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4.1 Introduction to Diffusion MRI

Since the 1980s, diffusion magnetic resonance imaging (dMRI) as a magnetic resonance
imaging (MRI) technique has been widely used to track the effective diffusion of water
molecules, which is hindered by many obstacles (e.g., fibers or membranes), in the human
brain in vivo. Because water molecules tend to diffuse slowly across white matter fibers and
diffuse fast along such fibers, the use of dMRI to track water diffusion allows one to map
the microstructure and organization of those white matter pathways (17). Quantitatively
measuring the diffusion process is critical for a quantitative assessment of the integrity of
anatomical connectivity in white matter and its association with brain functional connectiv-
ity. Its clinical applications include normal brain maturation and aging, cerebral ischemia,
multiple sclerosis, epilepsy, metabolic disorders, and brain tumors, among many others. Al-
though there are several nice review papers and monographies on dMRI (15, 5, 101, 81),
this chapter was written for the readers who are interested in the theoretical underpinning
of various mathematical and statistical methods associated with dMRI. Due to limitations
of space, we are unable to cite all important papers in the dMRI literature.

4.1.1 Diffusion Weighted Imaging (DWI)

4.1.1.1 Diffusion Gradient Sequence

In diffusion weighted imaging (DWI), imaging signals can be made sensitive to diffusion
through some diffusion gradient sequences. A standard diffusion gradient sequence used
in dMRI is the Pulsed Gradient Spin-Echo (PGSE) sequence proposed by Stejskal and
Tanner (126). See Figure 4.1 for the sketch map of the PGSE sequence. The PGSE sequence
consists of two gradient pulses G(t) with duration time δ. Although it is common to use
rectangular gradient lobes in the PGSE sequence, there are other kinds of gradient lobes
commonly used in dMRI (24, chap. 9).

(i) The first 90� radio-frequency (RF) pulse translates the spins into the transverse plane,
i.e. the x-y plane, considering the B0 is along the z-axis. Then the spins precess around B0

with RF ω0. Due to local magnetic field inhomogeneities, some spins slow down and some
spins speed up.1

(ii) After time ∆ between two pulses, the second 180� RF pulse refocuses the phase of
spins so that slower spins lead ahead and the fast ones trail behind. The spin echo process
occurs when the spins recover their net magnetization.

(iii) The scanner coils receive the diffusion signal at echo time t = TE after the two
pulses.

Mathematically, the diffusion gradient G(�) sequence can be written as

G(t) = fH(t1)�H(t1 � δ) +H(t2)�H(t2 � δ)gG, (4.1)

where t2 = t1 + ∆, H(�) is the heaviside step function, and G = kGku, in which u 2 S2

represents the gradient direction.

1http://en.wikipedia.org/wiki/Spin echo
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FIGURE 4.1
Pulsed Gradient Spin-Echo (PGSE) sequence introduced by Stejskal and Tanner (126). δ
is the duration of the diffusion gradient pulses and ∆ is the time between two diffusion
gradient pulses.

4.1.1.2 Free Diffusion

Let S(b) and S(0) be, respectively, DWI signal at the diffusion weighting factor b and at
b = 0, where b is defined below. Given the PGSE sequence with the gradient sequence
in (4.1), the diffusion weighted signal attenuation E(b) = S(b)/S(0) is given by the
Stejskal–Tanner equation (126)

E(b) = exp(�bD), (4.2)

where D is known as the Apparent Diffusion Coefficient (ADC), which reflects the property
of surrounding tissues. In general, ADC D depends on G in a complex way, but free diffusion
assumes that D is only dependent on the direction of G, i.e. u = G/kGk. The early works
in dMRI reported that the ADC D is a scalar and independent of gradient direction u (102).
Then, Dr. Basser introduced the diffusion tensor (14) to represent ADC as D(u) = uTDu,
where D is a 3 � 3 symmetric positive definite matrix, called the diffusion tensor. This
method is the well an known Diffusion Tensor Imaging (DTI). See Section 4.1.2 for more
materials DTI.

The b factor is given by b = γ2δ2τkGk2, where γ is the proton gyromagnetic ratio,
and τ = ∆ � δ/3 is used to describe the effective diffusion time (25, 14). The b value is
dependent on the sequence, and it is different in different kinds of lobes in the diffusion
sequence (24, Chap. 9). The signal intensity at each voxel in DWI is dependent on both
surrounding structures and given a weighted magnetic gradient (25). See Figure 4.2 for the
DWI images S(b) with different b values and different gradient directions u. It can be seen
that the DWI images are very noisy, especially for large b values.

4.1.1.3 Restricted Diffusion

Although we have obtained (4.2) for the measured diffusion signal attenuation for free
diffusion, the diffusion of water molecules is hindered by surrounding tissues, especially
in white matter. We derive the diffusion signal attenuation E(G,∆, δ) = S(G,∆, δ)/S(0)
under such restricted diffusion as follows, where S(G,∆, δ) is the DWI signal associated
with imaging parameters (G,∆, δ). For each voxel in x-space, let ρ(R0) denote the spin
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b = 0s/mm2 b = 1500s/mm2 b = 3000s/mm2

u = u = u =
(�0.204, 0.515, 0.833)T (0.198, 0.515, 0.834)T (�0.204, 0.515, 0.833)T

FIGURE 4.2
DWI images for different b values and gradients. The data is from one of the subjects in a
real monkey dataset.

density at initial time t = 0 and P (R∆jR0) denote the probability that the spin moves
from R0 at t = 0 to R∆ at t = ∆. Then E(G,∆, δ) can be represented as (126)∫

R3

ρ(R0)

∫
R3

P (R∆jR0) exp(iγ(R∆ �R0)T (

∫ δ

0

G(t)dt))dR∆dR0. (4.3)

We simplify E(G,∆, δ) under the narrow pulse condition, that is, 0 � δ << ∆. We first
define the Ensemble Average Propagator (EAP) as

P (R) =

∫
R3

ρ(R0)P (R0 + RjR0)dR0, R = R∆ �R0 (4.4)

where R = jjRjjr is the displacement vector in R-space and r is a unit vector. EAPs in
different regions in the brain reflect the different micro-structures and reveal fiber directions.
See Figure 4.3 for diffusion data in a six-dimensional space including i.e. 3D k-space and
3D q-space. Since G(t) is a constant during δ, we may introduce a q vector in q-space as

q = qu = (2π)�1γ

∫ δ

0

G(t)dt = (2π)�1γδG. (4.5)

Thus, E(G,∆, δ) can be written as

E(q) =

∫
R3

P (R) exp
(

2πiqTR
)

dR = F�1
3D fP (R)g(q), (4.6)

where F3D and F�1
3D , respectively, denote the Fourier transformation and its inverse

transformation. Without confusion, we call both E(q) and E(b) diffusion signals. Since
P (R) = P (�R) holds due to the principle of microscopic detailed balance, we have
E(q) = E(�q) = FfP (R)g(q) leading to∫

R3

P (R) exp(�2πiqTR)dR =

∫
R3

P (R) cos(2πqTR)dR. (4.7)

Since the DWI data S(q) is the Fourier transform of the k-space signal and the EAP is
another Fourier transform of E(q), we can represent P (R) as

P (R) = F3DfE(q)g(R) = F3Df
S(G,∆, δ)

S(0)
g(R). (4.8)
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FIGURE 4.3
3D x-space and 3D R-space. EAPs in different regions in the brain reflect different
micro-structures with isotropic diffusion, single fiber, and crossing fibers. The image is
taken from (46) with the original figures adapted from (72) and the brain museum
(www.brainmuseum.org/Specimens).

Due to E(q) = E(�q), P (R) can be further written as∫
R3

E(q) exp(�2πiqTR)dq =

∫
R3

E(q) cos(2πqTR)dq. (4.9)

4.1.2 Diffusion Tensor Imaging (DTI)

In (14), Dr. Basser proposed to model the ADC as a quadratic form parameterized by the
diffusion tensor D. Then the Stejskal–Tanner equation becomes

E(b) = exp(�buTDu). (4.10)

The diffusion tensor D =
∑3
k=1 λkeke

T
k 2 Sym

+
3 is independent of the b value and gradient

direction u, where f(λk, ek)gk�3 are eigenvalue–eigenvector pairs such that λ1 � λ2 � λ3

and Sym+
3 is the space of 3�3 symmetric positive definite matrices. In free diffusion, P (R)

is given by
P (R) = F3Dfexp(�4π2τqTDq)g = φ(Rj0, 2τD), (4.11)

where φ(Rj0, 2τD) denotes the Gaussian density with mean 0 and covariance 2τD. See
Figure 4.4 for the sketch map of the tensor representation and free diffusion along fibers.

4.1.2.1 Scalar Indices and Eigenvectors of Diffusion Tensor

Several scalar indices based on D have been widely used in various biomedical studies.
The two most important indices include Fractional Anisotropy (FA) and Mean Diffusivity
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H2O Brownian motion Eigen decomposition Ellipsoidal visualization
along the fibers of the DT of the DT

(111)

FIGURE 4.4
Diffusion tensor representation from (46).

(MD) (109) given by

FA =

√
3

2

√
(λ1 � λ̄)2 + (λ2 � λ̄)2 + (λ3 � λ̄)2

λ2
1 + λ2

2 + λ2
3

, MD = λ̄, (4.12)

where λ̄ = (λ1 + λ2 + λ3)/3. In (143), linear, planar, and spherical measures are introduced
as

LA = (λ1 � λ2)/(3λ̄), PA = 2(λ2 � λ3)/(3λ̄), SA = λ3/λ̄. (4.13)

The eigenvectors of D are also very useful. When λ1 > λ2, the eigenvector corresponding to
the largest eigenvalue is expected to be parallel to the local fiber orientation. In practice, the
red-blue-green (RGB) map is used to describe the fiber directions. The tensor D itself can
be visualized by a ellipsoid, then the tensor field becomes the ellipsoid field. See Figure 4.5
for the tensor field and various scalar maps estimated from an monkey data with b =
1500s/mm2, 30 directions, where the Geodesic Anisotropy (GA) is introduced in (108).

4.2 High Angular Resolution Diffusion Imaging (HARDI)

The term High Angular Resolution Diffusion Imaging (HARDI) was first proposed by
Tuch (137, 136) in order to have a more precise angular characterization of the diffusion
signal. In this chapter, HARDI methods include all diffusion modeling methods beyond
DTI. The HARDI methods for single shell (only one b value) data are called sHARDI meth-
ods. The HARDI methods for multiple shell (multiple b values) data are called mHARDI
methods.

4.2.1 Generalization of Diffusion Tensor Imaging

4.2.1.1 Mixture of Tensor Model

The mixture of tensor model assumes that the signal is a mixture of signals generated from
multiple tensors fDkgKk=1 given by

E(b) =
K∑
k

wk exp(�buTDku) with
K∑
k=1

wk = 1 and wk � 0. (4.14)
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tensor field FA map MD map RGB map

GA map LA map PA map SA map

FIGURE 4.5
Tensor field and the scalar maps estimated from the monkey data with b = 1500s/mm2

and 30 directions.

Due to some biological priors and computational complexity, the number of tensors is nor-
mally less than 3, typically K = 2. Computationally, although various optimization algo-
rithms may be developed to estimate Dks (136), they may be computationally unstable
and sensitive to the initial point. Moreover, for single shell data, the isotropic part of Di,
i.e. Trace(Di)/3, and wi are undistinguishable (87). Thus, some constraints on tensors are
normally imposed in model (4.14). For example, the two minimal eigenvalues λ2 and λ3 in
Di can be chosen as the same value. Tensors fDig can be chosen as one isotropic tensor and
other anisotropic tensor with λ2 = λ3 = 0, which is called the ball and stick model (74).
CHARMED model (10) considers fDig as a hindered diffusion part that is close to Gaus-
sian diffusion, and a restricted diffusion part that is non-Gaussian diffusion. The mixture of
tensor model has been widely used to generate synthetic data for evaluation because many
quantities have closed forms in this model.

Model (4.14) has three major limitations. (i) Selecting the number of tensors is an
open problem. (ii) The optimization process strongly depends on the initial point and is
computationally inefficient. (iii) The radial decay of the mixture of tensor model is close to,
but is not, the Gaussian function. Consider the number of tensors is K = 2 in Figure 4.6;
along a given direction, one component decays fast and the other one decays slowly. For
large b values, the component with slow decay dominates the signal.

4.2.1.2 Generalized DTI (GDTI)

In the GDTI model (92, 91), the signal is represented as

E(q) = exp(
L∑
l=2

(2πi)l(∆� l � 1

l + 1
δ)D

(l)
i1i2...il

qi1qi2 � � � qil), (4.15)

where we use the Einstein summation convention, i.e., D
(l)
i1i2...il

qi1qi2 � � � qil =
∑3
i1=1

∑3
i2=1

� � �
∑3
il=1D

(l)
i1i2...il

qi1qi2 � � � qil . When L = 2, the GDTI becomes the DTI model in Eq. (4.10).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

or
th

 C
ar

ol
in

a,
 C

ha
pe

l H
ill

] 
at

 1
1:

38
 0

9 
Ja

nu
ar

y 
20

17
 

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-008.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-009.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-010.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-011.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-012.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-013.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-014.jpg&w=86&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315373652-5&iName=master.img-015.jpg&w=86&h=85


72 Handbook of Neuroimaging Data Analysis

The generalized diffusion coefficients D
(l)
i1i2...il

can be estimated by the least square fitting
the samples of lnE(q). Due to the relationship between E(q) and P (R) in (4.6), E(q) is
the characteristic function of P (R) (91) given by

E(q) = exp(
L∑
l=0

(�2πi)lQ
(l)
i1i2...il

qi1 � � � qil/l!), (4.16)

where Q
(l)
i1i2...il

s are the cumulants. Then, based on the property of Hermite polynomial
Hen(x), we can obtain the closed form for the EAP by using the Gram–Charlier A se-
ries (91), which leads to

P (R) = N(Rj0, Q(2)
i1i2

)(1 +
L∑
l=3

Q
(l)
i1i2...il

l!
He

(l)
i1i2...il

(R)), (4.17)

where He
(l)
i1i2...il

(R) is the l-order Hermite polynomial defined as

(�1)l exp
(
�0.5RTR

)( ∂

∂Ri1

∂

∂Ri2
� � � ∂

∂Ril

)
exp

(
0.5RTR

)
.

There are several major limitations associated with the GDTI. It models the ADC using
the polynomial basis, which is not orthogonal. Although theoretically the ADC can be
modeled as infinite terms, in practice a truncated order L is needed in Eq. (4.15). However,
it was proved in (95) that the Gaussian distribution is the only distribution that has a
finite number of non-zero cumulants. Thus a truncation order L only results in a reasonable
PDF if the EAP is Gaussian and L = 2 in this case. For other cases, the estimated EAP
and cumulants are theoretically problematic. Moreover, estimation of the PDF from its
cumulants is known to be very problematic.

4.2.1.3 High-Order Tensor Model, ADC-Based Model

The High-Order Tensor (HOT) model (106) assumes

E(q) = exp(�4π2τq2D(u)). (4.18)

The ADC is independent of radial part q, and can be represented as

D(u) =
∑

n1+n2+n3=L

Dn1n2n3
un1

1 un2
2 un3

3 , (4.19)

where u = (u1, u2, u3)T 2 S2, and L is even due to D(u) = �D(u). Moreover,
fun1

1 un2
2 un3

3 gn1+n2+n3=L is the homogeneous polynomial basis restricted in S2, which
is also called the High-Order Tensor (HOT) basis in dMRI domain. When L = 2, HOT
model is just the DTI model in Eq. (4.10).

In the HOT, the diffusion signal decays as a mono-exponential function, which is called
mono-exponential decay assumption, given by

E(qu) = E(q0u)q
2/q2

0 , (4.20)

where q0 and q are any two different radii. Compared with the GDTI, which is model-free
method, HOT is model-based. The mono-exponential decay assumption is not satisfied in
real signal decay (88), but it can be a good approximation of the signal, especially when
the b value is around 1500s/mm2 (105).
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ADC b = 1500s/mm2 ADC b = 3000s/mm2 ODF by Tuch Φt(r) ODF by Wedeen Φw(r)

EAP profile with R = 10µm R = 15µm R = 20µm

FIGURE 4.6
Fiber directions and ADC profiles with different b values, two kinds of ODFs, and EAP
profiles with different radius R. The data was generated from the mixture of tensor model
with two tensors that have the eigenvalues [1.7, 0.3, 0.3]� 10�3mm2/s and a crossing angle
of 90�. We set τ = 1

4π2 such that b = q2. The long sticks with blue color along the x- and
y-axes are the fiber directions. The short sticks with yellow color are the detected maxima
of the spherical functions.

The HOT model often uses single shell data in Figure 4.10(c), which is a kind of sHARDI
method. Historically, people used both the High-Order Tensor basis (106) and Spherical
Harmonic (SH) basis (62) to estimate ADC from a measured signal. Theoretically, these
two bases are equivalent to each other. In HARDI literatures, the maximal order of the SH
basis or the order of the HOT basis must be higher than 4, because the order 2 of the SH
basis and HOT basis are equivalent to the tensor model. Normally 4 or 6 is used in practice.

ADC modeling, like the HOT method, has its intrinsic and fatal limitation, i.e. both
the maxima and the minima of ADC profile D(u) are inconsistent with the fiber directions
when L > 2 (139). Figure 4.6 demonstrates the ADC D(u) for the synthetic data generated
from the mixture of tensor model with a crossing angle of 90�. It shows that the maxima of
ADC do not agree with the fiber directions. Even in this simple mixture of tensor model, the
ADC D is actually dependent on the b value, and the mono-exponential decay assumption is
violated. For the data with different b values, the ADC is determined by D = �b�1 lnE(q),

which means D is dependent on b if E(q) =
∑K
i=1 exp(�buTDiu). Although there is a

coincidence that the minima of ADC agree with the fiber directions in this specific case of
the mixture of tensor model with 90�, the minima and maxima of the ADC generally have
a complex relation with fiber directions.

4.2.2 Diffusion Spectrum Imaging (DSI)

Due to Eq. (4.9) for the narrow pulse assumption δ � ∆, a straightforward idea is to esti-
mate P (R) using fast Fourier transform from exhaustive signal samples (142). For instance,
(142) used 515 DWI images in a Cartesian sampling lattice in q-space and the signal in
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FIGURE 4.7
EAP in 3D R-space and its two features, i.e. EAP profile (or called iso-surface of EAP) and
ODF. The figure is from (72).

q-space was premultiplied by a Hanning window to obtain smooth attenuation of the signal
at high q values. Thus interpolation and extrapolation are normally performed on given
signal samples fE(qi)g before numerical Fourier transform.

In (142), the EAP profile is EAP at a given radius R0 as

P (R0r) = P (Rr)jR=R0 . (4.21)

The maxima of the EAP profile were used to describe fiber directions later in many HARDI
works (105, 11, 48). See Figure 4.6 for the EAP profile with different radius R. The larger
the radius R, the sharper the EAP profile is. However, the EAP profile with large R has
more estimation error. Thus normally R = 15µm is used in the EAP profile to detect the
fiber directions (105, 48).

In (142), the ODF is defined as

Φw(r)
def
=

∫ 1
0

P (R)R2dR. (4.22)

Since Φw(r) is the marginal distribution of EAP P (R), the integration of Φw(r) over S2

is naturally 1. Reference (142) proposed to first estimate the EAP via numerical Fourier
transform and then estimate the ODF in Eq. (4.22) by numerical integration. Historically
there are several kinds of ODFs which can be seen in the following of this section. Like
the EAP profile, the maxima of ODFs are also normally assumed to be the directions of
underlying fibers. Please see Figure 4.6 for the EAP in 3D space and its two features, i.e.
the EAP profile and ODF.

4.2.3 Hybrid Diffusion Imaging (HYDI)

Hybrid Diffusion Imaging (HYDI) uses multiple shell sampling to measures the diffusion
signal in q-space (147, 148). See Figure 4.10(d). The HYDI data in the shell with low b
values can be modeled by DTI, whereas those data with high b values can be modeled by
using Q-Ball Imaging and other sHARDI methods. The whole HYDI dataset can be used
in DSI after re-griding data from multiple shells to the Cartesian lattice.
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Two useful scalar features of EAP in HYDI include the Return-to-Origin probability
(RTO) and the Mean Squared Displacement (MSD). The RTO denoted by Po is the EAP
value when R = 0, that is, Po = P (R)jR=0 = P (0) =

∫
R3 E(q)dq. The RTO is the prob-

ability of water molecules that minimally diffuse within the diffusion time ∆. The RTO
map can be used in tissue segmentation and some other applications (147). The MSD is
the variance of the EAP, that is, MSD =

∫
R3 P (R)RTRdR. In (148), the ODF by Tuch

Φt(r) in Eq. (4.24) is proportional to the integration of E(q) in the orthogonal plane

Πr = fqu : uT r = 0g. (4.23)

It is an important relation between the ODF by Tuch in R-space and the signal E(q) in q-
space, and it is used in exact QBI to estimate ODFs analytically (1, 133). See Section 4.2.4
for more details on QBI and ODFs.

4.2.4 Q-Ball Imaging (QBI)

Q-Ball Imaging (QBI) is currently the most widely used HARDI method. QBI was proposed
to estimate the several kinds of ODFs, not the EAP, from single shell sampling demonstrated
in Figure 4.10(c), rather than Cartesian sampling inside a given ball used in DSI in 4.10(b).

4.2.4.1 Original Q-Ball Imaging

QBI was first proposed by Dr. Tuch in (135, 134) in a numerical way and then was improved
in an analytical way based on the Spherical Harmonic basis in (7, 47). Dr. Tuch originally
proposed to estimate a kind of ODF defined as

Φt(r)
def
=

1

Z

∫ 1
0

P (Rr)dR, (4.24)

where Z is the normalization factor that makes
∫
S2 Φt(r)dr = 1. This Φt(r) is different from

the ODF Φw(r) defined in Eq. (4.22).
In QBI, Dr. Tuch proposed to estimate Φt(r) directly from samples of E(q) in single-

shell data based on the Funk–Radon transform (FRT). See Figure 4.10(c) for the sketch
map of single shell sampling. For single-shell data with b = 4π2τq2

0 , the FRT of E(q) (134)
in direction r, denoted as FRTfE(q0u)g(r), is the circle integration in the orthogonal
plane, i.e. ∫

Πr

E(qu)δ(q � q0)qdqdu = q0

∫
u2S2

E(q0u)δ(uT r)du, (4.25)

where Πr is defined in Eq. (4.23). The ODF Φt(r
0) can be written as

(2Z)�1

∫ 1
�1

∫ 2π

0

∫ 1
0

P (rR, φR, zR)δ(rR)δ(φR)rRdrRdθRdzR �

2πq0Z
�1

∫ 1
�1

∫ 2π

0

∫ 1
0

P (rR, φR, zR)J0(2πq0rR)rRdrRdθRdzR, (4.26)

which equals Z�1FRTfE(q0u)g(r0), where J0(�) is the Bessel function of the first kind with
order 0. The key idea of Eq. (4.26) is to approximate the delta function using Bessel function
0.5aJ0(ax). As q0 increases, 2πq0J0(2πq0rR) will be very close to the delta function, since
the lobes of J0 become more concentrated around the origin point. However, the signal has
smaller values for larger q0, which results in a low signal-to-noise ratio (SNR). Thus there
is a tradeoff for q0 between approximation accuracy and SNR. Normally QBI works suggest
data with b values around 3000s/mm2 (134, 47).
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Dr. Tuch proposed to estimate the circle integration in FRT using numerical integra-
tion (134). The numerical QBI was later replaced by analytical QBI based on E(q0u) =∑L
l=0

∑l
m=�l clmY

m
l (u), where Y ml (u) is the symmetric real spherical harmonic with order

l and degree m (7). We have

Φ̃t(r) = Z�1FRTfE(q0u)g(r) = Z�1
L∑
l=0

l∑
m=�l

2πPl(0)clmY
m
l (u) (4.27)

where Pl(0) is the Legendre polynomial of order l evaluated at 0. In practice the ODF by
Tuch Φt(r) in Eq. (4.24) is very smooth. The peaks of the ODF are only a little higher than
the baseline values. Dr. Tuch proposed a min-max normalization method for visualization
of Φt(r) to enhance the peaks of ODFs. However, the min-max normalization also enhances
the peaks of the ODFs in the area with isotropic diffusion. Compared with ADC-based
modeling like the HOT method, the maxima of ODFs agree with the fiber directions. Dr.
Tuch also proposed a useful scalar index, named Generalized Fractional Anisotropy (GFA),
to describe the anisotropy of the ODFs given by

GFAfΦt(r)g def
=

√√√√N
∑N
i=1(Φt(ri)� hΦt(r)i)2

(n� 1)
∑N
i=1 Φt(ri)2

, (4.28)

where hΦt(r)i is the mean of Φt(r).
QBI has several major limitations. (i) The ODF by Wedeen Φw(r) defined in Eq. (4.22)

is theoretically sharper than Φt(r). (ii) The estimation via FRT has an intrinsic blurring
effect, which leads to smoothed ODFs. (iii) QBI actually assumes the radial part of E(q) as
a delta function, which is unrealistic. The burring effect from FRT is the direct consequence
from this assumption of radial decay. (iv) QBI cannot be used in multiple-shell data, because
the data from different b values leads to different ODFs from FRT.

4.2.4.2 Exact Q-Ball Imaging

Exact QBI was proposed by several groups independently (148, 133) to estimate ODFs
through the famous projection-slice theorem in Fourier transform2: the projection of
P (Rr) along direction r, i.e. the radial integration, equals the integration of E(q) in the
orthogonal plane Πr. Thus we have the following corollary, which is a straightforward result
of the above proposition and has been used to estimate both ODF by Tuch and ODF by
Wedeen (148, 1, 131, 133, 39). The Φt(r) and Φw(r) can be written as

Φt(r) = Z�1

∫
Πr

E(q)dq, Φw(r) = (4π)�1 � (8π2)�1

∫
Πr

q�1∆bE(q)dq,

where ∆b is the Laplace–Beltrami operator in S2. If E(q) follows the mono-exponential
decay assumption (1), then we have

Φw(r) =
1

4π
+

1

16π2

∫
S2

∆b ln
(
� lnE(q0u)

)
δ(uT r)du. (4.29)

By representing ln
(
� lnE(q0u)

)
=
∑L
l=0

∑l
m=�l clmY

m
l (u), and considering ∆bY

m
l (u) =

�l(l + 1)Y ml (u), we have Φw(r) = 1
4π �

1
8π l(l + 1)Pl(0)clmY

m
l (u). Although the mono-

exponential decay assumption is better than the delta function assumption, it is still a
strong and unrealistic assumption of radial decay; even the signal generalized by a simple
mixture of tensor model does not follow this assumption as shown in Figure 4.6. Exact QBI
is a kind of sHARDI method and leads to different results for the data from different shells.

2http://en.wikipedia.org/wiki/Projection-slice theorem
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4.2.5 Diffusion Orientation Transform (DOT)

Diffusion Orientation Transform (DOT) was proposed by Dr. Özarslan in (105) to estimate
the EAP profile P (Rr) from single-shell data under the mono-exponential decay assumption
in Eq. (4.18). It can be regarded as an estimator of EAP in exact QBI methods. Consider
the plane wave equation as

cos(2πqTR) = 4π
1∑
l=0

l∑
m=�l

(�1)l/2jl(2πqR)Y ml (u)Y ml (r), (4.30)

where jl(�) is the l-order spherical Bessel function. Thus, we have

P (Rr) =
1∑
l=0

l∑
m=�l

(∫
S2

Y ml (u)Il(R,u)du

)
Y ml (r), (4.31)

where Il(R,u) = 4π(�1)l/2
∫1

0
E(q)jl(2πqR)q2dq can be calculated analytically based on

the samples of ADC fD(uj)g. Then a least square fitting can be used to obtain the coeffi-
cients of P (R0r) under the SH basis from fIl(R0,uj)g.

Reference (105) validated the mono-exponential decay assumption through synthetic
data generated from the cylinder model. It showed that signal decay can be approximated
well as a mono-exponential function around b = 1500s/mm2. For the b value larger than
3000s/mm2, the mono-exponential decay assumption is not well satisfied, and the data with
large b value has low SNR. Thus 1500s/mm2 seems to be the optimal b value for DOT.
Note like original QBI and exact QBI, DOT cannot handle multiple-shell data, since the
data in different shells leads to different EAP profiles.

4.2.6 Spherical Deconvolution (SD)

Spherical Deconvolution (SD) methods (130, 129) generalize the mixture model from the
discrete case to the continuous case by assuming

E(qu) =

∫
S2

Φf (r)R(rTu)dr, (4.32)

where Φf (r) is the fiber ODF (fODF) and R(rTu) is the fiber response signal generated
from one fiber. The spherical deconvolution is a model-based method because it assumes
the typical signal R(rTu) and linear combination in the convolution. The mixture of tensor
model suffers from the model selection of the number of tensors and local minima of cost
function. In contrast, SD can be solved analytically by considering the closed-form expres-
sion of spherical integration using the SH basis representation of the E(qu) and R(rTu)
using SHs (129, 49). SD can be used for DWI signal E(qu) or ODFs/EAPs calculated from
DWI signal (49). However the direct usage of SD for the DWI signal is theoretically bet-
ter because the estimation of ODFs/EAPs from DWI signal always suffers from noise and
insufficient samples. SD methods normally obtain many false positive fODF peaks when
the signal is less anisotropic. The false positive peaks can be largely reduced by considering
the non-negativity constraint of the estimated fODFs (129, 38). Conventional SD is only
for single-shell data. However by introducing a 3-dimensional fiber response function, SD
methods can be used in multi-shell data (38).

4.2.7 Diffusion Propagator Imaging (DPI)

Diffusion Propagator Imaging (DPI) was proposed to model the signal E(q) as the solution
of Laplace’s equation (48). DPI can be seen as a generalization of the QBI method to handle
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78 Handbook of Neuroimaging Data Analysis

multiple-shell data, although this generalization has many problems. In DPI, the signal is
assumed to be

E(qu) =
L∑
l=0

l∑
m=�l

(
clm
ql+1

+ dlmq
l)Y ml (u). (4.33)

Then, the EAP is estimated from incomplete 3D integration inside the ball with a given
radius qmax, which is the maximum q value used in DPI acquisition, since the complete
integration in R3 does not converge. After obtaining the coefficients fclmg and fdlmg, sev-
eral EAP features can be calculated analytically based on incomplete radial integration.
However, DPI has some limitations. (i) The estimated ODFs suffer from two incomplete
integrations including one for EAP estimation and the other for ODF estimation. (ii) It
is unclear how to choose qmax. (iii) The DPI model does not satisfy some priors of signal
E(q), which brings intrinsic modeling errors. It also cannot represent an isotropic Gaussian
signal.

4.2.8 Simple Harmonic Oscillator Reconstruction and Estimation
(SHORE)

SHORE was proposed by Dr. Özarslan in (104) for 3D signals. In SHORE, E(q) in 3D (41)
is represented by

E(q) =
N∑
n=0

2n∑
l=0

l∑
m=�l

anlmB
SHO3
nlm (qjζ), (4.34)

where BSHO3
nlm (qjζ) = Gnl(qjζ)Y ml (u) and Gnl(qjζ) is a given function and depends on l.

SHORE is model-free, since the SHO basis is a complete basis in R3. The linear analytical
solutions are very fast and avoid numerical integration. However, the representation in
(4.34) is not non-negative in nature. After estimating fanlmg, the EAP can be analytically
calculated as

P (R) =

N∑
n=0

2n∑
l=0

l∑
m=�l

anlm(�1)nGnl(Rj
1

4π2ζ
)Y ml (r). (4.35)

The two kinds of ODFs can also be analytically derived from the estimated coefficients.

4.2.9 Spherical Polar Fourier Imaging (SPFI)

Spherical Polar Fourier Imaging (SPFI) was first proposed by Dr. Assemlal in (11) in a
numerical way and then improved by (40, 39). SPFI represents the diffusion signal E(q) as
a linear combination of the SPF basis, i.e.,

E(q) =
N∑
n=0

L∑
l=0

l∑
m=�l

anlmB
SPF
nlm (qjζ), (4.36)

where BSPF
nlm (qjζ) = Gn(qjζ)Y ml (u), in which κn(ζ)2 = 2n!/[ζ3/2Γ(n+ 3/2)] and Gn(qjζ) =

κn(ζ) exp
(
�q2/(2ζ)

)
L

1/2
n (q2/ζ). The SPF basis is a 3D orthonormal basis with SHs in the

spherical part and Gaussian Laguerre functions in the radial part. SPFI is model-free, since
the SPF basis is complete in their domains. The linear analytical solutions are very fast and
avoid numerical integration. However, the representation Eq. (4.36) is not non-negative in
nature. After we estimate the coefficients of the diffusion signal under SPF basis, the EAP
and its various features, e.g., ODFs, RTO, can be obtained in an analytical way (40, 39).
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4.3 Reconstruction

DMRI data consists of n DWIs with n measurements f(S(qi; v), ri, bi) : i = 1, � � � , ng
at voxel v in a common space V. A reconstruction step in dMRI is to estimate ODF
Φw(r; v), and EAP p(R; v) at each voxel v 2 V. To design an efficient method to accurately
reconstruct the ODF and EAP, one must address three key components of dMRI data
including (i) the model for the diffusion signal attenuation; (ii) the noise components in
dMRI data; and (iiii) the spatial/functional nature of dMRI data. Since various models for
E(q; v) have been extensively reviewed above, we focus on the last two key components
here. If such models for E(q; v) were misspecified, one would not expect to accurately
reconstruct the ODF and/or EAP. We will discuss why the last two components of dMRI
data are critical for dMRI reconstruction.

4.3.1 Noise Components and Voxelwise Estimation Methods

DWIs inherently contain varying amounts of noise that must be modeled or corrected ap-
propriately if ODFs and EAPs are to be estimated accurately; failure to do so may lead
to a biased estimate of the ODF (or EAP) and to incorrect estimates of their associated
invariant measures (e.g., GFA). The measured diffusion weighted signals, however, can con-
tain varying amounts of noise of diverse origins, including noise from stochastic variation,
numerous physiological processes, eddy currents, artifacts from the differing magnetic field
susceptibilities of neighboring tissues, rigid body motion, nonrigid motion, and many oth-
ers (82, 83). Some noise components, such as bulk motion from cardiac pulsation and head
or body movement, generate unusual observations, or statistical outliers. Previous studies
have shown that those noise components can introduce substantial bias into measurements
and estimations made from those images, such as invariant measures and fiber tracts in
diffusion tensor images (152, 96, 35). Identifying and reducing these noise components in
DWIs is essential to improving the validity and accuracy of DTI studies designed to map
brain structure and function.

Two types of approaches, including various robust statistical methods and diagnostic
methods, have been proposed to address the ‘non-random’ noise components in DWIs.
Robust statistical methods produce the estimators that are insensitive to significant devi-
ations from the model assumption, while incorporating the properties of classic statistics
(76, 43). Specifically, in DTI, several robust approaches have been used to exclude outliers
from the diffusion signal attenuation in order to improve the accuracy of tensor estimation
(34, 35, 96). These proposed algorithms, however, only work properly for a small number
of outliers in the case of high SNR. Diagnostic methods based on some influence measures
(e.g., Cook’s distance) can isolate outliers caused by certain noise components, including
motion artifacts (167). An adaptive estimation procedure can be used to refit to dMRI data
in order to obtain refined estimators by downweighting outliers.

In the presence of random noise only, the signal intensity in DWIs acquired from a single
coil follows a Rician distribution, denoted by S(qi; v) � R(µi(qi,v), σ2(v)) (122). As shown
(167), a general Rician regression model was introduced and an expectation-maximization
(EM) algorithm was first proposed to calculate the maximum likelihood estimate of un-
known parameters. Moreover, the Rician distribution can be well approximated by a normal
distribution N(

√
µi(qi,v)2 + σ(v)2, σ(v)2) when SNR� 2 and N(µi(qi,v), σ(v)2) when

SNR� 5. The log-transformed signal intensity logS(qi; v) approximately follows a weighted
Gaussian distribution N(log(µi(qi,v)), σ2(v)/µi(qi,v)2) (13, 6, 165). For DTI in (4.10), we
have log(µi(qi,v)) = logS(0) � buTDu. An efficient weighted least-square algorithm was
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80 Handbook of Neuroimaging Data Analysis

developed to reconstruct D (165). If DWIs are acquired from multiple coils, S(qi; v) is
non-central Chi (nc-χ) distributed, provided that the k space is fully sampled and no cor-
relations between the coil data exists (2). Recently, the estimation method under the nc-χ
noise has been developed to estimate D in (23).

Raw HARDI images, as a result of elevated b factor and decreased voxel size, suffer
from depressed SNRs, which make the problem of reconstructing HARDI data of practical
importance and challenging. Most HARDI reconstruction algorithms directly assume that

f(E(qi; v)) = xTi β(v) + εi(v), (4.37)

where f(�) is a given transformation function (e.g., f(s) = s or f(s) = log(s)), xi is a p� 1
vector of covariates, which depends on qi (or (bi, ri)), β(v) is a p � 1 vector of regression
coefficients, and εi(v) is an error term with mean zero and variance σ2

i (v). Model (4.37) is
general enough to cover many existing HARDIs. In the literature, for GDTI and HOT, it
is common to set f(E(qi; v)) = log(E(qi; v)) and represent log(E(qi; v)) as a polynomial
function of qi, whereas for most other HARDIs, such as QBI or DOT, it is common to set
f(E(qi; v)) = E(qi; v) and approximate E(qi; v) by a linear combination of some basis
functions, such as the spherical polar Fourier basis.

Most HARDI methods focus on the reconstruction of β(v) by solving a regularized linear
least-squares optimization problem

β̂(v) = argminβ(v)jjy(v)�Xβ(v)jj2 + ρ(β(v);λ(v)), (4.38)

where y(v) = (f(E(q1; v)), � � � , f(E(qn; v)))T , X is an n � p matrix with the i-th row
being xi, and ρ(β(v);λ(v)) is a penalty function with λ(v) being a tuning parameter.
Different penalty functions, such as LASSO and the Laplacian–Beltrami, can be used in
(4.38) (128, 47, 98). Recently, as discussed in (98) and references therein, there is a high
interest in developing the compression sensing technique for dMRI applications. In Bayesian
statistics, � log(ρ(β(v);λ(v))) can be regarded as the prior of β(v).

Existing methods based on (4.37) and (4.38) have at least three major limitations.
First, these methods largely ignore the stochastic noise components of the DW signal that
we discussed above. Therefore, it may lead to bias and loss of efficiency in the estimation of
the ODF and EAP. Second, these methods perform reconstruction independently at each
voxel, which essentially ignores the functional nature of the DWI data at different voxels in
space. Third, most HARDI reconstruction algorithms often use some heuristic methods to
determine a single value of λ(v) for all voxels. However, both theoretically and numerically,
the selection of the tuning parameter across voxels plays a critical role in ensuring the nice
properties of the regularized estimators (28).

4.3.2 Spatial-Adaptive Estimation Methods

Recently, there is a growing interest in developing spatial-adaptive estimation methods
for the HARDI/DTI reconstruction in order to characterize the spatial/functional nature
of DWIs. Until recently, a number of different approaches have been developed starting
from smoothing raw DWIs (50, 19, 18, 115, 20, 21), smoothing procedures in tensor space
(99, 60), smoothing procedures in ODF space (85, 68), spatial DTI (127, 155, 154, 93),
to spatial HARDI, which reconstructs and denoises all ODFs simultaneously (113). The
key idea of these methods is to explicitly incorporate spatial smoothness constraints into
various HARDI reconstruction algorithms. The key assumption of this type of approach
is that the orientation and anisotropy of any single fiber population are expected to vary
smoothly along the dominant fiber orientation, except at the boundaries between tracts and
interfaces with gray matter structures and cerebrospinal fluid spaces. Mathematically, DWI
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Diffusion Magnetic Resonance Imaging (dMRI) 81

can be characterized as a convolution of a piecewise smooth function with various MRI
noises.

Most spatial-adaptive methods can be classified into three categories including (i) the
denoising of raw DWI data, (ii) the denoising of the estimated tensor/EAP/ODF field,
and (iii) simultaneous smoothing and estimation of DWI data. In the first category, most
approaches to DWI denoising are designed to incorporate the stochastic components of
raw DWI data with their spatial smoothness by using either regularization methods or
nonparametric statistical methods. The DWI denoising method is to denoise the observed
f(S(qi; v) : v 2 V)i�1g in order to calculate the denoised DWIs, denoted by f(S�(qi; v) :
v 2 V)i�1g. The regularization-based denoising methods estimate S�(qi; v) by solving a
regularized optimization problem

argminS∗(qi;v)

∫
v2V
f`(S(qi; v), S�(qi; v)) + ρ(S�(qi; v), λ(v))gdL(v), (4.39)

where �`(S(qi; v), S�(qi; v)) is usually chosen to be the log-likelihood function of the DW
signal at voxel v, ρ(�, �) is a pre-specified penalty function, such as total variation, and L(v)
is a measure defined on V. Various penalty functions include those associated with total
variation schemes, Markov random fields, and Perona–Malik-like smoothing. In Bayesian
statistics, log(�ρ(S�(qi; v), λ(v))) is the prior of S�(qi; v) in the (q,v)�space.

Nonparametric statistical methods incorporate both spatial proximity and similarity
measure to calculate weighted averages of ‘similar’ DW signals in order to explicitly ac-
count for the piecewisely smooth nature of imaging data with jumps and edges. These
similar signals can be incorporated in denoising from both the spatial v-space and the dif-
fusion q-space. Some well-known methods include non-local means (NLM) and unbiased
NLM algorithms, propagation-separation methods, anisotropic Wiener filtering, the bilat-
eral filter, and the Sigma filter, among others (110, 8, 151, 27, 84). For instance, NLM uses
small sub-images, called patches, to denoise the image by accounting for the redundancy in
natural images, especially in textured parts (8, 27, 84). Based on the Rician noise, a NLM
for DWI data can be formulated as

NLM(S(q,v)) =

√ ∑
(q′,v′)2V(q,v)

w((q,v), (q0,v0))S(q0,v0)2 � 2σ2, (4.40)

where w((q,v), (q0,v0)) is defined by the distance of the patches centered in (q,v) and
(q0,v0), and σ is a global noise variance. The NLM can be performed separately for different
q or jointly for all signals in q space by defining w(�, �) based on vector-valued patches
(51, 145). When the noise variance is unknown, it can be estimated jointly from all signals
in q space via a linear minimum mean square error (LMMSE) estimator (3, 132). However,
NLM has some limitations for piecewise smooth images when the noise is not small (8).
This is exactly the case for DWI. In contrast, the propagation-separation (PS) method is
very efficient at smoothing noisy piecewise smooth images and dealing with edges (18), even
though such methods cannot proceed efficiently in textured regions. The key idea of the PS
method is to construct a sequence of nested local neighborhoods (or patches) adapted to
DW signals in its neighboring voxels and then adaptively estimate S�(qi; v) at each voxel.
Although the PS method is computationally extensive, it is robust to the selection of kernel
window sizes and patch shapes at different locations.

In the second category, most methods perform denoising on the estimation ten-
sor/ODF/EAP results by using either regularization methods or nonparametric statistical
methods (97, 108, 99, 68, 162, 157, 61, 121, 119, 54, 37). For DTI, various regularization-
based denoising methods estimate a tensor field fD(v) : v 2 Vg based on the estimated
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tensor field fD̂(v) : v 2 Vg (36, 45). Mathematically, it can be formulated as

argminfD(v):v2Vg

∫
v2V

d(D̂(v),D(v)) + ρ(D(v), λ(v))gdL(v), (4.41)

where d(D̂(v),D(v)) is usually chosen to be a pre-specified distance between D̂(v) and
D(v) and ρ(�, �) is a pre-specified penalty function on the tensor field. Similar to (4.39),
various penalty functions can be developed for the tensor field based on total variation
schemes, Markov random fields, and Perona–Malik-like smoothing. Since D lies in a curved
space, one has to face additional theoretical and computational challenges.

For DTI, nonparametric statistical methods have been developed to estimate an intrinsic
‘expectation’ (or ‘median’) of a symmetric positive definite matrix response D, given a voxel

location v from a set of estimated diffusion tensors (v1, D̂(v1)), . . . , (vm, D̂(vm)), in which
v may belong to the set of fv1, � � � ,vmg. Mathematically, it can be formulated by solving
a weighted estimator of D(v) that is defined by

D̃α(v) = argminD(v)

m∑
i=1

w(vm,v)g(D̂m(vm),D(v))α, (4.42)

where α � 1, w(v,v0) is defined by the weighted ‘distance’ of voxels v and v0, and
g(D(v),D(v0)) is the geodesic distance between D(v) and D(v0). Moreover, D̃1(v) and
D̃2(v) are, respectively, an intrinsic median estimator and an intrinsic least square esti-
mator of D(v) (61, 60, 157, 30). Two commonly used metrics, including the trace metric
and the log-Euclidean metric, are usually chosen for the geodesic distance on the space of
symmetric positive definite matrices (9, 157, 54). Directly solving (4.42) is equivalent to the
calculation of an intrinsic local constant estimator of D(v). In (157), the authors propose a
general intrinsic local polynomial regression estimate for the analysis of symmetric positive
definite matrices as responses. For each metric, they develop a cross-validation bandwidth
selection method, derive the asymptotic bias, variance, and normality of the intrinsic local
constant and local linear estimators, and compare their asymptotic mean-square errors. For
the ODF, (55, 68) develop an intrinsic local constant estimator of the ODF in order to
smooth ODF imaging, but its related statistical theory has not been established yet.

In the third category, a few methods have been developed to perform simultaneous
smoothing and estimation of DTI by using either regularization methods or nonparametric
statistical methods (127, 154, 93). Specifically, (93) proposed to solve a regularized opti-
mization problem

argminfD(v):v2Vg

∫
v2V

`n(fS(qi; v)gi�1; D(v))dL(v) (4.43)

+λ1

∫
v2V

∫
W (v)

ω(v,v0)g(D(v),D(v0))dvdv0,

where λ1 is a tuning parameter, `n(fS(qi; v)gi�1; D(v)) is usually chosen to be the log-
likelihood function of the observed DW signals S(qi; v)gi�1, ω(v,v0) are the regularization
weights, and W (v) is the search window at voxel v. Reference (93) proposed to use the
weighting function of NLM to construct ω(v,v0) and use the total Bregman divergence to
design g(D(v),D(v0)).

A multiscale adaptive regression modelling (MARM) framework based on the PS method
can be used to carry out simultaneous smoothing and estimation of DTI/ODF/EAP (90,
127). Specifically, let B(v, hs) = fv0 : jjv0 � vjj2 � hsg be a sequence of balls centered at v
with increasing radii fhsg such that h0 = 0 < h1 < � � � < hS = r0. At each voxel v, MARM
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iteratively maximizes a weighted objective function as

D̂(v;hs) = argmaxD(v)

∑
v′2B(v,hs)

ω(v,v0;hs)`n(fS(qi; v
0)gi�1; D(v)),

where ω(v,v0;hs)s are adaptive weights calculated at each radius hs and allow us to in-
corporate data from neighboring voxels v0 2 B(v, hs). At each voxel v, we will obtain a
sequence of estimators of D(v) as follows:

D̂(v;h0)! fω(v,v0;h1)g ! � � � ! fω(v,v0;hS)g ! D̂(v;hS). (4.44)

When s = 0, D̂(v;h0) reduces to the estimator of D̂(v) for the voxel-wise method. Compared
with the regularization method in (4.43), MARM should be more robust to higher noise
levels and the selection of kernel window sizes and patch shapes at different locations.
Finally, the adaptive weights in MARM can be extended to include the weighting function
of NLM and/or existing biological information (e.g., fiber tracks). See Figure 4.8 (a)–(c) for
an illustration of the use of MARM for ODF reconstruction based on QBI.

However, methods for each category have some advantages and disadvantages. (i) For the
first category, these methods have been criticized for ignoring the fact that raw diffusion
weighted signals acquired at different q-values are highly associated with each other in
each voxel. Moreover, in white matter regions, the SNRs vary dramatically across different
q values. Since these methods primarily use different weights to smooth the raw diffusion
weighted images independently, such methods are prone to accumulate biases from all DWIs,
which can lead to large biases in the estimated tensor/ODF/EAP images.

(ii) For the second category, these methods have been criticized for ignoring the
stochastic components of the raw DWI data and directly smoothing the estimated ten-
sor/ODF/EAP based on a specific metric of the tensor/ODF/EAP space. Since each esti-
mated DTI is estimated by using all diffusion signals in each voxel, the estimated tensors can
be shown to be asymptotically normal distributed with zero mean by using the central limit
theorem. The estimated tensors are asymptotically unbiased and thus it is not critical to
model the distribution of the stochastic components of the raw DWI data. Moreover, a key
advantage of these methods is to use the same set of weights to smooth the raw DWI data
across all q-values. However, if the originally estimated tensor/ODF/EAP field is biased,
then these methods may not be able to reduce the biases in the smoothed tensor/ODF/EAP
field.

(iii) For the third category, these methods are computationally more expensive, but a
key advantage of these methods is to adaptively determine the weights at each voxel and
then apply them to the raw DW signals. They avoid the potential biases introduced by
those methods for the first category. Moreover, since MARM refits the raw DWI data at
each bandwidth, it avoids the potential biases introduced by the voxelwise method.

4.4 Tractography Algorithms

Many tractography algorithms have been proposed to map fibers through the entire brain
based on the estimated principal direction/ODF field (59, 116, 77, 89, 100). The algorithms
can be categorized into two main groups: local and global methods. Local methods use local
ODF information to independently construct fibers path by path. Local methods can be
grouped into two classes: deterministic and probabilistic. Deterministic algorithms usually
start at seed voxels and follow the local principal directions/ODFs estimated by the diffusion
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.8
Simulation Results. The first row shows ODF reconstruction results based on simulated
data with twisted crossing: true ODF field (a), estimated ODF fields based on cQBI (b),
and MARM-cQBI (c). The second row shows results from a simulation study of the isotropic
tensor D = diag(0.7, 0.7, 0.7) (units: 10�3mm2/s): the angle histogram plots of θ based on
10,000 simulated DW datasets at SNR = 20 (d) and 10,000 eigenvectors (e) simulated from
the theoretical distribution given in (165), respectively, where θ 2 [0, 2π] is the subcom-
ponent of (1, θ, φ), the spherical coordinate of the eigenvector corresponding to the largest
eigenvalue. (f) shows the theoretical means of the estimated three eigenvalues and the mean
value of estimated eigenvalues as a function of SNR from 5 to 30 based on 10,000 simulated
datasets.

model in order to generate sequences of points that are considered on major fibers. Several
deterministic tractography algorithms include streamline algorithms and more elaborated
tensor deflection algorithms, among others. Probabilistic algorithms repeatedly use Monte
Carlo simulations (e.g., Markov chain Monte Carlo) to statistically generate the principal
directions and then apply some deterministic methods for tracking fiber bundles. Such
methods produce maps of ‘probability’ for each voxel to be crossed by a random track and
the probabilistic maps of connectivity between any two ROIs. See (78, 141, 89) for a nice
review of various tractography algorithms and references therein. An advantage of local
methods is their computational efficiency. However, the local methods can be very sensitive
to noise components in DWIs, which can significantly affect the final tracking result.

Figure 4.9 showed fiber tracts across several ROIs by the deterministic local tractog-
raphy method in MRtrix (See Section 4.9.2). The subject is from the Q3 dataset in the
Human Connectome Project (HCP), where b = 1000, 2000, 3000s/mm2, 90 directions per
shell. Constrained SD (129) was performed for all 90x3 volumes using a 3D fiber response
function (38) to estimate fODFs. Then MRtrix is used for deterministic local tractography.
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FIGURE 4.9
Fiber tracts of a subject in HCP Q3 dataset by a deterministic local tractography used in
MRtrix.

We consider a stochastic differential equation model with measurement errors for local
tractography methods (86, 118). Specifically, let v(t) be the true fiber trajectory in R3. The
stochastic differential equation model assumes

dv(t)

dt
= e(v), t � 0 with v(0) = v0, (4.45)

where e(v) is the true fiber direction at location v and v0 is the position of the seed
location. Based on dMRI data, one is able to obtain an estimate of the true fiber direction
field, denoted by fê(v) : v 2 Vg, such that

ê(v) = e(v) + ε(v), (4.46)

where ε(v) is a zero-mean stochastic process. Numerically, let δ > 0 be a fixed approximation
step and a sequence of points tk = kδ for k = 0, 1, . . . , [T/δ]. By using Euler’s approximation,
one can solve (4.45) by iteratively updating

v(tk) = v(tk�1) + ê(v(tk�1)) for k = 1, � � � , [T/δ], v(t0) = v0. (4.47)

Global methods reconstruct all detectable fibers of the brain simultaneously. It recon-
struct fibers by finding a configuration that best describes the whole set of measured data
(94). The reconstructed fibers are built by small line elements, each of them reflecting a
part of the whole diffusion anisotropy. Elements being connected in lines eventually form
reconstructed fibers. An advantage of global methods is stable with respect to noise and
imaging artifacts. However, the global methods are often computationally time-consuming.

We consider a Bayesian approach for the global methods as follows. Let M be the
assumed fiber model in V � R3 and S = f(S(qi; v),qi) : i = 1, � � � , ng be observed DWI
data. One needs to specify a sampling distribution of S givenM, denoted by p(SjM), and
a prior distribution of M, p(M). For the sampling distribution, one can use the dMRI
models discussed above. The key idea and challenge of the global tracking methods lies in
how to specify the prior of the fiber model, p(M). In (116), the authors used small line
(fiber) segments LS(v) = (v, r(v)) consisting of a continuous spatial position v 2 V and an
orientation r(v) that can form chains to represent the individual fibers. A mixture model
of the product of a stick model in orientation space and an isotropic Gaussian in the spatial
domain is assumed for p(SjM). A simple interaction model is assumed for all connected
segments, which leads to p(M). The simulated annealing algorithm is used to calculate the
posterior mode of M̂ = argmaxMp(MjS), where p(MjS) / p(SjM)p(M) is the posterior
distribution of M given S.
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Despite the increasing availability of different tractography algorithms, there are many
open questions in the quantification of these fiber-tracking methods.

� It is critical to develop a reliable evaluation and validation system for trac-
tography algorithms (44). The diffusion community has developed several evalua-
tion measures (e.g., connectivity analysis) and two well-known phantoms including the
FiberCup phantom dataset and the HARDI reconstruction challenge phantom to eval-
uate various diffusion models and tractography algorithms (59). An important finding
is that probabilistic tractography algorithms lead to many false positives and should be
used with caution (44). Much more research should be done on the design of evaluation
measures and more realistic phantoms that are close to human brain in various settings.

� Development of computationally efficient global tractography algorithms
needs more attention. It is critical to develop a more reasonable fiber model p(M) in
order to better estimate the true fiber tracts and quantify their uncertainties. Moreover,
optimizing p(MjS) is computationally challenging due to the presence of a large number
of parameters and their non-convexity.

4.5 Uncertainty in Estimated Diffusion Quantities

Because of the noise that is inherent in DWI data, calculated tensors/ODFs/EAPs and
their associated quantities (e.g., eigenvalues and principal directions) generally differ from
the true ones, producing uncertainty in their estimation. To establish dMRI as a reliable and
widely accepted technique, it is critical to quantify such uncertainty in various estimated
diffusion quantities. Such quantification is very important for addressing many scientific
questions in neuroscience and for designing and carrying out large DWI-related clinical
studies.

Two classes of methods, including Monte Carlo and theoretical methods, have been de-
veloped to quantify estimated diffusion tensors and their eigenspace components. The Monte
Carlo methods consist of (i) a statistical model for diffusion weighted signals; (ii) the choice
of an estimation method; and (iii) the quantification of uncertainty in estimated diffusion
quantities based on Monte Carlo simulations. In contrast, besides (i) and (ii), the theoreti-
cal methods use some mathematical and statistical techniques to directly approximate the
uncertainty of estimated diffusion quantities instead of using Monte Carlo simulations.

Recent theoretical calculations based on perturbation theory and asymptotic theory have
accurately approximated the uncertainty of the estimated eigenvalues and eigenvectors, as
well as the bias that is introduced by sorting by their magnitudes eigenvalues in both
degenerate and nondegenerate tensors (6, 165). Those calculations have shown in particular
that the uncertainty in identifying a tensor’s principal direction is determined primarily by
whether the overall morphology of the tensor is degenerate or not (165). The results in the
asymptotic theory allow us to delineate the stochastic behavior of estimated eigenvalues
and eigenvectors for degenerate tensors, whereas those in the perturbation theory cannot.
See Figure 4.8 (d)–(f) for an illustration of theoretical results for the isotropic tensor.

The Monte Carlo methods include both simulation studies and bootstrapping methods.
Based on (4.10) and the Rician noise model, previous simulation studies have shown that
estimated eigenvalues are always distinct and that their estimated FA is always greater than
zero, regardless of whether the tensor is degenerate (i.e., oblate, prolate, or isotropic) or
nondegenerate (109, 16, 22). Thus, one always incorrectly identifies the principal directions
of tensors within regions that contain isotropic or oblate tensors in real DWI.
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Bootstrapping methods, including repetition and the wild bootstrap, have been widely
used to numerically quantify the uncertainty of eigenvalues, eigenvectors, and diffusion
properties (144). Repetition bootstrap in DTI requires repeated measurements in each gra-
dient direction, because it resamples with replacement the raw DW images in each of those
directions. The accuracy of the repetition bootstrap depends on the number of repeated
measurements in each direction. The wild bootstrap is a model-based method that resam-
ples the residuals of the linear regression model used to estimate the tensor at each voxel.
In particular, it is applicable to most DTI acquisition schemes, including the standard ac-
quisition of one measurement per direction, unlike the repetition bootstrap (144).

One has to use the wild and repetition bootstrap methods with extra caution, since
these methods have been used in the dMRI literature without any theoretical justification.
However, such justification is necessary for producing any scientifically meaningful measure
of diffusion uncertainty in which we are interested. In (158), the authors examine several
fundamental issues associated with the two bootstrap methods by using both theoretical
arguments and extensive Monte Carlo simulations. The two bootstrap methods are invalid
for quantifying the uncertainty of the parameters for some tensors, such as the principal
direction of an isotropic or a degenerate tensor. The validity of the wild bootstrap strongly
depends on the correct specification of the fitted model used to estimate a tensor. Because
the wild bootstrap resamples the residuals of the fitted tensor model, resampled tensors
may not reflect the true characteristics of DTs in real DWIs.

There are many open questions in the quantification of the uncertainty in various esti-
mated diffusion quantities.

� For HARDI, little has been done to quantify the uncertainty of estimated
ODFs and EAPs and their associated quantities based on the voxelwise es-
timation methods. Moreover, if one uses more complex spatial-adaptive estimation
methods, such as PS, to estimate the ODF and EAP, such quantification becomes more
difficult due to spatial smoothness and the presence of spatial correlation. According to
the best of our knowledge, nothing has ever been done on such quantification.

� How to quantify the uncertainty of estimated fiber tracks is largely unknown.
Although there are a few attempts at quantifying of uncertainty in estimated tractogra-
phy from both numerical and theoretical perspectives (63, 22, 86), several critical issues
remain open and need further theoretical investigation. Theoretically, (86) first proved
some asymptotic/stochastic properties of the estimated tractography based on models
(4.45)–(4.46). More research should be done along this direction. In contrast, although
some existing DTI packages produce some uncertainty measures in the tractography re-
sults, it is unclear whether such measures are valid from a methodological perspective.
For instance, one approach is to calculate the probability that two regions are connected
based on local tractography algorithms and Monte Carlo methods, such as bootstrap.
However, such probability may be positively correlated with the true probability that
the two regions are connected, but they are not the same. Such probability should be
used with great caution.

4.6 Sampling Mechanisms

An important design issue is how to select a set of gradients and b values f(ri, bi) : i =
1, . . . , ng or q values fqi : i = 1, . . . , ng in order to accurately estimate tensor/ODF/EAP
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across all voxels. Statistically, this is an optimal design problem (12). Different sampling
schemes in q-space have been developed in the literature (Figure 4.10). See (32) for an
extensive review of various acquisition strategies in q�space. There are three principles for
comparing different acquisition strategies including antipodal symmetry, being isotropic,
and reconstruction. When there is no prior in the underlying tensor/ODF/EAP field, the
first two principles have motivated people to uniformly arrange points on the sphere with
central symmetry. Based on the third principle, various acquisition schemes have been de-
veloped to optimize tensor reconstruction (64, 107, 123).

To select an efficient set of q values, one must address three key components of dMRI
data including (i) a statistical model for diffusion weighted signals; (ii) the choice of an ap-
propriate optimality criterion, denoted by L(fqigi�n); and (iiii) optimizing the optimality
criterion with respect to fqi : i = 1, . . . , ng. For (i), various models for dMRI signals have
been developed above. For (ii), the optimality criterion is usually developed to quantify the
uncertainty of the objective of interest, such as tensors and fiber tracts. The existing optimal-
ity criteria largely depend on estimated tensor/ODF/EAP and their invariant measures. In
(iii), one needs to use some optimization algorithms to solve fq̂igi�n = argmin L(fqigi�n).
Since the optimality criterion may not be convex, calculating fq̂igi�n is not a trivial problem
at all.

As an illustration, we consider the reconstruction of a diffusion tensor field, denoted
by fβ(v) : v 2 Vg, based on model (4.37). We consider the covariance matrix of β̂(v)

at voxel v, denoted by C(β̂(v)). As shown in (165), C(β̂(v)) depends on the SNR, the b
value, the number of of baseline acquisitions, denoted by m, the diffusion tensor matrix,
and the gradient encoding scheme. Let p(β(v)) be the prior distribution of β(v), which may
represent prior knowledge of the underlying fiber orientations of the tissue being imaged. A
Bayesian criterion function can be written as

GSI(m, b,SNR,x) =

∫
ΨfC(β̂(v))gp(β(v))dβ(v), (4.48)

where Ψf�g is a pre-specified function, such as the trace. We can use GSI as an index to
compare different DT acquisition schemes.

(a) sampling (b) sampling (c) single shell (d) sparse
in DTI in DSI sampling sampling

FIGURE 4.10
Several kinds of sampling in q-space. The black dot in q = (0, 0, 0)T is the baseline image
without diffusion gradient. Note that although we showed sampling in R3, normally only
samples in a half space are used, e.g., (0, 0, 1)q = qz � 0. (a) Sampling used in DTI,
normally less than 20 DWI images are used; (b) dense Cartesian sampling used in DSI. Note
in practice the Cartesian samples inside a given Ball are used. (c) Single shell sampling used
in sHARDI methods, e.g., QBI, DOT etc. (d) Sparse sampling used in mHARDI methods,
e.g., DPI, SHORE, SPFI. Note although normally multiple-shell sampling is used, any
sampling scheme can be used in mHARDI methods.
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TABLE 4.1
The condition numbers and gradient sampling indices (GSI) of thirteen acquisition schemes
in (123).

Scheme Condition Number of GSI(m, 900, 15,x)
name number directions m Repetition ×107

Tetrahedral 9.148 6 1 20 2.944
Cond6 5.989 6 1 20 1.398
Decahedral 2.749 10 2 12 0.8080
Jones noniso 2.562 7 1 18 0.8083
Dual-gradient 2.000 6 1 20 0.7052
Jones10 1.624 10 2 12 0.5865
Jones20 1.615 20 3 6 0.6177
Jones30 1.595 30 5 4 0.5886
Papadakis 1.587 12 2 10 0.5269
Jones6 1.583 6 1 20 0.5954
Muthupallai 1.581 6 1 20 0.5829
Tetraortho 1.528 7 1 18 0.5127
DSM 1.323 6 1 20 0.6014

To compare the adequacy of differing image acquisition strategies, we calculated the
values of GSI for thirteen data acquisition schemes that were used previously to demonstrate
the importance of the condition number in the determination of noise characteristics for
particular acquisition schemes (see Tables 1 and 2 of (123)). Table 4.6 presents the GSI
values for each of the thirteen acquisition schemes at b = 900s/mm2. Although the DSM
scheme in (123) has the smallest condition number, its GSI was larger than those of the
Papadakis and Tetraortho schemes. In terms of both the number of images and GSI, it
seems that the Papadakis scheme is the best among these thirteen strategies.

There are many open questions in the design of sampling mechanisms for various HARDI
models.

� Little has been done on the design of effective sampling mechanisms for
various HARDI models. Several key difficulties include the choice of L(fqigi�n) and
its optimization, particularly for a multiple q-shell acquisition.

� Nothing has been done on the use of the uncertainty of estimated fiber
tracks to design sampling mechanism. Since our primary objective of interest is
to reconstruct fiber tracks, it is important to develop some design criterion based on
the uncertainty of estimated fiber tracks. As discussed above, since there is a lack of
theoretical results on the uncertainty of estimated fiber tracks, it is impossible to develop
an optimal sampling mechanism based on such results.

4.7 Registration

The above sections focus on estimation of the diffusion signal, EAP and ODF for an in-
dividual subject. Spatial alignment, also called image registration, is an important issue
for group analysis. Image registration has been studied for decades in the medical image
analysis domain, and in the last ten years some methods have been proposed to align DWI
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data, or the estimated tensor/ODF/EAP data. Although image registration techniques in
dMRI originate from vector-valued image registration methods, these are not applicable
to directly apply vector-valued image registration methods to diffusion data (4). An image
registration method for diffusion data normally includes two aspects. One is the spatial
alignment of 3D anatomical structures, and the other one is the re-orientation of local
diffusion profiles. Some methods propose to perform these two steps separately for diffu-
sion data (4, 73, 33, 112, 149), i.e. perform re-orientation after spatial alignment. Some
other methods propose to consider the re-orientation issue inside the cost function of the
registration and perform these two steps iteratively (29, 42, 153, 67, 150, 56, 161).

Reference (4) first addressed the re-orientation issue in dMRI and proposed “finite
strain” (FS) and “preservation of principal direction” (PPD) to orient the tensor image,
where PPD gives the best performance. The idea of PPD is to keep the tensor shape while
rotating the principal direction of the tensor using the Jacobian matrix of the deformation
field, and the idea of FS is to rotate the tensor using a rotate matrix extracted from the
Jacobian matrix of the deformation field. It was shown that FS cannot consider shearing
or scaling effect of transforms (4). PPD is widely used in tensor registration (29, 42, 33).
Re-orientation of the DWI signal, ODF and EAP data is more complicated compared with
tensor data. Since the FS method is much simpler than PPD, some HARDI methods use FS
to orient the ODF or EAP represented by the SH basis due to the closed form of rotation
of the SH basis (26, 67). Some other methods separate diffusion signals and ODFs using
some kind of basis functions, then re-orientate the basis function separately and combine
the re-orientated functions together (73, 112, 161). The basis functions in (73) are delta
functions, and those in (52, 112, 161) are fiber response functions.

There are some open questions in the registration of diffusion data.

� Does the registration need to be performed in diffusion signals or estimation
results (tensors, ODFs, or EAPs)? Most methods perform registration on tensors,
ODFs, or EAPs, because the estimation results are more spatially meaningful than
DWI signals. However these methods are largely affected by the reconstruction methods
used. Some registration methods were performed directly in DWI signals. However, these
registration methods still need to consider a model for re-orientation DWI signals.

� How can re-orientation be done? It is well accepted that registration of diffusion
data needs re-orientation. However, there is no consistent and well-accepted way to do
re-orientation. PPD is well accepted for tensor data, which assumes that the shape of the
local diffusion profile does not change. However, the current state-of-the-art registration
methods in HARDI changes the shape of local diffusion profiles for re-orientation (73,
52, 112, 161).

� It is critical to develop a reliable evaluation and validation system for reg-
istration algorithms. Unfortunately, little has ever been done on such development
due to many fundamental difficulties, such as the two open questions discussed above.

4.8 Group Analysis

In the current literature, there exist three major approaches to the group analysis of diffusion
imaging data: region-of-interest (ROI) analysis, voxel-based analysis, and fiber tract- based
analysis (124, 103, 125).
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The ROI analysis can be performed by registering individual subject DWI images to
an atlas and then averaging diffusion properties in some manually drawn ROIs of the atlas
(125). Subsequently, a group analysis can be carried out to correlate all statistics at each
ROI or across multiple ROIs with covariates of interest. An advantage of ROI analysis is
that processing is relatively simple and robust against imperfect registration. The three
drawbacks of ROI analysis include the difficulty in identifying meaningful ROIs, particu-
larly the long curved structures common in fiber tracts, the instability of statistical results
obtained from ROI analysis, and the partial volume effect in relatively large ROIs (70, 164).
A stringent assumption of ROI analysis is that diffusion properties in all voxels of the same
ROI are essentially homogeneous, which is largely false for dMRI data. Moreover, this form
of analysis leads to limited localization of findings.

Voxel-based analysis has been widely used in neuroimaging studies. It involves regis-
tering each subject into a study-specific reference space and fitting a statistical model to
the smoothed and registered diffusion property imaging data from multiple subjects at
each voxel to generate a parametric map of test statistics (or p-values). Subsequently, a
multiple-comparison procedure such as false discovery rate is applied to correct for multiple
comparisons across the many voxels of the imaging volume (146). The major drawbacks of
voxel-based analysis include poor alignment quality and the arbitrary choice of smoothing
extent (124, 80). Moreover, in practice, one has to interpret the findings based on voxelwise
comparison of the eigenvector and/or tensor images with great caution (120, 162), since
they are very sensitive to alignment inaccuracies compared with FA images.

Fiber tract–based analysis has received growing interest, since it may be more robust to
alignment inaccuracies, while directly incorporating fiber tract information (124, 103, 160,
70, 164, 71). There are three major fiber tract–based analysis methods including tract-based
spatial statistics (TBSS), medial sheet based analysis, and fiber tract analysis. A tract based
spatial statistics (TBSS) framework was developed to construct local diffusion properties
along the white matter skeleton and then perform pointwise hypothesis tests on the skeleton
(124). However, TBSS does not have an explicit tract representation that can be uniquely
linked to individual fibers throughout the brain, while the use of maximal FA values renders
TBSS sensitive to DWI artifacts.

A medial model–based framework was developed for the statistical analysis of diffusion
properties on the medial manifolds of fiber tracts followed by testing pointwise hypotheses
on the medial manifolds (160). The framework consists of effectively modeling six sheet-
like fasciculi by using deformable medial representations, averaging and combining tensor-
based features along directions locally perpendicular to the tracts, and pointwise statistical
analysis. However, it is limited to the sheet-like white matter tracts and relies on expert-
driven segmentation of the fasciculi.

A fiber tract analysis framework was developed for the statistical analysis of diffusion
properties along major fiber tracts followed by using functional data analysis (70, 164, 138,
66, 69, 104, 53). See (138) for an overview of the fiber tract analysis framework developed
at UNC-Chapel Hill. The fiber tract analysis framework consists of using anatomically
informed curvilinear regions to analyze diffusion at specific locations all along fiber tracts,
taking weighted averages at each step along the fiber bundles, an unbiased atlas-building
step, and a Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) pipeline.
This form of analysis results in highly localized statistics that can be visualized back on the
individual fiber bundles. Moreover, there is great interest in developing new fiber registration
methods for group analysis (65, 57, 169, 140, 79).

A set of FADTTS has been developed for delineating the structure of the variabil-
ity of multiple diffusion properties or tensors along major white matter fiber bundles and
their association with a set of covariates for both cross-sectional and longitudinal studies
(164, 156, 163, 159, 75, 166). The advantages of FADTTS are that they are capable of
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92 Handbook of Neuroimaging Data Analysis

modelling the structured inter-subject variability by a functional principal component anal-
ysis method, testing the joint effects by a global test statistic and local test statistics, and
constructing simultaneous confidence bands of the interested effects through a resampling
method. Statistically, as shown in various simulations and real data analysis, these statistical
methods in FADTTS are much more powerful than the standard voxel-wise methods.

As an illustration, we applied FADTTS to study the spatial-temporal dynamics of white-
matter fiber tracts in a clinical study of neurodevelopment. There are 298 high-quality
scans available for 137 children with 83 males and 54 females. As a graphical illustration,
FA measures were plotted along the genu and splenium of the corpus callosum for each
subjects within each age group (Figure 4.11 (a)). FA measures were also plotted for 35
subjects along the genu tract (Figure 4.11 (b) and (c)). An obvious increasing trend for the
values of FA were observed at nearly all grid points, especially from neonate to the first
year.

For the genu tract, we fitted a functional mixed-effects model (FMEM) in (156) to the
FA curves, denoted by yij(s), from all 137 subjects. Specifically, FMEM is given by

yij(s) = xTijB(s) + zTij ξi(s) + ηij(s) + εij(s), (4.49)

where xij = (1,Dirij ,Gi,Ageij1,Ageij2)T , zij = (1,Ageij1,Ageij2)T and Ageij1 (Ageij2)
is an indicator variable indicating whether a subject belongs to the first (second) year age
group. The coefficient functions related to Ageij1 and Ageij2 can be used to investigate
whether there is some change from neonate to the first year of life, from the first year to
the second year, and from neonate to the second year. Moreover, in model (4.49), ηij(s)
primarily characterizes within-curve spatial correlation structure, while ξi(s) primarily char-
acterizes the subject-level variations and within-subject spatial-temporal correlation. Then
we estimated the functional coefficients. For hypothesis testing, we constructed the global
test statistic to test the gender, number of gradient directions and age effects on FA val-
ues. We approximated the p value of the global test using the resampling method with
5,000 replications. Finally, we constructed the 95% simultaneous confidence bands for the
functional coefficients.

The hypothesis testing results show that there are significant age and number of gradient
direction effects on FA, RD and AD values. The FA are significantly different between
neonate versus the first year, and between the first year versus the second year with p value
< .0001, far smaller than a 0.05 significance level. It is observed from Figure 4.11 (b) that
mean FA values increase from neonate to the first year and then from the first year to the
second year. Moreover, the change from the neonate to the first year is larger than that from
the first year to the second year. No gender difference in FA was found for the genu tract.

There are many open questions in the joint analysis of diffusion imaging data and other
data.

� All fiber tract–based methods including FADTTS are only applicable to
these major white matter tracts in which one can establish common local-
ization across subjects. However, the centroid of the localization of white matter
lesion could vary across time and subjects. In some heterogeneous populations, it is
possible that tract-specific changes occur in only a subset of subjects. In these scenar-
ios, none of group analysis methods discussed above would be appropriate.

� There is an urgent demand for the development of functional regression
methods for the analysis of repeated functional data and clinical data obtained from
longitudinal and familial studies. Although there is a handful of papers on the develop-
ment of statistical models and their estimation methods for repeated functional data, the
methodology for dealing with such data is still in its infancy, and further computational
and theoretical development is greatly needed.
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.11
(a) The commissural bundles of the genu and splenium of the corpus callosum. (b) FA values
along the genu tract for all 137 subjects in each age group. (c) FA values varying over age at
a selected location along the genu tract. (d) and (e) 95% simultaneous confidence bands for
varying coefficient functions for FA along the genu of the corpus callosum tract. The solid
curves are the estimated coefficient functions, and the dashed curves are the 95% confidence
bands. The thin horizontal line is the line crossing the origin. (f) p1 is the p value for the
difference in the diffusion measure between neonate and the first year, p2 is the p value for
the difference in the diffusion measure between neonate and the second year, p12 is the p
value for the difference between the first year and the second year, pG is the p value for the
gender effect, pDir is the p value for the effect of the number of gradient directions.

� There is an urgent demand for the development of high-dimensional risk pre-
diction models by integrating and identifying important white matter tracts, functional
images, and biological markers for risk prediction. These models can have a great im-
pact in public health from disease prevention, to detection, to treatment selection. For
instance, it is interesting to consider generalized functional linear models, in which a
scalar outcome (e.g., diagnostic group) is used as the response and fiber bundle diffusion
properties are used as varying covariate functions (or functional predictor) (114, 117).

4.9 Public Resources

4.9.1 Datasets

Public datasets are important for reproducible research. For synthetic data simulation,
people normally use a mixture of tensor models or cylinder models to generate the ground
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truth of signals (105), then corrupt the ground truth signal using Rician noise. Here are
some real public datasets for simulation and evaluation.

� Q1, Q2, Q3 data from HCP: http://www.humanconnectome.org/data/, three shells,
staggered 90 direction per shell (31), b = 1000, 2000, 3000s/mm2, 1.25 mm isotropic
voxels.

� HARDI data for Stanford: http://purl.stanford.edu/yx282xq2090, single shell HARDI,
150 directions, b = 2000s/mm2.

� Phantom data for fiber cup 2009 (58): http://lnao.lixium.fr/spip.php?rubrique79, three
shells, the same 64 directions with twice the scans per shell, b = 650, 1500, 2000s/mm2.

� HARDI reconstruction challenge: http://hardi.epfl.ch/static/events/2013ISBI, 3 prede-

temined sampling schemes including DTI (b = 1200s/mm
2
, 32 directions), HARDI

(b = 3, 000s/mm
2
, 64 directions), and Heavyweight (b < 12, 000s/mm

2
, 515 acquisi-

tions).

� DWI datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI):
http://www. adni-info.org/, 264 subjects with a total of 799 DWI datasets, b =

1, 000s/mm
2
, and 41 directions.

4.9.2 Software

There is a branch of open source codes and software for diffusion MRI data processing. Here
are a recommendation list.

� FSL: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide. Eddy current correction,
tensor estimation, multi-tensor estimation, registration of scalar images, deterministic
tracking, probabilistic tracking, TBSS, QBI, SD.

� 3D Slicer: http://www.slicer.org/. DWI denoise, DTI, fiber tracking, visualization of
tensors/fibers.

� CAMINO: http://www.cs.ucl.ac.uk/research/medic/camino. DTI, multi-tensor estima-
tion, QBI, SD, PASMRI, data simulation, tensor registration, uniform sampling scheme
based on minimization of electrostatic energy, peak detection, visualization of ten-
sors/ODFs/fibers/peaks.

� MITK: http://www.mitk.org/. DTI, QBI, global fiber tracking, deterministic fiber track-
ing, peak detection, TBSS, data simulation, visualization of tensors/ODFs/fibers.

� MRtrix: http://www.brain.org.au/software/mrtrix/. DTI, SD, deterministic/probabilistic
fiber tracking, visualization of tensors/ODFs/fibers/peaks.

� MRI Studio: https://www.mristudio.org. DTI, deterministic fiber tracking, visualization
of tensors/fibers.

� Trackvis: http://www.trackvis.org, DTI, QBI, DSI, fiber tracking, visualization of fibers.

� MEDINRIA: http://med.inria.fr/. DTI, deterministic fiber tracking, visualization of
tensors/fibers.

� DTI-TK: http://dti-tk.sourceforge.net/pmwiki/pmwiki.php. Tensor estimation, tensor
registration, image format conversion, visualization of tensors/fibers.
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� Fibernavigator: http://scilus.github.io/fibernavigator/. Visualization of tensors/ODFs/
fibers/peaks.

� DIPY: https://github.com/nipy/dipy. DTI, SD, QBI, DSI, fiber tracking, visualization
of tensors/ODFs/fibers/peaks.

� DSI-studio : http://dsi-studio.labsolver.org/. DTI, QBI, DSI, fiber tracking, visualiza-
tion of ODFs/fibers.

� SSPM: http://www.nitrc.org/projects/sspm/. Group analysis toolbox for carrying out
voxel-based analysis and fiber tract–based analysis.

� NAMICDTIFIBER: https://www.nitrc.org/projects/namicdtifiber/. UNC/Utah NAMIC
DTI Fiber Analysis Framework for carrying out fiber tract analysis.

4.10 Glossary

ADC: Apparent Diffusion Coefficient

DOT: Diffusion Orientation Transform

DPI: Diffusion Propagator Imaging

DSI: Diffusion Spectrum Imaging

DTI: Diffusion Tensor Imaging

DWI: Diffusion Weighted Imaging

EAP: Ensemble Average Propagator

FA: Fractional Anisotropy

GDTI: Generalized Diffusion Tensor Imaging

GFA: Generalized Fractional Anisotropy

HARDI: High Angular Resolution Diffusion Imaging

HOT: High-Order Tensor

MD: Mean Diffusivity

ODF: Orientation Distribution Function

PGSE: Pulsed Gradient Spin-Echo

QBI: Q-Ball Imaging

SH: Spherical Harmonic

SHORE: Simple Harmonic Oscillator Reconstruction and Estimation

SNR: Signal-To-Noise ratio

SPFI: Spherical Polar Fourier Imaging
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[50] M. Descoteaux, N. Wiest-Daesslé, S. Prima, C. Barillot, and R. Deriche. Impact of
Rician adapted non-local means filtering on HARDI. Medical Image Computing and
Computer-Assisted Intervention, 5242:122–130, 2008.

[51] M. Descoteaux, N. Wiest-Daessle, S. Prima, C. Barillot, and R. Deriche. Impact of
Rician Adapted Non-local Means Filtering on HARDI. In MICCAI, 2008.

[52] T. Dhollander, W. Van Hecke, F. Maes, S. Sunaert, and P. Suetens. Spatial transfor-
mations of high angular resolution diffusion imaging data in q-space. In Computational
Diffusion MRI — MICCAI Workshop, pages 73–83, 2010.

[53] C.Z. Di, C. M. Crainiceanu, B. S. Caffo, and Punjabi N. M. Multilevel functional
principal component analysis. Annals of Applied Statistics, 3:458–488, 2009.

[54] I. L. Dryden, A. Koloydenko, and D. Zhou. Non-Euclidean statistics for covariance
matrices, with applications to diffusion tensor imaging. Annals of Applied Statistics,
3:1102–1123., 2009.

[55] J. Du, A. Goh, S. Kushnarev, and A. Qiu. Geodesic regression on orientation dis-
tribution functions with its application to an aging study. NeuroImage, 87:416–426,
2014.

[56] Jia Du, Alvina Goh, and Anqi Qiu. Diffeomorphic metric mapping of high angular
resolution diffusion imaging based on Riemannian structure of orientation distribution
functions. Medical Imaging, IEEE Transactions on, 31(5):1021–1033, 2012.

[57] S. Durrleman, P. Fillard, X. Pennec, A. Trouvé, and N. Ayache. Registration, atlas
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[83] D.K. Jones, T.R. Knösche, and R. Turner. White matter integrity, fiber count, and
other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage, 73:239–254, 2013.

[84] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola. From local kernel to nonlocal
multiple-model image denoising. International Journal of Computer Vision, 86:1–32,
2010.

[85] Y. Kim, P.M. Thompson, A.W. Toga, L. Vese, and L. Zhan. HARDI denoising: Varia-
tional regularization of the spherical apparent diffusion coefficient SADC. Information
Processing in Medical Imaging, pages 515–527, 2009.

[86] V. Koltchinskii, L. Sakhanenko, and S. Cai. Integral curves of noisy vector fields and
statistical problems in diffusion tensor imaging: Nonparametric kernel estimation and
hypotheses testing. The Annals of Statistics, pages 1576–1607, 2007.

[87] B.W. Kreher, J.F. Schneider, I. Mader, E. Martin, J. Hennig, and K.A. Il’yasov. Mul-
titensor approach for analysis and tracking of complex fiber configurations. Magnetic
Resonance in Medicine, 54(5):1216–1225, 2005.

[88] P.W. Kuchel, A. Coy, and P. Stilbs. NMR “diffusion-diffraction” of water revealing
alignment of erythrocytes in a magnetic field and their dimensions and membrane
transport characteristics. Magnetic Resonance in Medicine, 37(5):637–643, 1997.

[89] Mariana Lazar. Mapping brain anatomical connectivity using white matter tractog-
raphy. NMR in Biomedicine, 23(7):821–835, 2010.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

or
th

 C
ar

ol
in

a,
 C

ha
pe

l H
ill

] 
at

 1
1:

38
 0

9 
Ja

nu
ar

y 
20

17
 

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11263-009-0272-7
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F0471725250
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-02498-6_43
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fnyas.12271
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-02498-6_43
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fnyas.12271
http://www.crcnetbase.com/action/showLinks?crossref=10.1089%2Fbrain.2011.0033
http://www.crcnetbase.com/action/showLinks?crossref=10.1214%2F009053607000000073
http://www.crcnetbase.com/action/showLinks?crossref=10.1089%2Fbrain.2011.0033
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fmrm.20670
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.neuroimage.2014.04.048
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fmrm.20670
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.neuroimage.2005.02.013
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fmrm.1910370502
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnbm.1579
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fnbm.1543
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fmrm.20723
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.neuroimage.2012.06.081
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.neuroimage.2012.06.027


102 Handbook of Neuroimaging Data Analysis

[90] Y. Li, H. Zhu, D. Shen, W. Lin, J. H. Gilmore, and J. G. Ibrahim. Multiscale adaptive
regression models for neuroimaging data. Journal of the Royal Statistical Society:
Series B, 73:559–578, 2011.

[91] C. Liu, R. Bammer, B. Acar, and M. E. Moseley. Characterizing non-Gaussian diffu-
sion by using generalized diffusion tensors. Magnetic Resonance in Medicine, 51:925–
937, 2004.

[92] C. Liu, R. Bammer, and M. E. Moseley. Generalized diffusion tensor imaging (GDTI):
A method for characterizing and imaging diffusion anisotropy caused by non-Gaussian
diffusion. Israel Journal of Chemistry, 43:145–154, 2003.

[93] M. Liu, B.C. Vemuri, and R. Deriche. A robust variational approach for simultaneous
smoothing and estimation of DTI. NeuroImage, 67:33–41, 2013.

[94] J-F. Mangin, P. Fillard, Y. Cointepas, D. Le Bihan, V. Frouin, and C. Poupon. Toward
global tractography. NeuroImage, 80:290–296, 2013.
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