A. Dempster and D. Laird, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society Series BMethodological), vol.39, issue.1, pp.1-382984875, 1977.

E. Airoldi, D. Blei, S. Fienberg, and E. Xing, Mixed membership stochastic blockmodels, The Journal of Machine Learning Research, vol.9, pp.1981-2014, 2008.

M. Boullé, P. Flocchini, W. Quattrociocchi, and N. Santoro, Data grid models for preparation and modeling in supervised learning, Mi- crotome Casteigts A Time-varying graphs and dynamic networks, International Journal of Parallel, Emergent and Distributed Systems, vol.27, issue.5, pp.387-408, 2010.

M. Corneli, P. Latouche, and F. Rossi, Block modelling in dynamic networks with non-homogeneous Poisson processes and exact ICL, Social Network Analysis and Mining, vol.82, issue.2, pp.1-14, 2016.
DOI : 10.1007/s11634-015-0218-6

URL : https://hal.archives-ouvertes.fr/hal-01468548

M. Corneli, P. Latouche, and F. Rossi, Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks, Neurocomputing, vol.192, pp.81-91, 2016.
DOI : 10.1016/j.neucom.2016.02.031

URL : https://hal.archives-ouvertes.fr/hal-01312596

D. Daley, V. , and D. , An introduction to the theory of point processes: volume I: Elementary Theory and Methods, 2003.

J. Daudin, F. Picard, and R. S. , A mixture model for random graphs, Statistics and Computing, vol.4, issue.2, pp.173-183, 2008.
DOI : 10.1007/s11222-007-9046-7

URL : https://hal.archives-ouvertes.fr/inria-00070186

C. Dubois, C. Butts, and P. Smyth, Stochastic blockmodelling of relational event dynamics, International Conference on Artificial Intelligence and Statistics of the Journal of Machine Learning Research Proceedings, pp.238-246, 2013.

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, pp.75-174, 2010.
DOI : 10.1016/j.physrep.2009.11.002

N. Friel, R. Rastelli, J. Wyse, A. Raftery, M. Boullé et al., Interlocking directorates in Irish companies using a latent space model for bipartite networks, Co-clustering and Applications, IEEE 12th International Conference on Data Mining Workshops, pp.6629-6634, 2012.
DOI : 10.1073/pnas.1606295113

R. Guigourès, M. Boullé, and F. Rossi, Discovering patterns in time-varying graphs: a triclustering approach Advances in Data Analysis and Classification pp 1?28, DOI 10, pp.11634-11649, 2015.

Q. Ho, L. Song, and E. Xing, Evolving cluster mixed-membership blockmodel for timeevolving networks, International Conference on Artificial Intelligence and Statistics, pp.342-350, 2011.

P. Hoff, A. Raftery, and M. Handcock, Latent Space Approaches to Social Network Analysis, Journal of the American Statistical Association, vol.97, issue.460, pp.1090-1098, 2002.
DOI : 10.1198/016214502388618906

B. Jackson, J. Sargle, D. Barnes, S. Arabhi, A. Alt et al., An algorithm for optimal partitioning of data on an interval, Signal Processing Letters pp, pp.105-108, 2005.
DOI : 10.1109/LSP.2001.838216

Y. Jernite, P. Latouche, C. Bouveyron, P. Rivera, L. Jegou et al., The random subgraph model for the analysis of an acclesiastical network in merovingian gaul, Annals of Applied Statistics, vol.8, issue.1, pp.55-74, 2014.

R. Killick, P. Fearnhead, and I. Eckley, Optimal Detection of Changepoints With a Linear Computational Cost, Journal of the American Statistical Association, vol.63, issue.500, pp.1590-1598, 2012.
DOI : 10.1080/01621459.2012.737745

M. Kim and J. Leskovec, Nonparametric multi-group membership model for dynamic networks, Advances in Neural Information Processing Systems (25), pp.1385-1393, 2013.

T. Kolda and B. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.782

P. Lewis and G. Shedler, Simulation of nonhomogeneous poisson processes by thinning, Naval Research Logistics Quarterly, vol.32, issue.3, pp.403-413, 1979.
DOI : 10.1002/nav.3800260304

C. Matias and V. Miele, Statistical clustering of temporal networks through a dynamic stochastic block model, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.4, 2016.
DOI : 10.1111/rssb.12200

URL : https://hal.archives-ouvertes.fr/hal-01167837

C. Matias, T. Rebafka, and F. Villers, Estimation and clustering in a semiparametric Poisson process stochastic block model for longitudinal networks. ArXiv e-prints 1512, p.7075, 2015.

K. Nowicki and T. Snijders, Estimation and Prediction for Stochastic Blockstructures, Journal of the American Statistical Association, vol.96, issue.455, pp.1077-1087, 2001.
DOI : 10.1198/016214501753208735

W. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, vol.15, issue.336, pp.846-850, 1971.
DOI : 10.1080/01621459.1963.10500845

P. Sarkar and A. Moore, Dynamic social network analysis using latent space models, ACM SIGKDD Explorations Newsletter, vol.7, issue.2, pp.31-40, 2005.
DOI : 10.1145/1117454.1117459

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.332.1164

Y. Wang and G. Wong, Stochastic Blockmodels for Directed Graphs, Journal of the American Statistical Association, vol.4, issue.397, pp.8-19, 1987.
DOI : 10.1080/01621459.1987.10478406

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.322

E. Xing, W. Fu, and L. Song, A state-space mixed membership blockmodel for dynamic network tomography, The Annals of Applied Statistics, vol.4, issue.2, pp.535-566, 2010.
DOI : 10.1214/09-AOAS311

K. Xu, I. Hero, and . Ao, Dynamic stochastic blockmodels: Statistical models for timeevolving networks, Social Computing, Behavioral-Cultural Modeling and Prediction, pp.201-210, 2013.
DOI : 10.1007/978-3-642-37210-0_22

URL : http://arxiv.org/abs/1304.5974

T. Yang, Y. Chi, S. Zhu, Y. Gong, and J. R. , Detecting communities and their evolutions in dynamic social networks???a??Bayesian approach, Machine Learning, vol.2, issue.1, pp.157-189, 2011.
DOI : 10.1007/s10994-010-5214-7

R. Zreik, P. Latouche, and C. Bouveyron, The dynamic random subgraph model for the clustering of evolving networks Computational Statistics pp 1?33, DOI 10, pp.180-196, 2016.