω are of particular interest. The problem of dictionary
learning sets C as the `2 ball for each atom and Ω to be the `1 norm. Due to the sparsifying effect of
`1 penalty [28], the dataset admits a sparse representation in the dictionary. On the opposite, finding a
sparse set in which to represent a given dataset, with a goal akin to sparse PCA [29], requires to set as
the `1 ball for each atom and Ω to be the `2 norm. Our work considers the elastic-net constraints and
penalties [30], which encompass both special cases. Fixing ν and µ in [0, 1], we denote by Ω(·) and ‖ · ‖
the elastic-net penalty in Rp and Rk:

Ω(α) , (1− ν)‖α‖1 +
ν

2
‖α‖22, (2)

C ,
{

D ∈ Rp×k/‖d(j)‖ , (1−µ)‖d(j)‖1+
µ

2
‖d(j)‖22 ≤ 1

}
.

Following [15], we can also enforce the positivity of D and/or A by replacing R by R+ in C, and adding
positivity constraints on A in (1), as in non-negative sparse coding [31]. We rewrite (1) as an empirical
risk minimization problem depending on the dictionary only. The matrix D solution of (1) is indeed
obtained by minimizing the empirical risk f̄

D ∈ argmin
D∈C

(
f̄(D) ,

1

n

n∑
i=1

f(D,x(i))
)
, (3)

where f(D,x) , min
α∈Rk

1

2

∥∥x−Dα
∥∥2

2
+ λΩ(α),

and the matrix A is obtained by solving the linear regression

min
A∈Rk×n

n∑
i=1

1

2

∥∥x(i) −Dα(i)
∥∥2

2
+ λΩ(α(i)). (4)

The problem (1) is non-convex in the parameters (D,A), and hence (3) is not convex. However, the
problem (1) is convex in both D and A when fixing one variable and optimizing with respect to the
other. As such, it is naturally solved by alternate minimization over D and A, which asymptotically
provides a stationary point of (3). Yet, X has typically to be observed hundred of times before obtaining
a good dictionary. Alternate minimization is therefore not adapted to datasets with many samples.

3

Algorithm 1 Online matrix factorization (omf) [15]

Input: Initial iterate D0, sample stream (xt)t>0, number of iterations T .
for t from 1 to T do

Draw xt ∼ P.

Compute αt = argminα∈Rp
1
2

∥∥xt −Dt−1α
∥∥2

2
+ λΩ(α).

Update the parameters of aggregated surrogate ḡt:

C̄t =
(

1− 1

t

)
C̄t−1 +

1

t
αtα

>
t .

B̄t =
(

1− 1

t

)
B̄t−1 +

1

t
xtα

>
t .

(8)

Compute (using block coordinate descent):

Dt = argmin
D∈C

1

2
Tr (D>DC̄t)− Tr (D>B̄t).

Output: Final iterate DT .

2.2 Online matrix factorization

When X has a large number of columns but a limited number of rows, the stochastic optimization method
of [15] outputs a good dictionary much more rapidly than alternate-minimization. In this setting [see
32], learning the dictionary is naturally formalized as an expected risk minimization

min
D∈C

f̄(D) , Ex[f(D,x)], (5)

where x is drawn from the data distribution and forms an i.i.d. stream (xt)t. In the finite-sample
setting, (5) reduces to (3) when xt is drawn uniformly at random from {x(i), i ∈ [1, n]}. We then write
it the sample number selected at time t.

The online matrix factorization algorithm proposed in [15] is summarized in Alg. 1. It draws a
sample xt at each iteration, and uses it to improve the current iterate Dt−1. For this, it first computes
the code αt associated to xt on the current dictionary:

αt , argmin
α∈Rk

1

2
‖xt −Dt−1α‖22 + λΩ(α). (6)

Then, it updates Dt to make it optimal in reconstructing past samples (xs)s≤t from previously computed
codes (αs)s≤t:

Dt ∈ argmin
D∈C

(
ḡt(D) ,

1

t

t∑
s=1

1

2

∥∥xs −Dαs
∥∥2

2
+ λΩ(αs)

)
. (7)

Importantly, minimizing ḡt is equivalent to minimizing the quadratic function

D→ 1

2
Tr (D>DC̄>t)− Tr (D>B̄t), (9)

where B̄t and C̄t are small matrices that summarize previously seen samples and codes:

B̄t =
1

t

t∑
s=1

xsα
>
s C̄t =

1

t

t∑
s=1

αsα
>
s . (10)

As the constraints C have a separable structure per atom, [15] uses projected block coordinate descent to
minimize ḡt. The function gradient writes ∇ḡt(D) = DC̄t − B̄t, and it is therefore enough to maintain
B̄t and C̄t in memory to solve (7). B̄t and C̄t are updated online, using the rules (8) (Alg. 1).

The function ḡt is an upper-bound surrogate of the true current empirical risk, whose definition
involves the regression minima computed on current dictionary D:

f̄t(D) ,
1

t

t∑
s=1

min
α∈Rp

1

2

∥∥xs −Dα
∥∥2

2
+ λΩ(α) ≤ ḡt(D). (11)

4

Algorithm 2 Stochastic majorization-minimization [smm 10]

Input: Initial iterate θ0, weight sequence (wt)t>0, sample stream (xt)t>0, number of iteration T .
for t from 1 to T do

Draw xt ∼ P, get ft : θ ∈ Θ→ f(xt, θ).
Construct a surrogate of ft near θt−1, that meets

gt ≥ ft, gt(θt−1) = ft(θt−1). (12)

Update the aggregated surrogate:

ḡt = (1− wt)ḡt−1 + wtgt.

Compute
θt = argmin

θ∈Θ
ḡt(θ). (13)

Output: Final iterate θT .

Using empirical processes theory [33], it is possible to show that minimizing f̄t at each iteration asymp-
totically yields a stationary point of the expected risk (5). Unfortunately, minimizing (11) is expensive as
it involves the computation of optimal current codes for every previously seen sample at each iteration,
which boils down to naive alternate-minimization.

In contrast, ḡt is much cheaper to minimize than f̄t, using block coordinate descent. It is possible to
show that ḡt converges towards a locally tight upper-bound of the objective f̄t and that minimizing ḡt at
each iteration also asymptotically yields a stationary point of the expected risk (5). This establishes the
correctness of the online matrix factorization algorithm (omf). In practice, the omf algorithm performs
a single pass of block coordinate descent: the minimization step is inexact. This heuristic will be justified
by our theoretical contribution in Section 4.

Extensions. For efficiency, it is essential to use mini-batches {xs, s ∈ Tt} of size η instead of single
samples in the iterations [15]. The surrogate parameters B̄t, C̄t are then updated by the mean value
of {(xsα>s ,αsα>s)}s∈Tt over the batch. The optimal size of the mini-batches is usually close to k. (8)
uses the sequence of weights (1

t)t to update parameters B̄t and C̄t. [15] replaces these weights with a
sequence (wt)t, which can decay more slowly to give more importance to recent samples in ḡt. These
weights will prove important in our analysis.

2.3 Stochastic majorization-minimization

Online matrix factorization belongs to a wider category of algorithms introduced in [10] that minimize
locally tight upper-bounding surrogates instead of a more complex objective, in order to solve an expected
risk minimization problem. Generalizing online matrix factorization, we introduce in Alg. 2 the stochastic
majorization-minimization (smm) algorithm, which is at the core of our theoretical contribution.

In online matrix factorization, the true empirical risk functions f̄t and their surrogates ḡt follow the
update rules, with generalized weight (wt)t set to (1

t)t in (7) – (11):

f̄t , (1− wt)f̄t−1 + wtft, ḡt , (1− wt)ḡt−1 + wtgt, (14)

where the pointwise loss function and its surrogate are

ft(D) , min
α∈Rk

1

2
‖xt −Dα‖22 + λΩ(α),

gt(D) ,
1

2
‖xt −Dαt‖22 + λΩ(αt).

(15)

The function gt is a majorizing surrogate of ft: gt ≥ ft, and gt is tangent to ft in Dt−1, i.e, gt(Dt−1) =
ft(Dt−1) and ∇(gt − ft)(Dt−1) = 0. At each step of online matrix factorization:

• The surrogate gt is computed along with αt, using (6).

5

• The parameters B̄t, C̄t are updated following (8). They define the aggregated surrogate ḡt up to a
constant.

• The quadratic function ḡt is minimized efficiently by block coordinate descent, using parameters
B̄t and C̄t to compute its gradient.

The stochastic majorization-minimization framework simply formalizes the three steps above, for a
larger variety of loss functions ft(θ) , f(θ,xt), where θ is the parameter we want to learn (D in the
online matrix factorization setting). At iteration t, a surrogate gt of the loss ft is computed to update
the aggregated surrogate ḡt following (14). The surrogate functions (gt)t should be upper-bounds of loss
functions (ft)t, tight in the current iterate θt−1 (e.g., the dictionary Dt−1). This simply means that
ft(θt−1) = gt(θt−1) and ∇(ft − gt)(θt−1) = 0. Computing ḡt can be done if gt is defined simply, as in
omf where it is linearly parametrized by (αtα

>
t ,xtα

>
t). ḡt is then minimized to obtain a new iterate θt.

It can be shown following [10] that stochastic majorization-minimization algorithms find asymptotical
stationary point of the expected risk Ex[f(θ,x)] under mild assumptions recalled in Section 4. smm
admits the same mini-batch and decaying weight extensions (used in Alg. 2) as omf.

In this work, we extend the smm framework and allow both majorization and minimization steps to
be approximated. As a side contribution, our extension proves that performing a single pass of block
coordinate descent to update the dictionary, an important heuristic in [15], is indeed correct. We first
introduce the new matrix factorization algorithm at the core of this paper and then present the extended
smm framework.

3 Stochastic subsampling for high dimensional data decompo-
sition

The online algorithm presented in Section 2 is very efficient to factorize matrices that have a large number
of columns (i.e., with a large number of samples n), but a reasonable number of rows — the dataset is
not very high dimensional. However, it is not designed to deal with very high number of rows: the cost of
a single iteration depends linearly on p. On terabyte-scale datasets from fMRI with p = 2 · 105 features,
the original online algorithm requires one week to reach convergence. This is a major motivation for
designing new matrix factorization algorithms that scale in both directions.

In the large-sample regime p� k, the underlying dimensionality of columns may be much lower than
the actual p: the rows of a single column drawn at random are therefore correlated and redundant. This
guides us on how to scale online matrix factorization with regard to the number of rows:

• The online algorithm omf uses a single column of (or mini-batch) of X at each iteration to enrich
the average surrogate and update the whole dictionary.

• We go a step beyond and use a fraction of a single column of X to refine a fraction of the dictionary.

More precisely, we draw a column and observe only some of its rows at each iteration, to refine these
rows of the dictionary, as illustrated in Figure 1. To take into account all features from the dataset,
rows are selected at random at each iteration: we call this technique stochastic subsampling. Stochastic
subsampling reduces the efficiency of the dictionary update per iteration, as less information is incorpo-
rated in the current iterate Dt. On the other hand, with a correct design, the cost of a single iteration
can be considerably reduced, as it grows with the number of observed features. Section 5 shows that
the proposed algorithm is an order of magnitude faster than the original omf on large and redundant
datasets.

First, we formalize the idea of working with a fraction of the p rows at a single iteration. We adapt the
online matrix factorization algorithm, to reduce the iteration cost by a factor close to the ratio of selected
rows. This defines a new online algorithm, called subsampled online matrix factorization (somf). At
each iteration, it uses q rows of the column xt to update the sequence of iterates (Dt)t. As in Section 2,
we introduce a more general algorithm, stochastic approximate majorization-minimization (samm), of
which somf is an instance. It extends the stochastic majorization-minimization framework, with similar
theoretical guarantees but potentially faster convergence.

6

- Data
 access

- Dictionary
 update

Stream
columns

- Code com-
 putation Subsample

rows

Online matrix
factorization

Proposed
algorithm

Alternate-
minimization

 (dim.)

Iteration t

Seen at t Seen at t+1Unseen at t

 (
di

m
.)

Updated at t

Figure 1: Stochastic subsampling further improves online matrix factorization to handle datasets with
large number of columns and rows. X is the input p×n matrix, Dt and At are respectively the dictionary
and code at time t.

3.1 Subsampled online matrix factorization

Formally, as in online matrix factorization, we consider a sample stream (xt)t in Rp that cycles onto a
finite sample set {x(i), i ∈ [1, n]}, and minimize the empirical risk (3).1

3.1.1 Stochastic subsampling and algorithm outline

We want to reduce the time complexity of a single iteration. In the original algorithm, the complexity
depends linearly on the sample dimension p in three aspects:

• xt ∈ Rp is used to compute the code αt,

• it is used to update the surrogate parameters B̄t ∈ Rp×k,

• Dt ∈ Rp×k is fully updated at each iteration.

Our algorithm reduces the dimensionality of these steps at each iteration, such that p becomes q = p
r in

the time complexity analysis, where r > 1 is a reduction factor. Formally, we randomly draw, at iteration
t, a mask Mt that “selects” a random subset of xt. We use it to drop a part of the features of xt and to
“freeze” these features in dictionary D at iteration t.

It is convenient to consider Mt as a Rp×p random diagonal matrix, such that each coefficient is a
Bernouilli variable with parameter 1

r , normalized to be 1 in expectation. ∀j ∈ [0, p− 1],

P
[
Mt[j, j] = r

]
=

1

r
, P

[
Mt[j, j] = 0

]
= 1− 1

r
. (16)

Thus, r describes the average proportion of observed features and Mtxt is a non-biased, low-dimensional
estimator of xt:

E
[
‖Mtxt‖0

]
=
p

r
= q E

[
Mtxt

]
= xt. (17)

with ‖ · ‖0 counting the number of non-zero coefficients. We define the pair of orthogonal projectors
Pt ∈ Rq×p and P⊥t ∈ R(p−q)×p that project Rp onto Im(Mt) and Ker(Mt). In other words, PtY and
P⊥t Y are the submatrices of Y ∈ Rp×y with rows respectively selected and not selected by Mt. In
algorithms, PtY ← Z ∈ Rq×n assigns the rows of Z to the rows of Y selected by Pt, by an abuse of
notation.

In brief, subsampled online matrix factorization, defined in Alg. 3, follows the outer loop of online
matrix factorization, with the following major modifications at iteration t:

1Note that we solve the fully observed problem despite the use of subsampled data, unlike other recent work on low-rank
factorization [34].

7

Algorithm 3 Subsampled online matrix factorization (somf)

Input: Initial iterate D0, weight sequences (wt)t>0, (γc)c>0, sample set {x(i)}i>0, number of iterations
T .
for t from 1 to T do

Draw xt = x(i) at random and Mt following (16).
Update the regression parameters for sample i:

c(i) ← c(i) + 1, γ ← γc(i) .

β
(i)
t ← (1− γ)G

(i)
t−1 + γD>t−1Mtx

(i), βt ← β
(i)
t .

G
(i)
t ← (1− γ)G

(i)
t−1 + γD>t−1MtDt−1, Gt ← Ḡ

(i)
t .

Compute the approximate code for xt:

αt ← argmin
α∈Rk

1

2
α>Gtα−α>βt + λΩ(α). (18)

Update the parameters of the aggregated surrogate ḡt:

C̄t ← (1− wt)C̄t−1 + wtαtα
>
t .

PtB̄t ← (1− wt)PtB̄t−1 + wtPtxtα
>
t .

(19)

Compute simultaneously (using Alg. 4 for 1st line):

PtDt ← argmin
Dr∈Cr

1

2
Tr (Dr>DrC̄t)− Tr (Dr>PtB̄t).

P⊥t B̄t ← (1− wt)P⊥t B̄t−1 + wtP
⊥
t xtα

>
t . (20)

Output: Final iterate DT .

• it uses Mtxt and low-size statistics instead of xt to estimate the code αt and the surrogate gt,

• it updates a subset of the dictionary PtDt−1 to reduce the surrogate value ḡt(D). Relevant pa-
rameters of ḡt are computed using Ptxt and αt only.

We now present somf in details. For comparison purpose, we write all variables that would be computed
following the omf rules at iteration t with a ? superscript. For simplicity, in Alg. 3 and in the following
paragraphs, we assume that we use one sample per iteration —in practice, we use mini-batches of size
η. The next derivations are transposable when a batch It is drawn at iteration t instead of a single
sample it.

3.1.2 Code computation

In the omf algorithm presented in Section 2, α?t is obtained by solving (6), namely

α?t ∈ argmin
α

1

2
α>G?

tα−α>β?t + λΩ(α), (21)

where G?
t = D>t−1Dt−1 and β?t = D>t−1xt. For large p, the computation of G?

t and β?t dominates the
complexity of the regression step, which depends almost linearly on p. To reduce this complexity, we
use estimators for G?

t and β?t , computed at a cost proportional to the reduced dimension q. We propose
three kinds of estimators with different properties.

Masked loss The most simple unbiased estimation of G?
t and β?t whose computation cost depends on

q is obtained by subsampling matrix products with Mt:

Gt = D>t−1MtDt−1

βt = D>t−1Mtxt.
(a)

8

This is the strategy proposed in [26]. We use Gt and βt in (18), which amounts to minimize the masked
loss

min
α∈Rk

1

2
‖Mt(x

t −D>t−1α)‖22 + λΩ(α). (22)

Gt and βt are computed in a number of operations proportional to q, which brings a speed-up factor
of almost r in the code computation for large p. On large data, using estimators (a) instead of exact
G?
t and β?t proves very efficient during the first epochs (cycles over the columns).2 However, due to the

masking, Gt and βt are not consistent estimators: they do not converge to G?
t and β?t for large t, which

breaks theoretical guarantees on the algorithm output. Empirical results in Section 5.5 show that the
sequence of iterates approaches a critical point of the risk (3), but may then oscillate around it.

Averaging over epochs At iteration t, the sample xt is drawn from a finite set of samples {x(i)}i.
This allows to average estimators over previously seen samples and address the non-consistency issue

of (a). Namely, we keep in memory 2n estimators, written (G
(i)
t ,β

(i)
t)1≤i≤n. We observe the sample

i = it at iteration t and use it to update the i-th estimators Ḡ
(i)
t , β̄

(i)
t following

β
(i)
t = (1− γ)G

(i)
t−1 + γD>t−1Mtx

(i)

G
(i)
t = (1− γ)G

(i)
t−1 + γD>t−1MtD

(i)
t ,

(23)

where γ is a weight factor determined by the number of time the one sample i has been previously
observed at time t. Precisely, given (γc)c a decreasing sequence of weights,

γ = γ
c
(i)
t

where c
(i)
t =

∣∣∣{s ≤ t,xs = x(i)
}∣∣∣ .

All others estimators {G(j)
t ,β

(j)
t }j 6=i are left unchanged from iteration t − 1. The set {G(i)

t ,β
(i)
t }1≤i≤n

is used to define the averaged estimators

Gt , G
(i)
t =

∑
s≤t,xs=x(i)

γ
(i)
s,tD

>
s−1MsDs−1

βt , β
(i)
t =

∑
s≤t,xs=x(i)

γ
(i)
s,tD

>
s−1Msx

(i),
(b)

where γ
(i)
s,t = γ

c
(i)
t

∏
s<t,xs=x(i)(1−γc(i)s). Using βt and Gt in (18), αt minimizes the masked loss averaged

over the previous iterations where sample i appeared:

min
α∈Rk

∑
s≤t

xs=x(i)

γ
(i)
s,t

2
‖Ms(x

(i) −D>s−1α)‖22 + λΩ(α). (24)

The sequences (Gt)t and (βt)t are consistent estimations of (G?
t)t and (β?t)t — consistency arises from

the fact that a single sample x(i) is observed with different masks along iterations. Solving (24) is
made closer and closer to solving (21), to ensure the correctness of the algorithm (see Section 4). Yet,
computing the estimators (b) is no more costly than computing (a) and still permits to speed up a single

iteration close to r times. In the mini-batch setting, for every i ∈ It, we use the estimators G
(i)
t and

β
(i)
t to compute α

(i)
t . This method has a memory cost of O(nk2). This is reasonable compared to the

dataset size3 if p� k2.

Exact Gram computation To reduce the memory usage, another strategy is to use the true Gram
matrix Gt and the estimator βt from (b):

Gt , G?
t = D>t−1Dt−1

βt ,
∑

s≤t,xs=x(i)

γ
(i)
s,tD

>
s−1Msx

(i) (c)

2Estimators (a) are also available in the infinite sample setting, when minimizing expected risk (5) from a i.i.d sample
stream (xt)t.

3It is also possible to efficiently swap the estimators (G
(i)
t)i on disk, as they are only accessed for i = it at iteration t.

9

Table 1: Comparison of estimators used for code computation

Est. βt Gt Convergence
Extra

mem. cost
1st epoch
perform.

(a) Masked Masked X
(b) Averaged Averaged X nk2 X
(c) Averaged Exact X nk

As previously, the consistency of (βt)t ensures that (5) is correctly solved despite the approximation
in (αt)t computation. With the partial dictionary update step we propose, it is possible to maintain
Gt at a cost proportional to q. The time complexity of the coding step is thus similarly reduced when
replacing (b) or (c) estimators in (21), but the latter option has a memory usage in O(nk). Although
estimators (c) are slightly less performant in the first epochs, they are a good compromise between
resource usage and convergence. We summarize the characteristics of the three estimators (a)–(c) in
Table 1, anticipating their empirical comparison in Section 5.

Surrogate computation. The computation of αt using one of the estimators above defines a surrogate
gt(D) , 1

2‖xt−Dαt‖22+λΩ(α), which we use to update the aggregated surrogate ḡt , (1−wt)ḡt−1+wtgt,
as in online matrix factorization. We follow (8) (with weights (wt)t) to update the matrices B̄t and C̄t,
which define ḡt up to constant factors. The update of B̄t requires a number of operations proportional
to p. Fortunately, we will see in the next paragraph that it is possible to update PtB̄t in the main thread
with a number of operation proportional to q and to complete the update of P⊥t B̄t in parallel with the
dictionary update step.

Weight sequences. Specific (wt)t and (γc)c in Alg. 3 are required. We provide then in Assumption (B)
of the analysis: wt = 1

tu and γc = 1
cv , where u ∈ (11

12 , 1) and v ∈
(

3
4 , 3u − 2

)
to ensure convergence.

Weights have little impact on convergence speed in practice.

3.1.3 Dictionary update

In the original online algorithm, the whole dictionnary Dt−1 is updated at iteration t. To reduce the
time complexity of this step, we add a “freezing” constraint to the minimization (7) of ḡt. Every row
r of D that corresponds to an unseen row r at iteration r (such that Mt[r, r] = 0) remains unchanged.
This casts the problem (7) into a lower dimensional space. Formally, the freezing operation comes out
as a additional constraint in (7):

Dt = argmin
D∈C

P⊥t D=P⊥t Dt−1

1

2
Tr (D>DC̄t)− Tr (D>B̄t). (25)

The constraints are separable into two blocks of rows. Recalling the notations of (2), for each atom d(j),

the rules ‖d(j)‖ ≤ 1 and P⊥t d(j) = P⊥t d
(j)
t−1 can indeed be rewritten{

‖Ptd
(j)‖ ≤ 1− ‖d(j)

t−1‖+ ‖Ptd
(j)
t−1‖ , r

(j)
t

P⊥t d(j) = P⊥t d
(j)
t−1.

(26)

Solving (25) is therefore equivalent to solving the following problem in Rq×k, with Br
t , PtBt,

Dr ∈ argmin
Dr∈Cr

1

2
Tr (Dr>DrC̄t)− Tr (Dr>B̄r

t) (27)

where Cr = {Dr∈Rq×k/∀j ∈ [0, k − 1], ‖dr(j)‖ ≤ r(j)
t }.

The rows of Dt selected by Pt are then replaced with Dr, while the other rows of Dt are unchanged
from iteration t − 1. Formally, PtDt = Dr and P⊥t Dt = P⊥t Dt−1. We solve (27) by a projected block
coordinate descent (BCD) similar to the one used in the original algorithm, but performed in a subspace

10

Algorithm 4 Partial dictionary update

Input: Dictionary Dt−1, projector Pt, statistics C̄t, B̄t, norms (n
(j)
t−1)

0≤j<k, Gram matrix Gt (op-

tional).
Dt ← Dt−1, Gt ← Gt −D>t−1PtDt−1.
for j ∈ permutation([1, k]) do

r
(j)
t ← n

(j)
t−1 + ‖Ptd

(j)
t−1‖.

u← Ptd
(j)
t−1 + 1

C̄t[j,j]
(Ptb̄

(j)
t −PtDtc̄

(j)
t). . in Rq

Ptd
(j)
t ← enet projection(u, r

(j)
t). . in Rq

n
(j)
t ← r

(j)
t − ‖Ptd

(j)
t ‖.

Gt+1 ← Gt + D>t PtDt.

Output: Dictionary Dt, norms (n
(j)
t)j , Gram matrix Gt+1.

of size q. We compute each column j of the gradient that we use in the block coordinate descent loop

with q × k operations, as it writes Drc̄
(j)
t − b̄

r(j)
t ∈ Rq, where c̄

(j)
t and b̄

r(j)
t are the j-th columns of C̄t

and B̄r
t . Each reduced atom dr(j) is projected onto the elastic-net ball of radius r

(j)
t , at an average cost in

O(q) following [15]. This makes the complexity of a single-column update proportional to q. Performing

the projection requires to keep in memory the values {n(j)
t , 1− ‖d(j)

t ‖}j , which can be updated online
at a negligible cost.

We provide the reduced dictionary update step in Alg. 4, where we use the function
enet projection(u, r) that performs the orthogonal projection of u ∈ Rq onto the elastic-net ball
of radius r. As in the original algorithm, we perform a single pass over columns to solve (27). Dictionary
update is now performed with a number of operations proportional to q, instead of p in the original
algorithm. Thanks to the random nature of (Mt)t, updating Dt−1 into Dt reduces ḡt enough to ensure
convergence.

Gram matrix computation. Performing partial updates of Dt makes it possible to maintain the full
Gram matrix Gt = G?

t with a cost in O(q k2) per iteration, as mentioned in 3.1.2. It is indeed enough
to compute the reduced Gram matrix D>PtD before and after the dictionary update:

Gt+1 = D>t Dt = Gt −D>t−1PtD
>
t−1 + D>t PtD

>
t . (28)

Parallel surrogate computation. Performing block coordinate descent on ḡrt requires to access B̄r
t =

PtB̄t only. Assuming we may use use more than two threads, this allows to parallelize the dictionary
update step with the update of P⊥t B̄t. In the main thread, we compute PtB̄t following

PtB̄t ← (1− wt)P̄tBt−1 + wtPtxtα
>
t . (19 – Alg. 3)

which has a cost proportional to q. Then, we update in parallel the dictionary and the rows of B̄t that
are not selected by Mt:

P⊥t B̄t ← (1− wt)P⊥t B̄t−1 + wtP
⊥
t xtα

>
t . (20 – Alg. 3)

This update requires k(p − q)η operations (one matrix-matrix product) for a mini-batch of size η. In
contrast, with appropriate implementation, the dictionary update step requires 4 k q2 to 6 k q2 operations,
among which 2 k q2 come from slower matrix-vector products. Assuming k ∼ η, updating B̄t is faster
than updating the dictionary up to r ∼ 10, and performing (20) on a second thread is seamless in term
of wall-clock time. More threads may be used for larger reduction or batch size.

3.1.4 Subsampling and time complexity

Subsampling may be used in only some of the steps of Alg. 3, with the other steps following Alg. 1.
Whether to use subsampling or not in each step depends on the trade-off between the computational
speed-up it brings and the approximations it makes. It is useful to understand how complexity of omf
evolves with p. We write s the average number of non-zero coefficients in (αt)t (s = k when Ω = ‖ · ‖22).
omf complexity has three terms:

11

(i) O(p k2): computation of the Gram matrix Gt, update of the dictionary Dt with block coordinate
descent,

(ii) O(p k η): computation of βt = D>t−1xt and of B̄t using xtα
>
t ,

(iii) O(k s2 η): computation of αt using Gt and βt, using matrix inversion or elastic-net regression.

Using subsampling turns p into q = p
r in the expressions above. It improves single iteration time when

the cost of regression O(k s2 η) is dominated by another term. This happens whenever p
r > s2, where r

is the reduction factor used in the algorithm. Subsampling can bring performance improvement up to
r ∼ p

s2 . It can be introduced in either computations from (i) or (ii), or both. When using small batch
size, i.e., when η < k, computations from (i) dominates complexity, and subsampling should be first
introduced in dictionary update (i), and for code computation (ii) beyond a certain reduction ratio. On
the other hand, with large batch size η > k, subsampling should be first introduced in code computation,
then in the dictionary update step. The reasoning above ignore potentially large constants. The best
trade-offs in using subsampling must be empirically determined, which we do in Section 5.

3.2 Stochastic approximate majorization-minimization

The somf algorithm can be understood within the stochastic majorization-minimization framework. The
modifications that we propose are indeed perturbations to the first and third steps of the smm presented
in Algorithm 2:

• The code is computed approximately: the surrogate is only an approximate majorizing surrogate
of ft near Dt−1.

• The surrogate objective is only reduced and not minimized, due to the added constraint and the
fact that we perform only one pass of block coordinate descent.

We propose a new stochastic approximate majorization-minimization (samm) framework handling
these perturbations:

• A majorization step (12 – Alg. 2), computes an approximate surrogate of ft near θt−1: gt ≈ g?t ,
where gt is a true upper-bounding surrogate of f̄t.

• A minimization step (13 – Alg. 2), finds θt by reducing enough the objective ḡt: θt ≈ θ?t ,
argminθ∈Θ ḡt(θ), which implies ḡt(θt) & ḡt(θ

?
t).

The samm framework is general, in the sense that approximations are not specified. The next section
provides a theoretical analysis of the approximation of samm and establishes how somf is an instance
of samm. It concludes by establishing Proposition 1, which provides convergence guarantees for somf,
under the same assumptions made for omf in [15].

4 Convergence analysis

We establish the convergence of somf under reasonable assumptions. For the sake of clarity, we first state
our principal result (Proposition 1), that guarantees somf convergence. It is a corollary of a more general
result on samm algorithms. To present this broader result, we recall the theoretical guarantees of the
stochastic majorization-minimization algorithm [10] (Proposition 2); then, we show how the algorithm
can withstand pertubations (Proposition 3). Proofs are reported in Appendix A. samm convergence is
proven before establishing somf convergence as a corollary of this broader result.

4.1 Convergence of SOMF

Similar to [15, 34], we show that the sequence of iterates (Dt)t asymptotically reaches a critical point
of the empirical risk (3). We introduce the same hypothesis on the code covariance estimation C̄t as in
[15] and a similar one on Gt — they ensure strong convexity of the surrogate and boundedness of (αt)t.
They do not cause any loss of generality as they are met in practice after a few iterations, if r is chosen
reasonably low, so that q > k. The following hypothesis can also be guaranteed by adding small `2
regularizations to f̄ .

12

(A) There exists ρ > 0 such that for all t > 0, C̄t,Gt � ρI.

We further assume, that the weights (wt)t and (γc)c decay at specific rates. We specify simple weight
sequences, but the proofs can be adapted for more complex ones.

(B) There exists u ∈ (11
12 , 1) and v ∈

(
3
4 , 3u− 2) such that, for all t > 0, c > 0, wt = t−u, γc , c−v.

The following convergence result then applies to any sequence (Dt)t produced by somf, using esti-
mators (b) or (c). f̄ is the empirical risk defined in (3).

Proposition 1 (somf convergence). Under assumptions (A) and (B), f̄(Dt) converges with probability
one and every limit point D∞ of (Dt)t is a stationary point of f̄ : for all D ∈ C

∇f̄(D∞,D−D∞) ≥ 0 (29)

This result applies for any positive subsampling ratio r, which may be set arbitrarily high. However,
selecting a reasonable ratio remains important for performance.

Proposition 1 is a corollary of a stronger result on samm algorithms. As it provides insights on the
convergence mechanisms, we formalize this result in the following.

4.2 Basic assumptions and results on SMM convergence

We first recall the main results on stochastic majorization-minimization algorithms, established in [10],
under assumptions that we slightly tighten for our purpose. In our setting, we consider the empirical
risk minimization problem

min
θ∈Θ

(
f̄(θ) ,

1

n

n∑
i=1

f(θ,x(i))
)
, (30)

where f : RK ×X → R is a loss function and

(C) Θ ⊂ RK and the support X of the data are compact.

This is a special case of (5) where the samples (xt)t are drawn uniformly from the set {x(i)}i. The loss

functions ft , f(·,xt) defined on RK can be non-convex. We instead assume that they meet reasonable
regularity conditions:

(D) (ft)t is uniformly R-Lipschitz continuous on RK and uniformly bounded on Θ.

(E) The directional derivatives [35] ∇ft(θ, θ′ − θ) and ∇f̄(θ, θ′ − θ) exist for all θ and θ′ in RK .

Assumption (E) allows to characterize the stationary points of problem (30), namely θ ∈ Θ such that
∇f̄(θ, θ′ − θ) ≥ 0 for all θ′ ∈ Θ — intuitively a point is stationary when there is no local direction in
which the objective can be improved.

Let us now recall the definition of first-order surrogate functions used in the smm algorithm. (gt)t
are selected in the set Sρ,L(ft, θt−1), hereby introduced.

Definition 1 (First-order surrogate function). Given a function f : RK → R, θ ∈ Θ and ρ, L > 0, we
define Sρ,L(f, θ) as the set of functions g : RK → R such that

• g is majorizing f on Θ and g is ρ-strongly convex,

• g and f are tight at θ — i.e., g(θ) = f(θ), g−f is differentiable,∇(g−f) is L-Lipschitz,∇(g−f)(θ) =
0.

In omf, gt defined in (15) is a variational surrogate4 of ft. We refer the reader to [36] for further
examples of first-order surrogates. We also ensure that ḡt should be parametrized and thus representable
in memory. The following assumption is met in omf, as ḡt is parametrized by the matrices C̄t and B̄t.

(F) Parametrized surrogates. The surrogates (ḡt)t are parametrized by vectors in a compact set K ⊂
RP . Namely, for all t > 0, there exists κt ∈ K such that ḡt is unequivocally defined as gt , ḡκt .

4In this case as in somf, gt is not ρ-strongly convex but ḡt is, thanks to assumption (A). This is sufficient in the proofs
of convergence.

13

Finally, we ensure that the weights (wt)t used in Alg. 2 decrease at a certain rate.

(G) There exists u ∈ (3
4 , 1) such that wt = t−u.

When (θt)t is the sequence yielded by Alg. 2, the following result (Proposition 3.4 in [10]) establishes
the convergence of (f̄(θt))t and states that θt is asymptotically a stationary point of the finite sum
problem (30), as a special case of the expected risk minimization problem (5).

Proposition 2 (Convergence of smm, from [10]). Under assumptions (C) – (G), (f̄(θt))t≥1 converges

with probability one. Every limit point θ∞ of (θt)t is a stationary point of the risk f̄ defined in (30).
That is,

∀θ ∈ Θ, ∇f̄(θ∞, θ − θ∞) ≥ 0. (31)

The correctness of the online matrix factorization algorithm can be deduced from this proposition.

4.3 Convergence of SAMM

We now introduce assumptions on the approximations made in samm, before extending the result of
Proposition 2. We make hypotheses on both the surrogate computation (majorization) step and the
iterate update (minimization) step. The principles of samm are illustrated in Figure 2, which provides
a geometric interpretation of the approximations introduced in the following assumptions (H) and (I).

4.3.1 Approximate surrogate computation

The smm algorithm selects a surrogate for ft at point θt−1 within the set Sρ,L(ft, θt−1). Surrogates within
this set are tight at θt−1 and greater than ft everywhere. In samm, we allow the use of surrogates that
are only approximately majorizing ft and approximately tight at θt−1. This is indeed what somf does
when using estimators in the code computation step. For that purpose, we introduce the set Tρ,L(f, θ, ε),
that contains all functions ε-close of a surrogate in Sρ,L(f, θ) for the `∞-norm:

Definition 2 (Approximate first-order surrogate function). Given a function f : RK → R, θ ∈ Θ and
ε > 0, Tρ,L(f, θ, ε) is the set of ρ-strongly convex functions g : RK → R such that

• g is ε-majorizing f on Θ: ∀ κ ∈ Θ, g(κ)− f(κ) ≥ −ε,
• g and f are ε-tight at θ — i.e., g(θ)− f(θ) ≤ ε, g − f is differentiable, ∇(g − f) is L-lipschitz.

We assume that samm selects an approximative surrogate in Tρ,L(ft, θt−1, εt) at each iteration, where
(εt)t is a deterministic or random non-negative sequence that vanishes at a sufficient rate.

(H) For all t > 0, there exists εt > 0 such that gt ∈ Tρ,L(ft, θt−1, εt). There exists a constant η > 0
such that E[εt] ∈ O(t2(u−1)−η) and εt →∞ 0 almost surely.

As illustrated on Figure 2, given the omf surrogate g?t ∈ Sρ,L(ft, θt−1) defined in (15), any function
gt such that ‖gt − g?t ‖∞ < ε is in Tρ,L(ft, θt−1, ε) — e.g., where gt uses an approximate αt in (15).
This assumption can also be met in matrix factorization settings with difficult code regularizations, that
require to make code approximations.

4.3.2 Approximate surrogate minimization

We do not require θt to be the minimizer of ḡt any longer, but ensure that the surrogate objective
function ḡt decreases “fast enough”. Namely, θt obtained from partial minimization should be closer
to a minimizer of ḡt than θt−1. We write (Ft)t and (Ft− 1

2
)
t

the filtrations induced by the past of the

algorithm, respectively up to the end of iteration t and up to the beginning of the minimization step in
iteration t. Then, we assume

(I) For all t > 0, ḡt(θt) < ḡt(θt−1). There exists µ > 0 such that, for all t > 0, where θ?t =
argminθ∈Θ ḡt(θ),

E[ḡt(θt)− ḡt(θ?t)|Ft− 1
2
] ≤ (1− µ)(ḡt(θt−1)− ḡt(θ?t)). (32)

Assumption (I) is met by choosing an appropriate method for the inner ḡt minimization step — a
large variety of gradient-descent algorithms indeed have convergence rates of the form (32). In somf, the
block coordinate descent with frozen coordinates indeed meet this property, relying on results from [37].
When both assumptions are met, samm enjoys the same convergence guarantees as smm.

14

Surrogate approximation Partial minimization

Figure 2: Both steps of samm make well-behaved approximations. The operations that are performed
in exact smm are in green and superscripted by ?, while the actual computed values are in orange. Light
bands recall the bounds on approximations assumed in (H) and (I).

4.3.3 Asymptotic convergence guarantee

The following proposition guarantees that the stationary point condition of Proposition 2 holds for the
samm algorithm, despite the use of approximate surrogates and approximate minimization.

Proposition 3 (Convergence of samm). Under assumptions (C) – (I), the conclusion of Proposition 2
holds for samm.

Assumption (H) is essential to bound the errors introduced by the sequence (εt)t in the proof of
Proposition 3, while (I) is the key element to show that the sequence of iterates (θt)t is stable enough
to ensure convergence.The result holds for any subsampling ratio r, provided that (A) remains true.

4.3.4 Proving somf convergence

Assumptions (A) and (B) readily implies (C)–(G). With Proposition 3 at hand, proving Proposition 1
reduces to ensure that the surrogate sequence of somf meets (H) while its iterate sequence meets (I).

5 Experiments

The somf algorithm is designed for datasets with large number of samples n and large dimensionality p.
Indeed, as detailed in Section 3.1, subsampling removes the computational bottlenecks that arise from
high dimensionality. Proposition 1 establishes that the subsampling used in somf is safe, as it enjoys
the same guarantees as omf. However, as with omf, no convergence rate is provided.

We therefore perform a strong empirical validation of subsampling.
We tackle two different problems, in functional Magnetic Resonance Imaging (fMRI) and hyperspec-

tral imaging. Both involve the factorization of very large matrices X with sparse factors. As the data
we consider are huge, subsampling reduces the time of a single iteration by a factor close to p

q . Yet it is
also much redundant: somf makes little approximations and accessing only a fraction of the features per
iteration should not hinder much the refinement of the dictionary. Hence high speed-ups are expected
— and indeed obtained. All experiments can be reproduced using open-source code.

5.1 Problems and datasets

5.1.1 Functional MRI

Matrix factorization has long been used on functional Magnetic Resonance Imaging [18]. Data are tem-
poral series of 3D images of brain activity and are decomposed into spatial modes capturing regions that
activate synchronously. They form a matrix X where columns are the 3D images, and rows corresponds
to voxels. Interesting dictionaries for neuroimaging capture spatially-localized components, with a few
brain regions. This can be obtained by enforcing sparsity on the dictionary: we use an `2 penalty and the
elastic-net constraint. somf streams subsampled 3D brain records to learn the sparse dictionary D. Data
can be huge: we use the whole HCP dataset [38], with n = 2.4 ·106 (2000 records, 1 200 time points) and
p = 2 ·105, totaling 2 TB of dense data. For comparison, we also use a smaller public dataset (ADHD200
[39]) with 40 records, n = 7000 samples and p = 6 · 104 voxels. Historically, brain decomposition have

15

Table 2: Summary of experimental settings

Field Functional MRI Hyperspectral imaging

Dataset ADHD HCP Patches from AVIRIS

Factors D sparse, A dense D dense, A sparse
samples n 7 · 103 2 · 106 2 · 106

features p 6 · 104 2 · 105 6 · 104

X size 2 GB 2 TB 103 GB
Use case ex. Extracting predictive feature Recognition / denoising

been obtained by minimizing the classical dictionary learning objective on transposed data [40]: the code
A holds sparse spatial maps and voxel time-series are streamed. This is not a natural streaming order
for fMRI data as X is stored columnwise on disk, which makes the sparse dictionary formulation more
appealing. Importantly, we seek a low-rank factorization, to keep the decomposition interpretable —
k ∼ 100� p.

5.1.2 Hyperspectral imaging

Hyperspectral cameras acquire images with many channels that correspond to different spectral bands.
They are used heavily in remote sensing (satellite imaging), and material study (microscopic imaging).
They yield digital images with around 1 million pixels, each associated with hundreds of spectral channels.
Sparse matrix factorization has been widely used on these data for image classification [41, 42] and
denoising [43, 44]. All methods rely on the extraction of full-band patches representing a local image
neighborhood with all channels included. These patches are very high dimensional, due to the number of
spectral bands. From one image of the AVIRIS project [45], we extract n = 2 ·106 patches of size 16×16
with 224 channels, hence p = 6 · 104. A dense dictionary is learned from these patches. It should allow
a sparse representation of samples: we either use the classical dictionary learning setting (`1/elastic-net
penalty), or further add positive constraints to the dictionary and codes: both methods may be used
and deserved to be benchmarked. We seek a dictionary of reasonable size: we use k ∼ 256� p.

5.2 Experimental design

To validate the introduction of subsampling and the usefulness of somf, we perform two major experi-
ments.

• We measure the performance of somf when increasing the reduction factor, and show benefits of
stochastic dimension reduction on all datasets.

• We assess the importance of subsampling in each of the steps of somf. We compare the different
approaches proposed for code computation.

Validation. We compute the objective function (3) over a test set to rule out any overfitting effect —
a dictionary should be a good representation of unseen samples. This criterion is always plotted against
wall-clock time, as we are interested in the performance of somf for practitioners.

Tools. To perform a valid benchmark, we implement omf and somf using Cython [46] We use coor-
dinate descent [47] to solve Lasso problems with optional positivity constraints. Code computation is
parallelized to handle mini-batches. Experiments use scikit-learn [48] for numerics, and nilearn [49] for
handling fMRI data. We have released the code in an open-source Python package5. Experiments were
run on 3 cores of an Intel Xeon 2.6GHz, in which case computing P⊥t B̄t is faster than updating PtDt.

5https://github.com/arthurmensch/modl

16

https://github.com/arthurmensch/modl

5s 1min 6min

2.80

2.85

2.90

2.95

T
es

t
o

b
je

ct
iv

e
va

lu
e

×104

Time

ADHD
Sparse dictionary

2 GB

OMF: SOMF: r = 4 r = 6 r = 8 r = 12 r = 24r = 1 r = 4 r = 6 r = 8 r = 12 r = 24
1min 1h 5h

0.105

0.106

0.107

0.108

0.109 Aviris
NMF

103 GB

1min 1h 5h

0.36

0.38

0.40 Aviris
Dictionary learning

103 GB

100s 1h 5h 24h

0.98

1.00

1.02

1.04
×105

HCP
Sparse dictionary

2 TB

Best step-size SGD

Figure 3: Subsampling provides significant speed-ups on all fMRI and hyperspectral datasets. A reduc-
tion factor of 12 is a good overall choice. With larger data, larger reduction factors can be used for
better performance — convergence is reached 13× faster than state-of-the-art methods on the 2TB HCP
dataset.

Parameter setting. Setting the number of components k and the amount of regularization λ is a
hard problem in the absence of ground truth. Those are typically set by cross-validation when matrix
factorization is part of a supervised pipeline. For fMRI, we set k = 70 to obtain interpretable networks,
and set λ so that the decomposition approximately covers the whole brain (i.e., every map is k

70) sparse).
For hyperspectral images, we set k = 256 and select λ to obtain a dictionary on which codes are around
3% sparse. We cycle randomly through the data (fMRI records, image patches) until convergence, using
mini-batches of size η = 200 for HCP and AVIRIS, and η = 50 for ADHD (small number of samples).
Hyperspectral patches are normalized in the dictionary learning setting, but not in the non-negative
setting — the classical pre-conditioning for each case. We use u = 0.917 and v = 0.751 for weight
sequences.

5.3 Reduction brings speed-up at all data scales

We benchmark somf for various reduction factors against the original online matrix factorization algo-
rithm omf [15], on the three presented datasets. We stream data in the same order for all reduction
factors. Using variant (c) (true Gram matrix, averaged βt) performs slightly better on fMRI datasets,
whereas (b) (averaged Gram matrix and βt) is slightly faster for hyperspectral decomposition. For
comparison purpose, we display results using estimators (b) only.

Figure 3 plots the test objective against CPU time. First, we observe that all algorithms find dictio-
naries with very close objective function values for all reduction factors, on each dataset. This is not a
trivial observation as the matrix factorization problem (3) is not convex and different runs of omf and
somf may converge towards minima with different values. Second, and most importantly, somf pro-
vides significant improvements in convergence speed for three different sizes of data and three different
factorization settings. Both observations confirm the relevance of the subsampling approach.

Quantitatively, we summarize the speed-ups obtained in Table 3. On fMRI data, on both large and
medium datasets, somf provides more than an order of magnitude speed-up. Practitioners working on
datasets akin to HCP can decompose their data in 20 minutes instead of 4 h previously, while working
on a single machine. We obtain the highest speed-ups for the largest dataset — accounting for the extra
redundancy that usually appears when dataset size increase. Up to r ∼ 8, speed-up is of the order of r —
subsampling induces little noise in the iterate sequence, compared to omf. Hyperspectral decomposition
is performed near 7× faster than with omf in the classical dictionary learning setting, and 3× in the
non-negative setting, which further demonstrates the versatility of somf. Qualitatively, given a certain
time budget, Figure 4 compares the results of omf and the results of somf with a subsampling ratio
r = 24, in the non-negative setting. Our algorithm yields a valid smooth bank of filters much faster.
The same comparison has been made for fMRI in [26].

Comparison with stochastic gradient descent. It is possible to solve (3) using the projected
stochastic gradient (sgd) algorithm [50]. On all tested settings, for high precision convergence, sgd
(with the best step-size among a grid) is slower than omf and even slower than somf. In the dictionary
learning setting, sgd is somewhat faster than omf but slower than somf in the first epochs. Compared
to somf and omf, sgd further requires to select the step-size by grid search.

17

Comp. 1 Comp. 2 Comp. 3
Time: 14h

841k patchesOMF

r = 1 Time: 177 s

3k patches

SOMF

r = 24
Time: 179 s

87k patches

Figure 4: Given a 3 minute time budget, the atoms learned by somf are more focal and less noisy that
those learned by omf. They are closer to the dictionary of first line, for which convergence has been
reached.

Table 3: Time to reach convergence (< 1% test objective)

Dataset ADHD AVIRIS (NMF) AVIRIS (DL) HCP
Algorithm omf somf omf somf omf somf omf somf

Conv. time 6 min 28 s 2 h 30 43 min 1 h 16 11 min 3 h 50 17 min
Speed-up 11.8 3.36 6.80 13.31

Limitations. Table 3 reports convergence time within 1%, which is enough for application in practice.
somf is less beneficial when setting very high precision: for convergence within 0.01%, speed-up for HCP
is 3.4. This is expected as somf trades speed for approximation. For high precision convergence, the
reduction ratio can be reduced after a few epochs. As expected, there exists an optimal reduction ratio,
depending on the problem and precision, beyond which performance reduces: r = 12 yields better results
than r = 24 on AVIRIS (dictionary learning) and ADHD, for 1% precision.

Our first experiment establishes the power of stochastic subsampling as a whole. In the following two
experiments, we refine our analysis to show that subsampling is indeed useful in the three steps of online
matrix factorization.

5.4 For each step of SOMF, subsampling removes a bottleneck

In Section 3, we have provided theoretical guidelines on when to introduce subsampling in each of the
three steps of an iteration of somf. This analysis predicts that, for η ∼ k, we should first use partial
dictionary update, before using approximate code computation and asynchronous parameter aggregation.
We verify this by measuring the time spent by somf on each of the updates for various reduction factors,
on the HCP dataset. Results are presented in Figure 5. We observe that block coordinate descent is
indeed the bottleneck in omf. Introducing partial dictionary update removes this bottleneck, and as the
reduction factor increases, code computation and surrogate aggregation becomes the major bottlenecks.
Introducing subsampling as described in somf overcomes these bottlenecks, which rationalizes all steps
of somf from a computational point of view.

5.5 Code subsampling becomes useful for high reduction

It remains to assess the performance of approximate code computation and averaging techniques used
in somf. Indeed, subsampling for code computation introduces noise that may undermine the com-
putational speed-up. To understand the impact of approximate code computation, we compare three
strategies to compute (αt)t on the HCP dataset. First, we compute (α?t)t from (xt)t using (21). Subsam-
pling is thus used only in dictionary update. Second, we rely on masked, non-consistent estimators (a),
as in [26] — this breaks convergence guarantees. Third, we use averaged estimators (βt,Gt) from (c) to
reduce the variance in (αt)t computation.

Fig. 6 compares the three strategies for r ∈ {12, 24}. Partial minimization at each step is the
most important part to accelerate convergence: subsampling the dictionary updates already allows to
outperforms omf. This is expected, as dictionary update constitutes the main bottleneck of omf in large-
scale settings. Yet, for large reduction factors, using subsampling in code computation is important to
further accelerate convergence. This clearly appears when comparing the plain and dashed black curves.

18

39
42
No subsampling Subsampling for: Time to compute:

Dictionary

Gram matrix

Surrogate
parameters

Code

No reduction r = 6 r = 24
0

10

C
o

m
p

u
ta

ti
o

n
ti

m
e

p
er

sa
m

p
le

(m
s)

Dictionary

+ Surrogate

+ Code
Dictionary

+ Surrogate

+ Code

Figure 5: Profiling omf and somf on HCP. Partial dictionary update removes the major bottleneck
of online matrix factorization for small reductions. For higher reduction, parameter update and code
computation must be subsampled to further reduce the iteration time.

10−1 100 101
−3000

−2000

−1000

0

T
es

t
o

b
je

ct
iv

e
fu

n
ct

io
n +105

Zoom
10−3

10−2 (relative to lowest value) Subsampling ratio

None

r = 12

r = 24

100 101 Time
10−3

10−2 Code computation

No subsampling (19)

Averaged estimators (c)

Masked loss (a)

Figure 6: Approximating code computation with the proposed subsampling method further accelerates
the convergence of somf. Refining code computation using past iterations (averaged estimates) performs
better than simply performing a subsampled linear regression as in [26]

Using past estimates to better approximate (αt)t yields faster convergence than the non-converging,
masked loss strategy (a) proposed in [26].

6 Conclusion

In this paper, we introduce somf, a matrix-factorization algorithm that can handle input data with
very large number of rows and columns. It leverages subsampling within the inner loop of a streaming
algorithm to make iterations faster and accelerate convergence. We show that somf provides a stationary
point of the non-convex matrix factorization problem. To prove this result, we extend the stochastic
majorization-minimization framework to two major approximations. We assess the performance of somf
on real-world large-scale problems, with different sparsity/positivity requirements on learned factors. In
particular, on fMRI and hyperspectral data decomposition, we show that the use of subsampling can
speed-up decomposition up to 13 times. The larger the dataset, the more somf outperforms state-of-the
art techniques, which is very promising for future applications. This calls for adaptation of our approach
to learn more complex models.

References

[1] Julien Mairal. Sparse Modeling for Image and Vision Processing. Foundations and Trends in
Computer Graphics and Vision, 8(2-3):85–283, 2014.

[2] Nathan Srebro, Jason Rennie, and Tommi S. Jaakkola. Maximum-margin matrix factorization. In
Advances in Neural Information Processing Systems, pages 1329–1336, 2004.

[3] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, 2009.

[4] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global Vectors for Word
Representation. In Proc. Conf. EMNLP, volume 14, pages 1532–43, 2014.

[5] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems, pages 2177–2185, 2014.

19

[6] Yin Zhang, Matthew Roughan, Walter Willinger, and Lili Qiu. Spatio-Temporal Compressive Sens-
ing and Internet Traffic Matrices. 2009.

[7] Hyunsoo Kim and Haesun Park. Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12):1495–1502,
2007.

[8] Gaël Varoquaux et al. Multi-subject dictionary learning to segment an atlas of brain spontaneous
activity. In Proc. IPMI Conf., pages 562–573, 2011.

[9] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT, pages 177–186, 2010.

[10] Julien Mairal. Stochastic majorization-minimization algorithms for large-scale optimization. In Adv.
Neural Inform. Process. Syst., pages 2283–2291, 2013.

[11] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block
successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization,
23(2):1126–1153, 2013.

[12] Samuel Burer and Renato D. C. Monteiro. Local Minima and Convergence in Low-Rank Semidefinite
Programming. Math. Program., 103(3):427–444, 2004.

[13] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale matrix
completion. Math. Program. Comput., 5(2):201–226, 2013.

[14] Robert M. Bell and Yehuda Koren. Lessons from the Netflix prize challenge. ACM SIGKDD
Explorations Newsletter, 9(2):75–79, 2007.

[15] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factor-
ization and sparse coding. J. Machine Learning Research, 11:19–60, 2010.

[16] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

[17] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: Applications
to image and text data. In Proc. SIGKDD Conf., pages 245–250, 2001.

[18] M. J. McKeown et al. Analysis of fMRI Data by Blind Separation into Independent Spatial Com-
ponents. Hum. Brain Mapp., 6(3):160–188, 1998.

[19] Emmanuel J. Candès and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, 2006.

[20] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. arXiv:0909.4061
[math], 2009.

[21] Vladimir Rokhlin et al. A randomized algorithm for principal component analysis. SIAM J. Matrix
Anal. Appl., 31(3):1100–1124, 2009.

[22] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
Proc. IEEE Symp. Found. Comput. Science, pages 143–152, 2006.

[23] Yichao Lu et al. Faster ridge regression via the subsampled randomized hadamard transform. In
Adv. Neural Inform. Process. Syst., pages 369–377, 2013.

[24] Mert Pilanci and Martin Wainwright. Iterative hessian sketch: Fast and accurate solution approxi-
mation for constrained least-squares. JMLR, 17:1–33, 2015.

[25] Garvesh Raskutti and Michael Mahoney. Statistical and algorithmic perspectives on randomized
sketching for ordinary least-squares. In Proc. ICML, pages 617–625, 2015.

20

[26] Arthur Mensch, Julien Mairal, Bertrand Thirion, and Gaël Varoquaux. Dictionary learning for
massive matrix factorization. In Proc. ICML, pages 1737–1746, 2016.

[27] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Res., 37(23):3311–3325, 1997.

[28] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat.
Methodol., 58(1):267–288, 1996.

[29] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. J. Comput.
Graph. Stat., 15(2):265–286, 2006.

[30] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. J. R. Stat.
Soc. Series B Stat. Methodol., 67(2):301–320, 2005.

[31] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine
Learning Research, 5:1457–1469, 2004.

[32] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale Machine
Learning. arXiv:1606.04838 [stat.ML], 2016.

[33] Aad W. Van der Vaart. Asymptotic Statistics, volume 3. CUP, 2000.

[34] Morteza Mardani et al. Subspace Learning and Imputation for Streaming Big Data Matrices and
Tensors. IEEE TSP, 63(10):2663–2677, 2015.

[35] Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization: Theory
and Examples. Springer Science & Business Media, 2010.

[36] Julien Mairal. Optimization with first-order surrogate functions. In Proceedings of the International
Conference on Machine Learning, pages 783–791, 2013.

[37] Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

[38] David C. Van Essen et al. The WU-Minn Human Connectome Project: An overview. NeuroImage,
80:62–79, 2013.

[39] Michael P. Milham et al. The adhd-200 consortium: a model to advance the translational potential
of neuroimaging in clinical neuroscience. Front. Syst. Neurosci., 6(62), 2012.

[40] Gaël Varoquaux, Yannick Schwartz, Philippe Pinel, and Bertrand Thirion. Cohort-level brain map-
ping: Learning cognitive atoms to single out specialized regions. In Proceedings of the Information
Processing in Medical Imaging Conference, pages 438–449, 2013.

[41] Yi Chen, Nasser M. Nasrabadi, and Trac D. Tran. Hyperspectral image classification using
dictionary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing,
49(10):3973–3985, 2011.

[42] A. Soltani-Farani, H. R. Rabiee, and S. A. Hosseini. Spatial-Aware Dictionary Learning for Hyper-
spectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 53(1):527–541,
2015.

[43] Matteo Maggioni, Vladimir Katkovnik, Karen Egiazarian, and Alessandro Foi. Nonlocal transform-
domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process.,
22(1):119–133, 2013.

[44] Yi Peng et al. Decomposable nonlocal tensor dictionary learning for multispectral image denoising.
In Proc. IEEE Conf. CVPR, pages 2949–2956, 2014.

[45] Gregg Vane. First results from the airborne visible/infrared imaging spectrometer (AVIRIS). In
Ann. Tech. Symp. Int. Soc. Optics Photonics, pages 166–175, 1987.

21

[46] Stefan Behnel et al. Cython: The best of both worlds. Computing in Science & Engineering,
13(2):31–39, 2011.

[47] Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordinate opti-
mization. The Annals of Applied Statistics, 1(2):302–332, 2007.

[48] Fabian Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[49] Alexandre Abraham et al. Machine learning for neuroimaging with scikit-learn. Frontiers in Neu-
roinformatics, 8:14, 2014.

[50] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
l1-ball for learning in high dimensions. In Proceedings of the International Conference on Machine
Learning, pages 272–279, 2008.

[51] Michel Métivier. Semimartingales: A Course on Stochastic Processes, volume 2. Walter de Gruyter,
1982.

[52] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[53] Joseph Leo Doob. Stochastic processes. John Wiley & Sons, 1990.

22

A Proofs of convergence

This appendix contains the detailed proofs of Proposition 3 and Proposition 1. We first introduce three
lemmas that will be crucial to prove samm convergence, before establishing it by proving Proposition 3.
Finally, we show that somf is indeed an instance of samm (i.e. meets the assumptions (C)–(I)), proving
Proposition 1.

A.1 Basic properties of the surrogates, estimate stability

We derive an important result on the stability and optimality of the sequence (θt)t, formalized in Lemma 3
— introduced in the main text. We first introduce a numerical lemma on the boundedness of well-behaved
determistic and random sequence. The proof is detailed in Appendix B.

Lemma 1 (Bounded quasi-geometric sequences). Let (xt)t be a sequence in R+, u : R × R → R, t0 ∈ N
and α ∈ [0, 1) such that, for all t ≥ t0, xt ≤ αxt−1 + u(xt, xt−1), where u(x, y) ∈ o(x+ y) for x, y →∞.
Then (xt)t is bounded.

Let now (Xt)t be a random sequence in R+, such that E[Xt] < ∞. We define (Ft)t the filtration
adapted to (Xt)t. If, for all t > t0, there exists a σ-algebra Ft′ such that Ft−1 ⊆ Ft′ ⊆ Ft and

E[Xt|Ft′] ≤ αXt−1 + u(Xt, Xt−1), (33)

then (Xt)t is bounded almost surely.

We first derive some properties of the approximate surrogate functions used in samm. The proof is
adapted from [10].

Lemma 2 (Basic properties of approximate surrogate functions). Consider any sequence of iterates (θt)t
and assume there exists ε > 0 such that gt ∈ TL,ρ(ft, θt−1, ε) for all t ≥ 1. Define ht , gt − ft for all

t ≥ 1, h̄0 , h0 and h̄t , (1− wt)h̄t−1 + wtht. Under assumptions (D) – (G),

(i) (∇ht(θt−1))t>0 is uniformly bounded and there exists R′ such that {∇ht}t is uniformly bounded
by R′.

(ii) (ht)t and (h̄t)t are uniformly R′-Lipschitz, (gt)t and (ḡt)t are uniformly (R+R′)-Lipschitz.

Proof. We first prove (i). We set α > 0 and define θ′ = θt−α ∇ht(θt)
‖∇ht(θt)‖2 . As ht has a L-Lipschitz gradient

on RK , using Taylor’s inequality (see Appendix B)

ht(θ
′) ≤ ht(θt)− α‖∇ht(θt)‖2 +

Lα2

2
(34)

‖∇ht(θt)‖2 ≤
1

α
(ht(θt)− ht(θ′)) +

Lα

2
≤ 2

α
ε+

Lα

2
,

where we use ht(θt) < ε and −ht(θ′t) ≤ ε from the assumption gt ∈ TL,ρ(ft, θt−1, ε). Moreover, by
definition, ∇ht exists and is L-lipschitz for all t. Therefore, ∀ t ≥ 1,

‖∇ht(θ)‖2 ≤ ‖∇ht(θt)‖2 + L‖θt−1 − θ‖2 (35)

Since Θ is compact and (‖∇ht(θt)‖2)
t≥1

is bounded in (34), ∇ht is bounded by R′ independent of t. (ii)
follows by basic considerations on Lipschitz functions.

Finally, we prove a result on the stability of the estimates, that derives from combining the properties
of (gt)t and the geometric decrease assumption (I).

Lemma 3 (Estimate stability under samm approximation). In the same setting as Lemma 2, with the
additional assumption (I) (expected linear decrease of ḡt suboptimality), the sequence ‖θt − θt−1‖2
converges to 0 as fast as (wt)t, and θt is asymptotically an exact minimizer. Namely, almost surely,

‖θt − θt−1‖2 ∈ O(wt) and ḡt(θt)− ḡt(θ?t) ∈ O(w2
t). (36)

Proof. We first establish the result when a deterministic version of (I) holds, as it makes derivations
simpler to follow.

23

A.1.1 Determistic decrease rate

We temporarily assume that decays are deterministic.

(Idet) For all t > 0, ḡt(θt) < ḡt(θt−1). Moreover, there exists µ > 0 such that, for all t > 0

ḡt(θt)− ḡt(θ?t) ≤ (1− µ)(ḡt(θt−1)− ḡt(θ?t))

where θ?t = argmin
θ∈Θ

ḡt(θ), (37)

We introduce the following auxiliary positive values, that we will seek to bound in the proof:

At , ‖θt − θt−1‖2, Bt , ‖θt − θ?t ‖2,
Ct , ‖θ?t − θ?t−1‖2, Dt , ḡt(θt)− ḡt(θ?t). (38)

Our goal is to bound At. We first relate it to Ct and Bt using convexity of `2 norm:

A2
t ≤ 3B2

t + 3B2
t−1 + 3C2

t . (39)

As θ?t is the minimizer of ḡt, by strong convexity of (ḡt)t,

ρ

2
B2
t =

ρ

2
‖θt − θ?t ‖22 ≤ Dt, (40)

while we also have

ρ

2
‖θ?t − θ?t−1‖22 ≤ ḡt(θ?t−1)− ḡt(θ?t)

≤ (1− wt)
(
ḡt−1(θ?t−1)− ḡt−1(θ?t)

)
+wt

(
gt(θ

?
t−1)− gt(θ?t)

)
≤ wt(R+R′)‖θ?t − θ?t−1‖2, and thus Ct ≤ wt

2Q

ρ
. (41)

The second inequalities holds because θ?t−1 is a minimizer of ḡt−1 and gt is Q-Lipschitz, where Q , R+R′,
using Lemma 2. Replacing (40) and (41) in (39) yields

A2
t ≤

6

ρ
(Dt +Dt−1) +

12Q2

ρ
w2
t , (42)

and we are left to show that Dt ∈ O(w2
t) to conclude. For this, we decompose the inequality from (Idet)

into

Dt ≤ (1− µ)(ḡt(θt−1)− ḡt(θ?t))

= (1− µ)
(
wt
(
gt(θt−1)− gt(θt)

)
+ wt

(
gt(θt)− gt(θ?t)

))
+ (1− µ)

(
(1− wt)

(
ḡt−1(θt−1)− ḡt−1(θ?t−1)

)
+ (1− wt)

(
ḡt−1(θ?t−1)− ḡt−1(θ?t)

))
≤ (1− µ)(wtQ(At +Bt) +Dt−1), (43)

where the second inequality holds for the same reasons as in (41). Injecting (40) and (42) in (43), we
obtain

D̃t ≤ (1− µ)D̃t−1
w2
t−1

w2
t

+ u(D̃t, D̃t−1), (44)

where we define D̃t ,
Dt
w2
t
. It is easy to show (see algebraic details in Appendix B) that the perturbation

term u(D̃t, D̃t−1) ∈ o(D̃t + D̃t−1) if D̃t → ∞. Using the determistictic result of Lemma 1, this ensures
that D̃t is bounded, which combined with (40) allows to conclude.

24

A.1.2 Stochastic decrease rates

In the general case (I), the inequalities (40), (41) and (42) holds, and (44) is replaced by

E[D̃t|Ft− 1
2
] ≤ (1− µ)D̃t−1

w2
t−1

w2
t

+ u(D̃t, D̃t−1), (45)

Taking the expectation of this inequality and using Jensen inequality, we show that (43) holds when
replacing D̃t by E[D̃t]. This shows that E[Dt] ∈ O(w2

t) and thus E[Dt] < ∞. The result follows from
Lemma 1, that applies as Ft−1 ⊆ Ft− 1

2
⊆ Ft.

A.2 Convergence of SAMM — Proof of Proposition 3

We now proceed to prove the Proposition 3, that extends the stochastic majorization-minimization
framework to allow approximations in both majorization and minimizations steps.

Proof of Proposition 3. We adapt the proof of Proposition 3.3 from [10] (reproduced as Proposition 2
in our work). Relaxing tightness and majorizing hypotheseses introduces some extra error terms in the
derivations. Assumption (H) allows to control these extra terms without breaking convergence. The
stability Lemma 3 is important in steps 3 and 5.

A.2.1 Almost sure convergence of (ḡt(θt))

We control the positive expected variation of (gt(θt))t to show that it is a converging quasi-martingale.
By construction of ḡt and properties of the surrogates gt ∈ Tρ,L(ft, θt−1, εt), where εt is a non-negative
sequence that meets (H),

ḡt(θt)− ḡt−1(θt−1)

= (ḡt(θt)− ḡt(θt−1)) + wt(gt(θt−1)− ḡt−1(θt−1))

≤ wt(gt(θt−1)− ḡt−1(θt−1))

≤ wt(gt(θt−1)− ft(θt−1)) + wt(ft(θt−1)− f̄t−1(θt−1))

+ wt(f̄t−1(θt−1)− ḡt−1(θt−1))

≤ wt(ft(θt−1)− f̄t−1(θt−1)) + wt(ε̄t−1 + εt), (46)

where the average error sequence (ε̄t)t is defined recursively: ε̄0 , ε0 and ε̄t , (1− wt)εt−1 + wtεt. The
first inequality uses ḡt(θt) ≤ ḡt(θt−1). To obtain the forth inequality we observe gt(θt−1)− ft(θt−1) < εt
by definition of εt and f̄t(θt−1) − ḡt(θt−1) ≤ ε̄t, which can easily be shown by induction on t. Then,
taking the conditional expectation with respect to Ft−1,

E[ḡt(θt)− ḡt−1(θt−1)|Ft−1]

≤ wt sup
θ∈Θ
|f(θ)− f̄t−1(θ)|+ wt(ε̄t−1 + E[εt|Ft−1]). (47)

We have used the fact that εt−1 is deterministic with respect to Ft−1. To ensure convergence, we must
bound both terms in (47): the first term is the same as in the original proof with exact surrogate, while
the second is the perturbative term introduced by the approximation sequence (εt)t. We use Lemma
B.7 from [10], issued from the theory of empirical processes: E[supθ∈Θ |f(θ)− f̄t−1(θ)|] = O(wtt

1/2), and
thus

∞∑
t=1

wtE[sup
θ∈Θ
|f(θ)− f̄t−1(θ)|] < C

∞∑
t=1

t1/2w2
t <∞ (48)

where C is a constant, as t1/2w2
t = t1/2−2u and u > 3/4 from (G). Let us now focus on the second term

of (47). Defining, for all 1 ≤ i ≤ t, wti = wi
∏t
j=i+1(1− wj),

E[ε̄t] =

t∑
i=1

wtiE[εt] ≤ wt
t∑
i=1

E[εt]. (49)

25

We set η > 0 so that 2(u− 1)− η > −1. Assumption (H) ensures E[εt] ∈ O(t2(u−1)−η), which allows to
bound the partial sum

∑t
i=1 E[εi] ∈ O(t2u−1−η). Therefore

wtE[ε̄t−1 + E[εt|Ft−1]] = wtE[εt−1] + wtE[εt]

≤ w2
t

(t∑
i=1

E[εt]
)

+ wtE[εt] (50)

≤ At2u−2u−1−η +Bt2u−u−2−η ≤ Ct−1−η,

where we use u < 1 on the third line and the definition of (wt)t on the second line. Thus
∑∞
t=1 wtE[ε̄t−1 +

E[εt|Ft−1]] <∞. We use quasi-martingale theory to conclude, as in [10]. We define the variable δt to be
1 if E[ḡt(θt)− ḡt−1(θt−1)|Ft−1] ≥ 0, and 0 otherwise. As all terms of (47) are positive:

∞∑
t=1

E[δt(ḡt(θt)− ḡt−1(θt−1))]

=

∞∑
t=1

E[δtE[ḡt(θt)− ḡt−1(θt−1)|Ft−1]] (51)

≤
∞∑
t=1

wtE[sup
θ∈Θ
|f(θ)− f̄t−1(θ)|+ ε̄t−1 + E[εt|Ft−1]|] <∞.

As ḡt are bounded from below (f̄t is bounded from (D) and we easily show that ε̄t is bounded), we
can apply Theorem A.1 from [10], that is a quasi-martingale convergence theorem originally found
in [51]. It ensures that (gt(θt))t≥1 converges almost surely to an integrable random variable g?, and that∑∞
t=1 E[|E[ḡt(θt)− ḡt−1(θt−1)|Ft−1]|] <∞ almost surely.

A.2.2 Almost sure convergence of f̄(θt)

We rewrite the second inequality of (46), adding ε̄t on both sides:

0 ≤ wt
(
ḡt−1(θt−1)− f̄t−1(θt−1) + ε̄t−1

)
≤ wt

(
gt(θt−1)− ft(θt−1)

)
+ wt

(
ft(θt−1)− f̄t−1(θt−1)

)
+
(
ḡt−1(θt−1)− ḡt(θt)

)
+ wtε̄t−1

≤ wt
(
ft(θt−1)− f̄t−1(θt−1)

)
+
(
ḡt−1(θt−1)− ḡt(θt)

)
+ wt(εt + ε̄t−1), (52)

where the left side bound has been obtained in the last paragraph by induction and the right side bound
arises from the definition of εt. Taking the expectation of (52) conditioned on Ft−1, almost surely,

0 ≤ wt(f(θt−1)− f̄t−1(θt−1)) (53)

− E[ḡt(θt)− ḡt−1(θt−1)|Ft−1] + wt(ε̄t−1 + E[εt|Ft−1]),

We separately study the three terms of the previous upper bound. The first two terms can undergo
the same analysis as in [10]. First, almost sure convergence of

∑∞
t=1 E

[
|E[ḡt(θt) − ḡt−1(θt−1)|Ft−1]|

]
implies that E

[
ḡt(θt) − ḡt−1(θt−1)|Ft−1

]
is the summand of an almost surely converging sum. Second,

wt
(
f(θt−1) − f̄t−1(θt−1)

)
is the summand of an absolutely converging sum with probability one, less

it would contradict (48). To bound the third term, we have once more to control the perturbation
introduced by (εt)t. We have

∑∞
t=1 wtε̄t−1 +wtE[εt|Ft−1] <∞ almost surely, otherwise Fubini’s theorem

would invalidate (50).
As the three terms are the summand of absolutely converging sums, the positive term wt(ḡt−1(θt−1)−

f̄t−1(θt−1) + ε̄t−1) is the summand of an almost surely convergent sum. This is not enough to prove
that h̄t(θt) , ḡt(θt) − f̄t(θt) →∞ 0, hence we follow [10] and make use of its Lemma A.6. We define
Xt , h̄t−1(θt−1) + ε̄t−1. As (H) holds, we use Lemma 3, which ensures that (h̄t)t≥1 are uniformly

26

R′-Lipschitz and ‖θt − θt−1‖2 = O(wt). Hence,

|Xt+1 −Xt| ≤ |h̄t(θt)− h̄t−1(θt−1)|+ |ε̄t − ε̄t−1|
≤ R′‖θt − θt−1‖2 + |ε̄t − ε̄t−1|, as h̄t is R′-Lipschitz

≤ O(wt) + |ε̄t − ε̄t−1|, as ‖θt − θt−1‖2 = O(wt) (54)

From assumption (H), (εt)t and (ε̄t)t are bounded. Therefore |ε̄t − ε̄t−1| ≤ wt(|εt|+ |ε̄t−1|) ∈ O(wt) and
hence

|Xt+1 −Xt| ≤ O(wt). (55)

Lemma A.6 from [10] then ensures that Xt converges to zero with probability one. Assumption (H)
ensures that εt →∞ 0 almost surely, from which we can easily deduce ε̄t →∞ 0 almost surely. Therefore
h̄t(θt)→ 0 with probability one and (f̄t(θt))t≥1 converges almost surely to g?.

A.2.3 Almost sure convergence of f̄(θt)

Lemma B.7 of [10], based on empirical process theory [33], ensures that f̄t uniformly converges to f̄ .
Therefore, (f̄(θt))t≥1 converges almost surely to g?.

A.2.4 Asymptotic stationary point condition

Preliminary to the final result, we establish the asymptotic stationary point condition (57) as in [10].
This requires to adapt the original proof to take into account the errors in surrogate computation and
minimization. We set α > 0. By definition, ∇h̄t is L-Lipschitz over RK . Following the same computation
as in (34), we obtain, for all α > 0,

‖∇h̄t(θt)‖2 ≤
2

α
ε̄t +

Lα

2
, (56)

where we use |h̄t(θ)| ≤ ε̄t for all θ ∈ RK . As ε̄t → 0 and the inequality (56) is true for all α,
‖∇h̄t(θt)‖2 →∞ 0 almost surely. From the strong convexity of ḡt and Lemma 3, ‖θt − θ?t ‖2 converges to
zero, which ensures

‖∇h̄t(θ?t)‖2 ≤ ‖∇̄ht(θt)‖2 + L‖θt − θ?t ‖2 →∞ 0. (57)

A.2.5 Parametrized surrogates

We use assumption (F) to finally prove the property, adapting the proof of Proposition 3.4 in [10]. We
first recall the derivations of [10] for obtaining (58) We define (κt)t such that ḡt = gκt for all t > 0. We
assume that θ∞ is a limit point of (θt)t. As Θ is compact, there exists an increasing sequence (tk)k such
that (θtk)k converges toward θ∞. As K is compact, a converging subsequence of (κtk)k can be extracted,
that converges towards κ∞ ∈ K. From the sake of simplicity, we drop subindices and assume without
loss of generality that θt → θ∞ and κt → κ∞. From the compact parametrization assumption, we easily
show that (ḡκt)t uniformly converges towards ḡ∞ , ḡκ∞ . Then, defining h̄∞ = ḡ∞ − f̄ , for all θ ∈ Θ,

∇f̄(θ∞, θ − θ∞) = ∇ḡ∞(θ∞, θ − θ∞)−∇h̄∞(θ∞, θ − θ∞) (58)

We first show that ∇f̄(θ∞, θ − θ∞) ≥ 0 for all θ ∈ Θ. We consider the sequence (θ?t)t. From Lemma 3,
‖θt − θ?t ‖2 → 0, which implies θ?t → θ∞. ḡt converges uniformly towards ḡ∞, which implies (ḡt(θ

?
t))t →

ḡ∞(θ∞). Furthermore, as θ?t minimizes ḡt, for all t > 0 and θ ∈ Θ, ḡt(θ
?
t) ≤ ḡt(θ). This implies

ḡ∞(θ∞) ≤ infθ∈Θ ḡ∞(θ) by taking the limit for t → ∞. Therefore θ∞ is the minimizer of ḡ∞ and thus
∇ḡ∞(θ∞, θ − θ∞) ≥ 0.

Adapting [10], we perform the first-order expansion of h̄t around θ?t (instead of θt in the original
proof) and show that ∇h̄∞(θ∞, θ− θ∞) = 0, as h̄t differentiable, ‖∇h̄t(θ?t)‖2 → 0 and θ?t → θ∞. This is
sufficient to conclude.

27

A.3 Convergence of SOMF — Proof of Proposition 1

Proof of Proposition 1. From assumption (D), (xt)t is `2-bounded by a constant X. With assumption
(A), it implies that (αt)t is `2-bounded by a constant A. This is enough to show that (gt)t and (θt)t
meet basic assumptions (C)–(F). Assumption (G) immediately implies (B). It remains to show that
(gt)t and (θt)t meet the assumptions (H) and (I). This will allow to cast somf as an instance of samm
and conclude.

A.3.1 The computation of Dt verifies (I)

We define D?
t = argminD∈C ḡt(D). We show that performing subsampled block coordinate descent on ḡt

is sufficient to meet assumption (I), where θt = Dt. We separately analyse the exceptional case where
no subsampling is done and the general case.

First, with small but non-zero probability, Mt = Ip and Alg. 4 performs a single pass of simple
block coordinate descent on ḡt. In this case, as ḡt is strongly convex from (A), [52, 37] ensures that the
sub-optimality decreases at least of factor 1 − µ with a single pass of block coordinate descent, where
µ > 0 is a constant independent of t. We provide an explicit µ in Appendix B.

In the general case, the function value decreases deterministically at each minimization step: ḡt(Dt) ≤
ḡt(Dt−1). As a consequence, E[ḡt(Dt)|Ft− 1

2
,Mt 6= Ip] ≤ ḡt(Dt−1). Furthermore, ḡt and hence ḡt(D

?
t)

are deterministic with respect to Ft− 1
2
, which implies E[ḡt(D

?
t)|Ft− 1

2
,Mt 6= Ip] = ḡt(D

?
t). Defining

d , P[Mt = Ip], we split the sub-optimality expectation and combine the analysis of both cases:

E[ḡt(Dt)− ḡt(D?
t)|Ft− 1

2
]

= dE[ḡt(Dt)− ḡt(D?
t)|Ft− 1

2
,Mt = Ip]

+ (1− d)E[ḡt(Dt)− ḡt(D?
t)|Ft− 1

2
,Mt 6= Ip]

≤
(
d(1− µ) + (1− d)

)
(ḡt(Dt−1)− ḡt(D?

t))

=
(
1− dµ

)
(ḡt(Dt−1)− ḡt(D?

t)). (59)

A.3.2 The surrogates (gt)t verify (H)

We define g?t ∈ Sρ,L(ft,Dt−1) the surrogate used in omf at iteration t, which depends on the exact
computation of α?t , while the surrogate gt used in somf relies on approximated αt. Formally, using the
loss function `(α,G,β) , 1

2α
>Gα−α>β + λΩ(α), we recall the definitions

α?t, argmin
α∈Rk

`(α,G?
t ,β

?
t), αt, argmin

α∈Rk
`(α,Gt,βt), (60)

g?t (D) , `(α?t ,D
>D,D>xt), gt(D) , `(αt,D

>D,D>xt).

The matrices G?
t , β?t are defined in (21) and Gt, βt in either the update rules (b) or (c). We define

εt , ‖g?t − gt‖∞ to be the `∞ difference between the approximate surrogate of somf and the exact
surrogate of omf, as illustrated in Figure 2. By definition, gt ∈ Tρ,L(ft, θt−1, εt). We first show that εt
can be bounded by the Froebenius distance between the approximate parameters Gt, βt and the exact
parameters G?

t ,β
?
t . Using Cauchy-Schwartz inequality, we first show that there exists a constant C ′ > 0

such that for all D ∈ C,
|gt(D)− g?t (D)| ≤ C ′‖αt −α∗t ‖2. (61)

Then, we show that the distance ‖αt −α∗t ‖2 can itself be bounded: there exists C ′′ > 0 constant
such that

‖αt −α?t ‖2 ≤ C ′′(‖G?
t −Gt‖F + ‖β?t − βt‖2). (62)

We combine both equations and take the supremum over D ∈ C, yielding

εt ≤ C(‖G?
t −Gt‖F + ‖β?t − βt‖2), (63)

where C is constant. Detailed derivation of (61) to (63) relies on assumption (A) and are reported in
Appendix B.

28

In a second step, we show that ‖G?
t −Gt‖F and ‖β?t − βt‖2 vanish almost surely, sufficiently fast.

We focus on bounding ‖βt − β?t ‖2 and proceed similarly for ‖Gt −G?
t ‖2 when the update rules (b) are

used. For t > 0, we write i , it. Then

βt , β
(i)
t =

∑
s≤t,xs=x(i)

γ
(i)
s,tD

>
s−1Msx

(i),

where γ
(i)
s,t = γ

c
(i)
t

∏
s<t,xs=x(i)(1− γc(i)s) and c

(i)
t =

∣∣{s ≤ t,xs = x(i)
}∣∣. We can then decompose βt−β?t

as

βt − β?t =
∑

s≤t,xs=xt=x(i)

γ
(i)
s,t(Ds−1 −Dt−1)>Msx

(i)

+ D>t−1

(∑
s≤t,xs=xi)

γ
(i)
s,tMs − I

)
x(i). (64)

The latter equation is composed of two terms: the first one captures the approximation made by
using old dictionaries in the computation of (βt)t, while the second captures how the masking effect is
averaged out as the number of epochs increases. Assumption (B) allows to bound both terms at the
same time. Setting η , 1

2 min
(
v − 3

4 , (3u − 2) − v
)
> 0, a tedious but elementary derivation indeed

shows E[‖βt − β?t ‖2] ∈ O(t2(u−1)−η) and εt → 0 almost surely — see Appendix B. The somf algorithm
therefore meets assumption (H) and is a convergent samm algorithm. Proposition 1 follows.

29

B Algebraic details

B.1 Proof of Lemma 1

Proof. We first focus on the deterministic case. Assume that (xt)t is not bounded. Then there exists a
subsequence of (xt)t that diverges towards +∞. We assume without loss of generality that (xt)t → ∞.
Then, xt +xt−1 →∞ and for all ε > 0, using the asymptotic bounds on u, there exists t1 ≥ t0 such that

∀t ≥ t1, xt ≤ αxt−1 + ε(xt + xt−1)

and therefore xt ≤
α+ ε

1− ε xt−1. (65)

Setting ε small enough, we obtain that xt is bounded by a geometrically decreasing sequence after t1,
and converges to 0, which contradicts our hypothesis. This is enough to conclude.

In the random case, we consider a realization of (Xt)t that is not bounded, and assumes without loss
of generality that it diverges to +∞. Following the reasoning above, there exists β < 1, t1 > 0, such that
for all t > t1, E[Xt|Ft′] ≤ βXt−1, where Ft−1 ⊆ Ft′ ⊆ Ft. Taking the expectation conditioned on Ft−1,
E[Xt|Ft−1] ≤ βXt−1, as Xt−1 is deterministic conditioned on Ft−1. Therefore Xt is a supermartingale
beyond a certain time. As E[Xt] < ∞, Doob’s forward convergence lemma on discrete martingales [53]
ensures that (Xt)t converges almost surely. Therefore the event {(Xt)t is not bounded} cannot happen
on a set with non-zero probability, less it would lead to a contradiction. The lemma follows.

B.2 Taylor’s inequality for L-Lipschitz continuous functions

This inequality is useful in the demonstration of Lemma 2 and Proposition 3. Let f : Θ ⊂ RK → R be
a function with L-Lipschitz gradient. That is, for all θ, θ′ ∈ Θ, ‖∇f(θ)−∇f(θ′)‖2 ≤ L‖θ − θ′‖2. Then,
for all θ, θ′ ∈ Θ,

f(θ′) ≤ f(θ) +∇f(θ)>(θ′ − θ) +
L

2
‖θ − θ′‖22. (66)

B.3 Lemma 3: Detailed control of Dt in (44)

Injecting (40) and (42) in (43), we obtain

D̃t ≤ (1− µ)D̃t−1
w2
t−1

w2
t

+ u(D̃t, D̃t−1), where (67)

u(D̃t, D̃t−1) , (1− µ)Q̃

(√
3(D̃t + D̃t−1

w2
t−1

w2
t

) + Q̃+

√
D̃t

)
.

From assumption (G),
w2
t−1

w2
t
→ 1, and we have, from elementary comparisons, that u(D̃t, D̃t−1) ∈

o(D̃t + D̃t−1) if Dt →∞. Using the determistictic result of Lemma 1, this ensures that D̃t is bounded.

B.4 Detailed derivations in the proof of Proposition 1

Let us first exhibit a scaler µ > 0 independent of t, for which (I) is met

B.4.1 Geometric rate for single pass subsampled block coordinate descent

. For D(j) ∈ Rp×k any matrix with non-zero j-th column d(j) and zero elsewhere

∇ḡt(D + D(j))−∇ḡt(D + D(j)) = C̄t[j, j]d
(j) (68)

and hence ḡt gradient has component Lipschitz constant Lj = C̄t[j, j] for component j, as already noted

in [15]. Using [37] terminology, ∇ḡt has coordinate Lipschitz constant Lmax , max0≤j<k C̄t[j, j] ≤

30

maxt>0,0≤j<k αt[j]
2 ≤ A2, as (αt)t is bounded from (A). As a consequence, ḡt gradient is also L-

Lipschitz continuous, where [37] note that L ≤
√
kLmax. Moreover, ḡt is strongly convex with strong

convexity modulus ρ > 0 by hypothesis (A). Then, [52] ensures that after one cycle over the k blocks

E[ḡt(Dt)− ḡt(D?
t)|Ft−1,Mt = Ip] ≤

(
1− ρ

2Lmax(1 + kL2/L2
max)

)
(ḡt(Dt−1)− ḡt(D?

t))

≤
(
1− µ

)
(ḡt(Dt−1)− ḡt(D?

t)) where µ ,
ρ

2A2(1 + k2)
(69)

B.4.2 Controling εt from (Gt,βt), (G
?
t ,β

?
t) — Equations 61–62

We detail the derivations that are required to show that (H) is met in the proof of somf convergence.
We first show that (αt)t is bounded. We choose D > 0 such that ‖d(j)‖2 ≤ D for all j ∈ [k] and
D ∈ C, and X such that ‖x‖2 ≤ X for all x ∈ X . From assumption (A), using the second-order growth
condition, for all t > 0,

ρ

2
‖αt − 0‖22 ≤ λΩ(0)− (

1

2
α>t Gtαt −α>t βt + λΩ(αt)

ρ

2
‖αt‖22 +

1

2
α>t Gtαt ≤ 0 + ‖αt‖2‖βt‖2, hence

ρ‖αt‖22 ≤
√
krDX‖αt‖2, and therefore ‖αt‖2 ≤

√
krDX

ρ
, A. (70)

We have successively used the fact that Ω(0) = 0, Ω(αt) ≥ 0, and ‖βt‖2 ≤
√
krDX, which can be shown

by a simple induction on the number of epochs. For all t > 0, from the definition of αt and α?t , for
all D ∈ C:

|gt(D)− g?t (D)| =
∣∣∣1
2

Tr D>D(αtα
>
t −α?tα

?
t
>)− (αt −α?t)

>D>xt

∣∣∣
≤ 1

2
‖D>D‖F ‖αtα>t −α?tα

?
t
>‖F + ‖D‖F ‖xt‖2‖αt −α?t ‖2

≤ (kD2A+
√
kDX)‖αt −α?t ‖2, (71)

where we use Cauchy-Schwartz inequality and elementary bounds on the Froebenius norm for the first
inequality, and use αt,α

?
t ≤ A, xt ≤ X for all t > 0 and d(j) ≤ D for all j ∈ [k] to obtain the second

inequality, which is (61) in the main text.
We now turn to control ‖αt −α?t ‖2. We adapt the proof of Lemma B.6 from [36], that states the

lipschitz continuity of the minimizers of some parametrized functions. By definition,

α?t = argmin
α∈Rk

`(α,G?
t ,β

?
t) αt = argmin

α∈Rk
`(α,Gt,βt), (72)

Assumption (A) ensures that Gt � ρIk, therefore we can write the second-order growth condition

ρ

2
‖αt −α?t ‖22 ≤ `(αt,G?

t ,β
?
t)− `(αt,Gt,βt)

ρ

2
‖αt −α?t ‖22 ≤ `(α?t ,Gt,βt)− `(α?t ,G?

t ,β
?
t), and therefore

ρ‖αt −α?t ‖22 ≤ p(αt)− p(α?t), where p(α) , `(α,Gt,βt)− `(αt,G?
t ,β

?
t). (73)

p takes a simple form and can differentiated with respect to α. For all α ∈ Rk such that ‖α‖2 ≤ A,

p(α) =
1

2
α>(Gt −G?

t)α−α>(βt − β?t)

∇p(α) = (Gt −G?
t)α− (βt − β?t)

‖∇p(α)‖2 ≤ A‖Gt −G?
t ‖F + ‖βt − β?t ‖2 , L (74)

31

Therefore p is L-Lipschitz on the ball of size A where αt and α?t live, and

ρ‖αt −α?t ‖22 ≤ L‖αt −α?t ‖2
‖αt −α?t ‖2 ≤

A

ρ
‖Gt −G?

t ‖F +
1

ρ
‖βt − β?t ‖2, (75)

which is (62) in the main text. The bound (63) on εt immediately follows.

B.4.3 Bounding ‖βt − β?t ‖2 in equation (64)

Taking the `2 norm in (64), we have ‖βt − β?t ‖2 ≤ BLt + CRt, where B and C are positive constants
independent of t and we introduce the terms

Lt ,
∑

s≤t,xs=xt=x(i)

γ
(i)
s,t‖Ds−1 −Dt−1‖F , Rt ,

∥∥∥(∑s≤t,xs=x(i) γ
(i)
s,tMs

)
− I
∥∥∥
F
. (76)

Conditioning on the sequence of drawn indices We recall that (it)t is the sequence of indices
that are used to draw (xt)t from {x(i)}i, namely such that xt = x(it). (it)t is a sequence of i.i.d random

variables, whose law is uniform in [1, n]. For each i ∈ [n], we define the increasing sequence (t
(i)
b)

b>0
that

record the iterations at which sample (i) is drawn, i.e. such that itb = i for all b > 0. For t > 0, we recall

that c
(i)
t > 0 is the integer that counts the number of time sample (i) has appeared in the algorithm, i.e.

c
(i)
t = max {b > 0, t

(i)
b ≤ t}. These notations will help us understanding the behavior of (Lt)t and (Rt)t.

Bounding Rt The right term Rt takes its value into sequences that are running average of masking

matrices. Formally, Rt = ‖M̄(it)
t − I‖F , where we define for all i ∈ [n],

M̄
(i)
t ,

c
(i)
t∑
b=1

γ
(i)

t
(i)
b ,t

(i)
c

Mtb , which follows


M̄

(i)
t = (1− γ

c
(i)
t

)M̄
(i)
t−1 + γ

c
(i)
t

Mt if i = it

M̄
(i)
t = M

(i)
t−1 if i 6= it

M̄
(i)
0 = 0 for all i ∈ [n]

(77)

When sampling a sequence of indices (is)s>0, the n random matrix sequences [(M̄
(i)
t)t≤0]

i∈[n]
follows

the same probability law as the sampling is uniform. We therefore focus on controling (M̄
(0)
t)t. For

simplicity, we write ct , c
(0)
t . When E[·] is the expectation over the sequence of indices (is)s,

E[‖M̄(0)
t − I‖F]2 ≤ E

[p∑
j=1

(M̄
(0)
t [j, j]− 1)

]
= pE[(M̄

(0)
t [0, 0]− 1)]

≤ C p(ct)1/2
γct = C p(ct)

1/2−v
, where C is a constant independent of t. (78)

We have simply bounded the Froebenius norm by the `1 norm in the first inequality and used the fact
that all coefficients Mt[j, j] follows the same Bernouilli law for all t > 0, j ∈ [p]. We then used Lemma
B.7 from [10] for the last inequality. This lemma applies as Mt[0, 0] follows the recursion (77). It remains
to take the expectation of (78), over all possible sampling trajectories (is)s>0:

E[Rt] = E
[
E[Rt|(is)s]

]
= E

[
E[‖M(it)

t − I‖F |(is)s]
]

= E
[
E[‖M(0)

t − I‖F |(is)s]
]

= E[‖M(0)
t − I‖F]

= CpE[(ct)
1/2−v

] ≤ CpE[(ct)
2(u−1)−η

]. (79)

The last inequality arises from the definition of η , 1
2 min

(
v − 3

4 , (3u− 2)− v
)
, as follows. First, η > 0

as u > 11
12 . Then, we successively have

5

2
− 2u <

2

3
<

3

4
, as u >

11

12
, v ≥ 3

4
+ 2η >

5

2
− 2u+ 2η,

1

2
− v < 1

2
− 5

2
+ 2u− 2η = 2(u− 1)− 2η < 2(u− 1)− η, which allows to conclude.

(80)

32

Lemma B.7 from [10] also ensures that Mt[0, 0]→ 1 almost surely when t→∞. Therefore (M̄
(0)
t − I)t

converges towards 0 almost surely, given any sample sequence (is)s. It thus converges almost surely when

all random variables of the algorithm are considered. This is also true for (M̄
(i)
t − I)t for all i ∈ [n] and

hence for Rt.

Bounding Lt As above, we define n sequences [(L
(i)
t)t]i∈[n]

, such that Lt = L
(it)
t for all t > 0. Namely,

L
(i)
t ,

∑
s≤t,

xs=xt=x(i)

γ
(i)
s,t‖Ds−1 −Dt−1‖F =

c
(i)
t∑
b=1

γ
(i)

t
(i)
b ,t

(i)

c
(i)
t

∥∥Dtb−1 −Dt
c
(i)
t

−1

∥∥
F
. (81)

Once again, the sequences
[
(L

(i)
t)t

]
i

all follows the same distribution when sampling over sequence of

indices (is)s. We thus focus on bounding (L
(0)
t)t. Once again, we drop the (0) superscripts in the right

expression for simplicity. We set ν , 3u− 2− η. From assumption (B) and the definition of η, we have
v < ν < 1. We split the sum in two parts, around index dt , ct − b(ct)νc, where b·c takes the integer
part of a real number. For simplicity, we write d , dt and c , ct in the following.

L
(0)
t =

c∑
b=1

γtb,tc
∥∥Dtb−1 −Dtc−1

∥∥
F
≤ 2
√
kD

d∑
b=1

γtb,tc +

c∑
b=d+1

γtb,t

tc−1∑
s=tb−1

ws , 2
√
kDL

(0)
t,1 + L

(0)
t,2 (82)

On the left side, we have bounded ‖Dt‖F by
√
kD, where D is defined in the previous section. The

right part uses the bound on ‖Ds −Dt‖F provided by Lemma 3, that applies here as (I) is met and (63)
ensures that (‖gt − g?t ‖∞)

t
is bounded.

We now study both L
(0)
t,1 and L

(0)
t,2 . First, for all t > 0,

L
(0)
t,1 ,

d∑
b=1

γtb,tc =

d∑
b=1

γb

c∏
p=b+1

(1− γp) ≤
d∑
b=1

γb(1− γc)c−b

≤ (1− γc)bc
νc

γc
≤ cv exp

(
log(1− 1

cv
)cν
)
≤ C ′cv exp(cν−v) ≤ Cc2(u−1)−η = C(ct)

2(u−1)−η
, (83)

where C and C ′ are constants independent of t. We have used ν > v for the third inequality, which
ensures that exp

(
log(1− 1

cv)cν
)
∈ O(cν−v). Basic asymptotic comparison provides the last inequality, as

ct →∞ almost surely and the right term decays exponentially in (ct)t, while the left decays polynomially.

As a consequence, L
(0)
t,1 → 0 almost surely.

Secondly, the right term can be bounded as (wt)t decays sufficiently rapidly. Indeed, as
∑c
b=1 γtb,t = 1,

we have

L
(0)
t,2 ,

c∑
b=d

γtb,t

tc−1∑
s=tb−1

ws ≤ max
d≤b≤c

(tc−1∑
s=tb−1

ws

)
=

tc−1∑
s=td−1

ws

≤ wtd(tc − td) =
tc − td
(td)

u =
ct − dt
(dt)

u
tc − td
ct − dt

(
dt
td

)u (84)

from elementary comparisons. First, we use the definition of ν to draw

ct − dt
(dt)u

≤ (ct)
ν

(ct)u(1− cν−1
t)u

≤ C(ct)
ν−u = C(ct)

2(u−1)−η, (85)

were we use the fast that η − 1 < 0. We note that for all b > 0, tb+1 − tb follows a geometric law of
parameter 1

n , and expectation n. Therefore, as c − d → ∞ when t → 0, from the strong law of large
numbers and linearity of the expectation

tc − td
c− d =

1

c− d
c−1∑
b=d

tb+1 − tb → n,
td
d

=
1

d

d−1∑
b=0

tb+1 − tb → n almost surely. (86)

33

As a consequence, tc−tdct−dt (
dt
td

)u → n1−u almost surely. This immediately shows L
(0)
t,2 → 0 and thus L

(0)
t → 0

almost surely. As with Rt, this implies that Lt → 0 almost surely and therefore

‖βt − β?t ‖2 → 0 almost surely. (87)

Finally, from the dominated convergence theorem, E[tc−tdct−dt (
dt
td

)u] → n1−u for t → ∞. We can use
Cauchy-Schartz inequality and write

E[L
(0)
t,2] = E[

tc − td
(td)

u] ≤ E[
ct − dt
(dt)

u]E[
tc − td
ct − dt

(
dt
td

)u] ≤ C ′E[
ct − dt
(dt)

u] ≤ C C ′E[(ct)
2(u−1)−η

], (88)

where C ′ is a constant independant of t. Then

E[Lt] = E
[
E[L

(it)
t |(is)s]

]
= E

[
E[L

(0)
t |(is)s]

]
= E[L

(0)
t] ≤ 2

√
kDE[L

(0)
t,1] + E[L

(0)
t,2] ∈ O((ct)

2(u−1)−η
). (89)

Combined with (79), this shows that E[‖βt − β?t ‖2] ∈ O((ct)
2(u−1)−η

). As ct follows a binomial distri-
bution of parameter (t, 1

n), ct
t → 1

n almost surely when t→ 0. Therefore E[(ctt)2(u−1)−η)]→ nη−2(u−1),
and from Cauchy-Schwartz inequality,

E[‖βt − β?t ‖2] ≤ CE[(
ct
t

)2(u−1)−η)]t2(u−1)−η ∈ O(t2(u−1)−η). (90)

We have reused the fact that converging sequences are bounded. This is enough to conclude.

34

	Introduction
	Prior art: matrix factorization with stochastic majorization-minimization
	Problem statement
	Online matrix factorization
	Stochastic majorization-minimization

	Stochastic subsampling for high dimensional data decomposition
	Subsampled online matrix factorization
	Stochastic subsampling and algorithm outline
	Code computation
	Dictionary update
	Subsampling and time complexity

	Stochastic approximate majorization-minimization

	Convergence analysis
	Convergence of SOMF
	Basic assumptions and results on SMM convergence
	Convergence of SAMM
	Approximate surrogate computation
	Approximate surrogate minimization
	Asymptotic convergence guarantee
	Proving somf convergence

	Experiments
	Problems and datasets
	Functional MRI
	Hyperspectral imaging

	Experimental design
	Reduction brings speed-up at all data scales
	For each step of SOMF, subsampling removes a bottleneck
	Code subsampling becomes useful for high reduction

	Conclusion
	Proofs of convergence
	Basic properties of the surrogates, estimate stability
	Determistic decrease rate
	Stochastic decrease rates

	SAMMM convergence
	Convergence of aggregated surrogate
	Convergence of aggregated loss
	Convergence of empirical loss
	Asymptotic stationary point condition
	Parametrized surrogates

	Convergence of SOMF — Proof of Proposition 1
	The computation of Dt verifies (I)
	Approximate surrogates

	Algebraic details
	Proof of Lemma 1
	Taylor's inequality for L-Lipschitz continuous functions
	Lemma 3: Detailed control of Dt in (44)
	Detailed derivations in the proof of Proposition 1
	Geometric rate for single pass subsampled block coordinate descent
	Controling t from (Gt, bold0mu mumu t), (Gt, bold0mu mumu t) — Equations 61–62
	Bounding "026B30D bold0mu mumu t - bold0mu mumu t"026B30D 2 in equation (64)

