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DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF NEGATIVE

DIFFERENTIAL DIMENSION.

ARNAUD HEIBIG1 ∗

1 Institut Camille Jordan et Insa Lyon, Bât. Leonard de Vinci No. 401, 21 Avenue Jean
Capelle, F-69621, Villeurbanne, France.

Abstract

We prove well posedness for ordinary differential equations with coefficients in Banach
valued Besov spaces Bs

p,q(]0,T[,E) with max{−1
2 ,

1
p − 1} < s < 0. In the linear case, a

representation formula is given.

Keywords: Linear differential equations, differential equations, irregular coefficients, Poincaré
inequality, well-posedness, Cauchy-Lipschitz theorem, Peano theorem, fractional Besov spaces,
paraproduct.

1 Introduction.

It is well known that the Cauchy-Lipschitz theorem can be derived from the Picard fixed point
theorem. A striking feature of the proof is the use of the time t as a contracting factor, whereas
any other factor γ(t) converging with t to zero would work as well. In fact, any problem of the
type

M(t) = M0 +

∫ t

0

[

H
(

M
)

]

(s)ds (1.1)

can equally be solved under suitable assumptions on operator H. Essentially, H must not
derive more than once, and one may think at a δ < 1 fractional derivative operator. For such
operators, acting on wide scales of functional spaces and with always the same moderate loss
of smoothness, solutions turns out to be C∞ by a standard bootstrap argument. Consequently,
the choices of a solving functional frame are overabundant, and the problem 1.1 is well posed
in all of them.

This is not the case for an operator with irregular coefficients i.e wasting all the smoothness
that is not required for its definition. The goal of this paper is to handle the case of such linear
and nonlinear operators, and mainly to prove well-posedness. As a preliminary example (see
section 6), we consider the model problem on ]0,T[

{

M′ = κM+ φ

M(0) = M0

(1.2)

and later on, some of its nonlinear extensions. In 1.2, κ, φ are assumed to belong to Bsp,q(]0,T[,E)
with s < 0 and M0 ∈ E given. For the sake of simplicity, we restrict in this introductory part
to φ = 0 and E = R.
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Recall that the elementary case κ ∈ C0([0,T]) in 1.1 is well known (see [3], [17]); but, to
our knowledge, the case of negative indexes s has not been discussed yet. Note also that the
classical theory of evolutionary integral equations, essentially the Da Prato-Ianelli generation
theorem (see [14]) such as described in [24], deals with operators of the type

u(t) = f(t) +

∫ t

0

A(t− τ)u(τ)dτ

(A ∈ L1
loc([0,T],B(F,E))), which do not match equation 1.2. The nonlinear case, which can

be found in classical textbooks such as [3], [10], [17], is even less favorable than the linear
one. Unless working on suitable algebras, both cases are mostly restricted to smooth coeffi-
cients/lipschitz constitutive functions and turn out to be of some importance in many areas
of mathematics, for instance when solving transport equations and related PDE’s. See for
example [16], [21], [6] and [5]. To be complete, let’s mention that our primary motivation was
the study of the Doi-Edwards configurational equation endowed with a transport operator with
discontinuous coefficients, say:

∂

∂t
+
(

κ.u−
(

κ : u⊗ u
)

u
)

.
∂

∂u

We shall deal with that problem in a forthcoming paper. See also [11] or [12].
In this introduction, we mainly focus on the functional frame and the organization of the

article. We work within the frame of Besov spaces, but this a matter of convenience. We could
probably consider Triebel-Lizorkin spaces, or restrict to the Sobolev-Slobodeckii scale, though
this would not simplify the expository. However, notice that the scale Hs would not be large
enough for our purposes, and that the same is true for the scale Bs

p,q when dealing with critical
spaces.

Among others, one point that we have to clarify is the definition of the product κM. This can
be done by means of elementary rules of paradifferential calculus. Assuming that κM has exactly
the same smoothness as κ ∈ Bsp,q(]0,T[,E), equation M′ = κM provides M ∈ Bs+1

p,q (]0,T[,E).
Looking at the remainder term, we obtain that the sum s + (s + 1) = 2s + 1 of the regularity
indexes must be positive. Hence, s ≥ −1/2. Setting s = −1/2+η, with 0 ≤ η ≤ 1/2, we obtain
the following conditions:

κ ∈ B
− 1

2
+η

p,q and M ∈ B
1
2
+η

p,q (1.3)

Finally, notice that condition M(0) = M0 makes sense under condition:

1

2
+ η −

1

p
> 0 (1.4)

since in that case B
1
2
+η

p,q (]0,T[) →֒ C0(]0,T[). Nevertheless, at this point, it is not clear wether
very weak solutions could exist or not in a larger functional frame. In particular, one may
expect that a suitable integral formulation would make useless the existence of a trace at t = 0,
i.e condition 1.4. This is not the case, and conditions 1.3, 1.4 are optimal. Consider the data
φ = 0 and κ = δ1/2 ∈ B0

1,∞(]0, 1[), where δ1/2 denotes the Dirac mass at 1/2. This corresponds
to η = 1/2 and 1

2
+ η − 1

1
= 0 . With such data, system 1.2 admits formally the solution

M(t) = CH(t − 1/2) + M0, which does not make sense under the previous definition of the
product κM. Note that the quantity −1/2 + η − 1/p, which is strictly greater than −1 under

condition 1.4, is the differential dimension of κ ∈ B
−1/2+η
p,q (]0,T[). And that for Dirac measures,

this dimension is exactly equal to −1. See section 7 for a sharper analysis of some critical cases.
Since the Dirac measures are excluded from the κ-functional spaces B

−1/2+η
p,q (]0,T[,E), with

0 < η ≤ 1/2 and 1/2+η−1/p > 0, we obtain the uniform continuity - with respect to ]0, t[, 0 <
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t < T - of the family of zero extension operator E : B
−1/2+η
p,q (]0, t[,E)→ B

−1/2+η
p,q (R,E), which in

turn provides uniformely bounded Poincaré’s constants. Although the Poincaré’s inequalities
stimulated in the last decades an important amount of work, often in a more complicated context
than ours, we gave up pulling this material from the literature (nevertheless, one may consult
[8], [9], [18], [19], [20], [22], [23]). Essentially, we work with quotient norms, and if these norms
are well suited for coretractation-retractation matters, they may not be uniformely equivalent
to the usual inner norms (see [26] p. 208) when dealing with vanishing intervals ]0, t[. As
a consequence of this fact, remark that the norms of the embeddings H1(]0, t[) →֒ L∞(]0, t[)
may or may not be uniformely bounded for t ∈]0,T[ (see corollary 4.1 c) below). Finally,
notice that t-independent estimates are so crucial for our purposes that we do not try to
modify the linear framework in the nonlinear case. This stems from the fact that by taking
the ‖.‖

B
−

1
2
+η

p,q (]0,t[)
norm of both sides of equation M′ = κM, one obtains suitable inequalities on

‖M−M0‖
B

1
2
+η

p,q (]0,t[)
provided that uniform Poincaré’s inequalities hold true. However, it is likely

that some extensions could be given in other functional settings. In the same spirit, extensions
of the classical Osgood theory (see [4], p.124) could also be sought.

The nonlinear problem under consideration is the following
{

M′ = HT,α(M)

M(0) = M0

(1.5)

withHT,α : D ⊂ B
1
2
+α

p,q (]0,T[,E)→ B
− 1

2
+η

p,q (]0,T[,E). Here, 0 < α < η ≤ 1/2 and 1/2+α−1/p >
0. The difference η − α > 0 will provide the contracting factor tη−α in the Picard theorem,
but a smaller factor could probably be obtain at the cost of a refined functional setting; see for
instance [13] for logarithmic Besov spaces. The other requirements on the operator HT,α are
the Lipschitz continuity and some localisation property. Under these assumptions, we prove
well posedness for system 1.5. Relaxing the Lipschitz hypothesis, we also give a Peano’s type
existence theorem.

The paper is organized as follows. In the second section, we recall some notations and basic
results, merely the definitions and some properties of the Besov spaces, and also the definition
of the paraproduct and remainder. In a third part, we establish some preliminary ”dyadic”
lemmas, using the fact that the characteristic functions of an interval belongs to B

1/p
p,∞(R). The

fourth part is devoted to the proof of uniform inequalities. The fifth part essentially deals with
the definiton of the product κM via the Bony decomposition. The well posedness of equation
1.1 is established in the sixth part (theorem 6.1). It relies on a suitable Lp estimate combined
with the Poincaré inequality. Section seven is devoted to the study of a few critical cases for
κ, such as the derivative of a Cantor function. In a eighth part, we generalize some classical
properties of the resolvent and establish the usual integral representation formula for solutions
of 1.1. The last part deals with the nonlinear case. Here, the main issue is to define suitable
localisation (in time) procedures. The main result of this section is theorem 9.2. As an example,

we briefly discuss the case of the operator HT,α : D ⊂ B
1
2
+α

p,q (]0,T[,A)→ B
− 1

2
+η

p,q (]0,T[,A) given

by HT,α(M) =
∑

j∈N κjM
j with κj ∈ B

− 1
2
+η

p,q (]0,T[,A).

2 Notations and classical results.

• Throughout this paper E and F denote two complex Banach spaces. In the sequel, we
consider Banach-valued distributions, and generalize, often without comments, scalar
results to that context. The reader is refered to [1], [2], but we most often refer to the
monographs of Triebel [26], [27], [28], or Bahouri-Chemin-Danchin [4], since the vector
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valued case follows by few additional arguments. Except for coretractation-retractation
matters, which can be found in [1]. We avoid duality statements, since the use of brackets
is enough for our purposes.

• For V and W two complex vector spaces, we denote by L (V,W) the space of linear
applications from V to W. When V = W, we simply write L (V).

• For x ∈ V, f ∈ L (V,W), we write f.x, fx or even xf instead of f(x) or < f, x >.

• For 1 ≤ r ≤ ∞, we denote by r′ its conjugate exponent i.e r−1 + r
′−1 = 1. We denote by

E∗ the topological dual space of a Banach space E.

• For 0 ≤ r ≤ R, the shell {ξ ∈ Rn such that r ≤ |ξ| ≤ R} is denoted by S(r,R).

• Let 1 ≤ p ≤ ∞ and α > 0. We will often use the notation

ω(η, p) =
1

2
+ η −

1

p
(2.1)

We shall frequently impose condition ω(η, p) > 0 and 0 < η ≤ 1/2. It implies p > 1.

• The symbol →֒ stands for classical continuous embeddings.

• The non-homogeneous Besov space Bs
p,q(R

n,E) - or simply Bs
p,q(R

n), or Bs
p,q - can be

defined as the space of tempered distribution f such that (see[4]):

‖f‖Bs
p,q(R

n,E) :=
[

∑

j≥−1

(

2js‖∆jf‖Lp(Rn,E)

)q
]1/q

<∞ (2.2)

with the usual modification in the case q =∞. In the above writings, the analytic func-
tions ∆jf are defined by the following standard dyadic procedure. Take X ∈ C∞(Rn, [0, 1])
supported in the ball S(0, 4/3). Set ϑ = X( .

2
)−X and for q ∈ Z, ξ ∈ R

n, ϑq(ξ) = ϑ(2−qξ).
We can assume that suppϑ ⊂ S(3/4, 8/3). Finally, we write:

∆−1f =
(

F
−1
X
)

⋆ f and ∆qf =
(

F
−1ϑq

)

⋆ f (2.3)

(q ∈ N) where ⋆ denotes the convolution with respect to t and F the Fourier transform.

For q ≤ −2 we set ∆qf = 0, and for q ∈ Z,
o

∆q f =
(

F−1ϑq
)

⋆ f. Last, Spf =
∑

j≤p−1∆jf.

• Let n ∈ N∗. For φ ∈ D(Rn,R) and u ∈ S ′(Rn,E) we set φ(D)(u) = F−1(φFu)

• For t > 0, we denote by χ1/t ∈ B
1
m
m,∞(R,R) (1 ≤ m ≤ ∞) the characteristic function of

]0, t[. We set χ = χ1. Similarly, χJ ∈ B
1
m
m,∞(R,R) stands for the characteristic function of

the interval J. Last, 1]0,t[ :]0, t[→ R is the unit function of ]0, t[.

• For u ∈ S ′(Rn,L (E,F)), v ∈ S ′(Rn,E), the usual paraproduct (case E = F = R)
generalizes immediately as:

Π(u, v) =
∑

p≥−1

Sp−1u.∆pv

and for the remainder:

R(u, v) =
∑

|p−q|≤1

∆qu.(∆q−1 +∆q +∆q+1)v

so that formally, we get the Bony decomposition u.v = Π(u, v) + Π(u, v) +R(u, v). We
shall use freely continuity results for the paradaproduct and remainder. See for instance
[4] pp. 103-104 or [25] p.35.
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• Let Ω be a (smooth) domain of Rn. For any A ⊂ D ′(Ω), the restriction of a distribution
T ∈ D ′(Ω) to a domain ω ⊂ Ω is denoted by T|ω. The set A|ω is the set of elements T|ω
with T ∈ A.

• Let Ω ⊂ R
n be a smooth domain. The Besov space Bs

p,q(Ω,E) is defined as the restrictions
of elements of Bs

p,q(R
n,E) to Ω. The space Bs

p,q(Ω,E) is endowed with the quotient norm:

‖u‖Bs
p,q(Ω,E) = inf‖v‖Bs

p,q(R
n,E)

the inf being taken on all the extensions v ∈ Bs
p,q(R

n,E) of u. This norm is well suited
for extension-retractation operations, and we shall never use the symbol ‖.‖Bs

p,q(Ω,E) in
any other sense. For s − (1/p) > 0, we shall also use the equivalent norm defined for
u ∈ Bs

p,q(Ω,E) by:

‖u‖Lp(Ω,E) + ‖u
′‖Bs−1

p,q (Ω,E) (2.4)

• Let Ω be a smooth domain of Rn. For 1 < p, q < ∞, s ∈ R, the space of infinitely
differentiable functions C∞(Ω̄,E) is dense in Bs

p,q(Ω,E). See [26], p. 195.

• Let ω ⊂ Ω be two domains of Rn. For u ∈ Bs
p,q(Ω,E), we write ‖u‖Bs

p,q(ω,E) := ‖u|ω‖Bs
p,q(ω,E).

• Let Ω be a smooth domain of Rn. Then, for 1 < p, q < ∞ and 1
p
− 1 < s < 1

p
the set

D(Ω,E) is dense in Bsp,q(Ω,E). Under the above hypothesis, we shall mostly use this
result in the following form (see [26], pp. 210-211.):

The extension by zero operator is continuous from Bs
p,q(Ω,E) to Bs

p,q(R
n,E) (2.5)

• The following classical proposition will be useful, when dealing with linear systems:

Proposition 2.1. Let Ω ⊂ Rn (n ∈ N∗) be a smooth domain, and let 1 ≤ p, q ≤ ∞,
0 ≤ σ < s. Then, for any γ > 0, there exists Cγ,Ω > 0 such that, for any u ∈ Bs

p,q(Ω,E):

‖u‖Bσ
p,q(Ω,E) ≤ γ‖u‖Bs

p,q(Ω,E) + Cγ,Ω‖u‖Lp(Ω,E) (2.6)

• In order to prove existence, uniqueness and the variation of constant formula, we have
to define duality-like pairings. for vector valued distributions. The construction is very
similar to the one given in [4], p.70 and p.101 for the duality bracket. Therefore we will
be quite sketchy. We assume that E,F are two Banach spaces. We restrict to the case
of an interval I, and stay within the range 0 < η ≤ 1/2 and ω(η, p) > 0. Set s = 1

2
+ η.

From the above conditions, we deduce that 1
p′
−1 < s < 1

p′
and 1

p
−1 < −s < 1

p
. It entails

that the extension by zero operator P0 is continuous in both case:

– P0 : B
s
p′,q′(I,L (E,F))→ Bs

p′,q′(R,L (E,F))

– P0 : B
−s
p,q(I,E)→ B−s

p,q(R,E)

where, as customory, we have denoted by the same letter the two operators. Hence, we
define the pairing < ., . >η,p,q,I: B

s
p′,q′(I,L (E,F))× B−s

p,q(I,E)→ F by:

< u, v >η,p,q,I=
∑

|k′−k|≤1

∫

R

∆k(P0u)(t).∆k′(P0v)(t)dt (2.7)

Function < ., . >η,p,q,I extends continuously the pairing of L2(I,L (E,F))× L2(I,E) → F
given by

∫

I
u(t)v(t)dt. Notice that we are a little loose in our notations. In particular,

we shall exchange the rules of the spaces E and L (E,F) without modifying the name
of the bracket, and even exchange the places of u and v. Moreover, we shall often write
< ., . >η,p,q in place of < ., . >η,p,q,I.
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3 The dyadic lemmas.

This section contains most of the proofs coming from Littlewood-Paley decomposition. They
all rely on:

• the fact that the characteristic function χI of an interval belongs to B
1
p
p,∞

• the use of the ”differential dimension” s− n
p
(see [26]), mostly formulas 3.4, 3.5 below.

The first lemma will play a role when combined with the continuity of the zero-extension
operator (see lemma 4.2 below), and will provide uniformely bounded Poincaré constants. It
is more or less classical. In the case of a single, general, diffeomorphism, see [28]. See also [4]
p.64, proposition 2.18. For future reference (formulas 3.5, 3.8), we give a standard proof using
a dyadic decomposition.

We denote by ψx0,λ : R
n → Rn, the family of diffeomorphisms defined for (x0, λ) ∈ Rn ×R∗

+

by ψx0,λ(y) = x0+λy. In the following, we mainly keep track of the relevant variables and omit
some indexes in the writing of the constants.

Lemma 3.1. Let 0 < α < β < ∞, 1 ≤ p, q ≤ ∞, s ∈ R. Let n ∈ N∗ and Ω a domain of Rn.
Then, there exist Aα,β > 0 and Cα,β > 0 such that, for any x0 ∈ Rn and α ≤ λ ≤ β and any
u ∈ Bs

p,q

(

ψx0,λ(Ω),E
)

we have:

Aα,β‖u‖Bs
p,q(ψx0,λ

(Ω),E) ≤ ‖uo(ψx0,λ|Ω)‖Bs
p,q(Ω,E) ≤ Cα,β‖u‖Bs

p,q(ψx0,λ
(Ω),E) (3.1)

Proof. We can assume that x0 = 0 and α < 1 < β.
1) We begin with the case Ω = Rn. Let α < λ < β. We write uλ in place of uoψ0,λ and

prove the right hand-side inequality of lemma 3.1.

1) a) Estimates of the λ-blocks by the 1-blocks. For j ∈ Z, set:

wλ = X
(

2〈log2λ〉−log2λD
)

uλ (3.2)

zλj = ϑ(2〈log2λ〉−log2λ−jD)uλ (3.3)

where 〈log2λ〉 denotes the integer part of log2λ. Note that for any φ ∈ D(Rn,R) and k ∈ Z,
we have

[

φ(2〈log2λ〉−log2λ−kD)uλ
]

(x) =
[

φ(2〈log2λ〉−kD)u
]

(λx). Hence, the Lp norms of wλ and zλj
satisfy:

‖wλ‖Lp = 2−n〈log2λ〉/p‖X
(

2〈log2λ〉D
)

u‖Lp (3.4)

2js‖zλj ‖Lp ≤ Csλ
s− n

p2(j−〈log2λ〉)s‖
o

∆j−〈log2λ〉 u‖Lp (3.5)

In order to estimate the right hand-side of formula 3.4, remark that for K > 0 large enough,
we have supp

(

X
)

∩ suppθ
(

2−K .) = ∅. This implies that, for any λ ∈ [α, β], suppX(2〈log2λ〉.) ∩

suppθ
(

2−(K−〈log2α〉+1).) = ∅. Set Kα = K−〈log2α〉+1. We deduce from the above, that for any
λ ∈ [α, β]

‖X(2〈log2λ〉D)u‖Lp = ‖X(2〈log2λ〉D)

Kα
∑

k=−1

∆ku‖Lp

≤ ‖F−1X‖L1

Kα
∑

k=−1

‖∆ku‖Lp

≤ Cα,s‖u‖Bs
p,q

(3.6)
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Arguing in the same way, we also have, for −1 ≤ j ≤ 〈log2β〉+ 2

‖
o

∆j−〈log2λ〉 u‖Lp ≤ Cα,β,s‖u‖Bs
p,q

(3.7)

1)b) High-frequencies. Since suppF (ϑ) = S(3
4
, 8
3
), we get that suppF (zλj ) ⊂ S(

3
4
2j, 8

3
2j+1). It

follows from formula 3.3 that:

o

∆j uλ =
∑

|k−j|≤2

o

∆j z
λ
k (3.8)

Finally, inequality ‖
o

∆jf‖Lp ≤ C‖f‖Lp and 3.5, 3.8 provide:

(

∑

j≥〈log2β〉+2

2jqs‖∆juλ‖
q
Lp

)1/q
≤ Cλs−

n
p ‖u‖Bs

p,q
≤ Cα,β,s‖u‖Bs

p,q
(3.9)

1)c) Low -frequencies. Let now −1 ≤ j ≤ 〈log2β〉+ 1. Arguing as before, we get:

∆juλ = ∆j

[

wλ +

〈log2β〉+3
∑

k=0

zλk

]

(3.10)

hence, from inequalities ‖
o

∆jf‖Lp ≤ C‖f‖Lp , 3.4, 3.5, 3.6, 3.7 we get

‖∆juλ‖Lp ≤ Cα,β,s‖u‖Bs
p,q

(3.11)

which finally provides

〈log2β〉+1
∑

j=−1

(

2js‖∆juλ‖Lp

)q
≤ Cα,β,s‖u‖Bs

p,q
(3.12)

It follows from 3.9 and 3.12 that ‖uλ‖Bs
p,q
≤ Cα,β,s‖u‖Bs

p,q

2) We now adress the general case Ω ⊂ Rn. Let u ∈ Bs
p,q(ψx0,λ(Ω),E) and v ∈ Bs

p,q(R
n,E) any

extension of u. We deduce from the case Ω = Rn that:

‖uo(ψx0,λ|Ω)‖Bs
p,q(Ω,E) ≤ ‖voψx0,λ‖Bs

p,q(R
n,E) ≤ Cα,β,s‖v‖Bs

p,q(R
n,E)

Taking the inf on all the extensions v ∈ Bs
p,q(R

n,E) of u provides the result.

The following result is a fractional integration theorem, replacing the “full” integration in
use in the standard proof of Cauchy-Lipschitz theorem. Recall (see section 2) that for any
t > 0, χ1/t : R→ R denotes the characteristic function of the interval ]0, t[ and set χ = χ1.

Theorem 3.1. a) Let t > 0, 1 ≤ m <∞ and 0 < ǫ ≤ 1/m. Then

‖χ1/t‖
B

1
m−ǫ
m,∞ (R)

≤ C‖χ‖
B

1
m
m,∞(R)

tǫ (3.13)

b) Let T > 0, R > 0, 0 < α < η < 1/2, 1 ≤ p, q < ∞ with ω(α, p) > 0. Let also

u ∈ B
− 1

2
+η

p,q (]0,T[,E). Then, for any t ∈]0,T] we have: ‖u‖
B

−
1
2
+α

p,q (]0,t[,E)
≤ C‖u‖

B
−

1
2
+η

p,q (]0,t[,E)
tη−α.
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Proof. a) We assume that 0 < t < 1, the case t > 1 being simpler. We apply estimates 3.5 and
3.8 with λ = 1/t, s = 1/m, p = m and n = 1. Let j0 = 〈log2(1/t)〉 > 0. We obtain, for j > j0:

2
j

m‖∆jχ1/t‖Lm ≤
∑

|k−j|≤2

C2
k−j0
m ‖∆k−j0χ‖Lm (3.14)

Hence:

2j(
1
m
−ǫ)‖∆jχ1/t‖Lm ≤ C‖χ‖

B
1
m
m,∞

2−jǫ ≤ C‖χ‖
B

1
m
m,∞

tǫ (3.15)

since 2−j ≤ t. For −1 ≤ j ≤ j0 with hj = F−1ϑ for j 6= −1 and h−1 = 2(F−1X)(2.), we have

‖∆jχ1/t‖Lm = ‖

∫ t

0

2jhj[2
j(.− z)]dz‖Lm

≤

∫ t

0

2j‖hj[2
j(.− z)]‖Lmdz ≤

∫ t

0

2j2−j/m‖hj‖Lmdz ≤ ‖hj‖Lm2j/m
′

t (3.16)

It follows that:

2j(
1
m
−ǫ)‖∆jχ1/t‖Lm ≤ ‖hj‖Lm2j(1−ǫ)t ≤ C‖hj‖Lmt−(1−ǫ)t

≤ C‖hj‖Lmtǫ (3.17)

Finally, a) of theorem 3.1 follows from 3.15 and 3.17.
b) In order to prove b), we first show that, for ǫ = η − α with 0 < α < η, ω(α, p) > 0,

0 < t < T, and for any Θ ∈ B
− 1

2
+η

p,q (R,E), the following inequality holds true:

‖Θχ1/t‖
B

−
1
2
+η−ǫ

p,q (R,E)
≤ C‖Θ‖

B
−

1
2
+η

p,q (R,E)
tǫ (3.18)

In fact, taking in account −ǫ < 0 and −1
2
+ η − 1

p
< 0, we get:

B
− 1

2
+η

p,q (R,E)× B
1
p
−ǫ

p,q (R) →֒ B
− 1

2
+η− 1

p
∞,q (R,E)× B

1
p
−ǫ

p,∞ (R)
Π
−→ B

− 1
2
+η−ǫ

p,q (R,E) (3.19)

B
1
p
−ǫ

p,q (R)× B
− 1

2
+η

p,q (R,E) →֒ B−ǫ
∞,∞(R)× B

− 1
2
+η

p,q (R,E)
Π
−→ B

− 1
2
+η−ǫ

p,q (R,E) (3.20)

Since −1
2
+ η + 1

p

′
− ǫ = 1

2
+ η − 1

p
− ǫ = ω(α, p) > 0, we have, for the remainder:

B
1

p′
−ǫ

p′,q (R)× B
− 1

2
+η

p,q (R,E)
R
−→ B

ω(α,p)
1,q (R,E) →֒ B

− 1
2
+η−ǫ

p,q (R,E) (3.21)

Noticing that χ1/t ∈ B
1
m
−ǫ

m,q (R) for m = p and for m = p′, and using 3.19, 3.20, 3.21 and a),
inequality 3.18 follows.

Now, for u ∈ B
− 1

2
+η

p,q (]0,T[,E) and 0 < t ≤ T, we have, denoting by ũ ∈ B
− 1

2
+η

p,q (R,E) any

extension of u|]0,t[ ∈ B
− 1

2
+η

p,q (]0, t[,E) and invoking 3.18:

‖u‖
B

−
1
2
+α

p,q (]0,t[,E)
≤ ‖ũχ1/t‖

B
−

1
2
+α

p,q (]0,t[,E)
≤ C‖ũ‖

B
−

1
2
+η

p,q (R,E)
tη−α (3.22)

Taking the inf on all the extensions ũ, we get b).

The following lemma is a first version of Poincaré’s inequalities.
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Lemma 3.2. Let T > 0, 1 ≤ p, q ≤ ∞ with 0 < η ≤ 1/2 and ω(η, p) > 0.

a) There exists CT > 0 such that, for any G ∈ B
− 1

2
+η

p,q (]0,T[,E) and any 0 < t < T we have:

‖ < G|]0,t[, 1]0,t[ >η,p,q ‖E ≤ CT‖G‖
B

−
1
2
+η

p,q (]0,t[,E)
tω(η,p) (3.23)

b) There exists CT > 0 such that, for any u ∈ B
1
2
+η

p,q (]0,T[,E) and 0 < t < T, we have:

‖u− u(0)‖L∞(]0,t[,E) ≤ CT‖u
′‖

B
−

1
2
+η

p,q (]0,t[,E)
tω(η,p) (3.24)

Proof. a) Set χ = χ1. Let also H ∈ B
− 1

2
+η

p,q (R) be any extension of G|]0,t[. In order to avoid
cumbersome arguments, we assume that 0 < t < inf{1,T}, the case t ≥ 1 being simpler.
Invoking 3.5 and 3.8 with p′ in place of p, λ = 1/t, s = 1/p′, n = 1, j > j0 := 〈log2(1/t)〉 > 0,
we get (see 3.14 and 3.15)

‖∆jχ1/t‖Lp′ ≤ C‖χ‖
B

1
p′

p′,∞

2−j/p
′

(3.25)

Next, H ∈ B
− 1

2
+η

p,q implies that:

‖∆kH‖Lp ≤ ‖H‖
B

−
1
2
+η

p,q

2−(− 1
2
+η)k (3.26)

Therefore, appealing to 3.25 and 3.26, we have:

∑

|k−j|≤1,j>j0

‖∆kH‖Lp‖∆jχ1/t‖Lp′ ≤
∑

|k−j|≤1,j>j0

C‖χ‖
B

1
p′

p′,∞

‖H‖
B

−
1
2
+η

p,q

2−j/p′2(
1
2
−η)k

≤ C‖χ‖
B

1
p′

p′,∞

‖H‖
B

−
1
2
+η

p,q

∑

j>j0

2−jω(η,p)

≤ C‖H‖
B

−
1
2
+η

p,q

2−j0ω(η,p) ≤ C‖H‖
B

−
1
2
+η

p,q

tω(η,p) (3.27)

For the low frequency terms, appealing to 3.16 and 3.26 and , we have:

∑

|k−j|≤1,−1≤j≤j0

‖∆kH‖Lp‖∆jχ1/t‖Lp′ ≤
∑

|k−j|≤1,−1≤j≤j0

t‖hj‖Lp′‖H‖
B

−
1
2
+η

p,q

2j/p2(
1
2
−η)k

≤ C‖H‖
B

−
1
2
+η

p,q

j0
∑

j=−1

t2j
(

1−ω(η,p)
)

≤ C‖H‖
B

−
1
2
+η

p,q

t2j0(1−ω(η,p)) ≤ C‖H‖
B

−
1
2
+η

p,q

tω(η,p) (3.28)

It follows from inequalities 3.27, and 3.28:

‖ < G|]0,t[, 1]0,t[ >η,p,q ‖E ≤
∑

|k−j|≤1,j≥−1

‖∆kH‖Lp‖∆jχ1/t‖Lp′

≤ CT‖H‖
B

−
1
2
+η

p,q (R)
tω(η,p) (3.29)

Taking the inf on all the extensions H ∈ B
− 1

2
+η

p,q (R) of G|]0,t[, a) is proved.
b) Follows from a) and lemma 3.3 below.

The proof of lemma 3.3 depends on lemma 3.2 a). Nevertheless, we shall appeal to lemma
3.3 later, and therefore state it separately:
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Lemma 3.3. Let 0 ≤ t0 ≤ T, 0 < γ < 1/2, 1 ≤ p, q < ∞ with ω(γ, p) > 0. Let ψ ∈

B
− 1

2
+γ

p,q (]0, t0[,E) and M0 ∈ E. Then, problem: find M ∈ B
1
2
+γ

p,q (]0, t0[,E) with:
{

M′ = ψ

M(0) = M0

(3.30)

admits exactly one solution, given by:

M(t) = M0+ < ψ|]0,t[, 1]0,t[ >γ,p,q,]0,t[ (3.31)

Proof. We only pove formula 3.31. For ψ ∈ C∞([0, t0],E), formula 3.31 reduces to the usual inte-

gral formula. In the general case ψ ∈ B
− 1

2
+γ

p,q (]0, t0[,E), let (ψn)n∈N a sequence of C∞([0, t0],E)

functions converging to ψ in B
− 1

2
+γ

p,q (]0, t0[,E). Set M(t) = M0+ < ψ|]0,t[, 1]0,t[ >γ,p,q and
Mn(t) = M0+ < ψn|]0,t[, 1]0,t[ >γ,p,q. We deduce from the assumptions on ψn and the conti-
nuity of the bracket that M(t) −Mn(t) =< ψ − ψn, 1]0,t[ >γ,p,q→ 0 as n → ∞, everywhere in
0 < t < t0. Moreover, by 3.2 a)

‖Mn(t)‖E ≤ ‖M0‖E + CT‖ψn‖
B

−
1
2
+γ

p,q (]0,t[,E)
tω(γ,p) ≤ CT (3.32)

with CT independent of n since (‖ψn‖
B

−
1
2
+γ

p,q (]0,t0[,E)
)n∈N is convergent. By Lebesgue theorem, it

follows that

Mn → M in Lp(]0, t0[,E) (3.33)

Since M′
n = ψn, this implies that M′ = ψ in D ′(]0,T[,E). Therefore, M′

n → M′ in B
− 1

2
+γ

p,q (]0, t0[,E)
due to the convergence ψn → ψ in the same space. With 3.33, this entails that Mn → M in

B
1
2
+γ

p,q (]0, t0[,E), hence in the Holder-Zygmund space B
ω(γ,p)
∞,∞ (]0, t0[,E). From Mn(0) = M0, we

finally deduce that M(0) = M0, which completes the proof.

4 Uniform inequalities.

In this section, we show that some classical inequalities hold true on certain function spaces
with varying domains, but with uniformly bounded constants.

An application of lemma 3.1 provides uniform estimates in the case of a family of large
enough domains:

Lemma 4.1. Let 1 ≤ p, q <∞, 0 < σ < s < 1, 0 < α < β <∞, and let Ω ⊂ Rn be a Lipschitz
domain. Then:
a) Let ǫ > 0. Then, there exist Aǫ,α,β > 0 such that, for any λ ∈ [α, β], x0 ∈ R

n and
u ∈ Bs

p,q(ψx0,λ(Ω),E), we have:

‖u‖Bσ
p,q(ψx0,λ

(Ω),E) ≤ ǫ‖u‖Bs
p,q(ψx0,λ

(Ω),E) +Aǫ,α,β‖u‖Lp(ψx0,λ
(Ω),E) (4.1)

b) There exists Cα,β > 0 such that, for any λ ∈ [α, β], x0 ∈ Rn and u ∈ Bs
p,q(ψx0,λ(Ω),E),

we have:

‖u‖Bs
p,q(ψx0,λ

(Ω),E) ≤ Cα,β

[

‖u‖Lp(ψx0,λ
(Ω),E) + ‖u

′‖Bs−1
p,q (ψx0,λ

(Ω),E)

]

(4.2)

Proof. Using proposition 2.1 in the fixed configuration Ω, and lemma 3.1 we get:

‖u‖Bσ
p,q(ψx0,λ

(Ω),E) = ‖uoψx0,λ‖Bσ
p,q(Ω,E)

≤ ǫ‖uoψx0,λ‖Bs
p,q(Ω,E) +Aǫ,Ω‖uoψx0,λ‖Lp(Ω,E)

≤ Cα,βǫ‖u‖Bs
p,q(ψx0,λ

(Ω),E) +Aǫ,Ωα
−n/p‖u‖Lp(ψx0,λ

(Ω),E) (4.3)

which is a). Property b) follows in the same manner, using theorem 3.3.5, p. 202 in [26].
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In order to handle the case of vanishing intervals for the Poincaré inequality, we first prove
the uniform continuity of a family of zero-extension operators:

Lemma 4.2. Let T > 0, 1 ≤ p, q ≤ ∞ and 0 < η ≤ 1/2 with ω(η, p) > 0. There exists CT > 0

such that, for any 0 < t < T and u ∈ B
− 1

2
+η

p,q (]− 1, t[,E)) with u|]−1,0[ = 0, we have:

‖u‖
B

−
1
2
+η

p,q (]0,t[,E)
≤ ‖u‖

B
−

1
2
+η

p,q (]−1,t[,E)
≤ CT‖u‖

B
−

1
2
+η

p,q (]0,t[,E)
(4.4)

Proof. The first inequality is obvious. We prove the second one. Let zt ∈ B
− 1

2
+η

p,q (R,E) be any
extension of u|]0,t[. We first check that u =

(

ztχ]0,2T[

)

|]−1,t[. Indeed, u|]−1,0[ =
(

ztχ]0,2T[

)

|]−1,0[ and
u|]0,t[ =

(

ztχ]0,2T[

)

|]0,t[[ are obvious. It follows that supp
[

u−
(

ztχ]0,2T[

)

|]−1,t[

]

⊂ {0}. Therefore,

u−
(

ztχ]0,2T[

)

|]−1,t[ =
∑r

k=0 ckδ
(k)
0 where δ0 ∈ D ′(]−1, t[,E) is the Dirac measure at zero, ck ∈ E

and r ∈ N. Since
[

u −
(

ztχ]0,2T[

)

|]−1,t[

]

∈ B
− 1

2
+η

p,q (] − 1, t[,E) and 1
p
− 1 < −1

2
+ η we obtain

u−
(

ztχ]0,2T[

)

|]−1,t[ = 0, as required.
In consequence:

‖u‖
B

−
1
2
+η

p,q (]−1,t[)
≤ ‖ztχ]0,2T[‖

B
−

1
2
+η

p,q (R,E)
≤ CT‖zt‖

B
−

1
2
+η

p,q (R,E)
(4.5)

since χ]0,2T[ is a multiplier for B
− 1

2
+η

p,q (R,E). Inequality 4.5 provides 4.4 by taking the inf on
zt.

We finally obtain uniform inequalities on intervals ]− 1, t[ with t > 0 - and even on ]0, t[ in
the case of the Poincaré’s inequality and the L∞([0, t],E) inequality:

Corollary 4.1. Let T > 0, 1 < p, q <∞.
a) Let 0 ≤ σ < s and ǫ > 0. Then there exists AT,ǫ > 0 such that, for any 0 < t < T and

any u ∈ Bs
p,q(]− 1,T[,E), we have:

‖u‖Bσ
p,q(]−1,t[,E) ≤ ǫ‖u‖Bs

p,q(]−1,t[,E) + AT,ǫ‖u‖Lp(]−1,t[,E) (4.6)

‖u‖Bs
p,q(]−1,t[,E) ≤ CT(‖u‖Lp(]−1,t[,E) + ‖u

′‖Bs−1
p,q (]−1,t[,E)) (4.7)

b) Assume that 0 < η < 1/2 with ω(η, p) > 0. Then there exists CT > 0 such that, for any

0 < t < T and any u ∈ B
1
2
+η

p,q (]0,T[,E), we have:

‖u− u(0)‖
B

1
2
+η

p,q (]0,t[,E)
≤ CT‖u

′‖
B

−
1
2
+η

p,q (]0,t[,E)
(4.8)

c) In the case s − 1
p
> 0, there exists a universal constant C∞ > 0 such that, for any

0 < t < T and any u ∈ Bs
p,q(]0, t[,E), we have:

‖u‖L∞([0,t],E) ≤ C∞‖u‖Bs
p,q(]0,t[,E) (4.9)

Proof. a) For 4.6 and 4.7, apply lemma 4.1 and 4.2 with n = 1, Ω =]0, 1[, x0 = −1, α = 1,
β = T + 1, λ = t + 1 (0 < t < T).

b) Let u∗ :]−1,T[→ R be defined by u∗(τ) = u(τ)−u(0) for 0 < τ < T, and zero otherwise.

From 1
p
− 1 < 1

2
+ η − 1 < 1

p
, we deduce that u∗ ∈ B

1
2
+η

p,q (]− 1,T[,E) (see [26] p.208). Using 4.2

and arguing as in a), we get the ]− 1, t[ inequality:

‖u∗‖
B

1
2
+η

p,q (]−1,t[,E)
≤ CT[‖u

∗‖Lp(]−1,t[,E) + ‖u
∗′‖

B
−

1
2
+η

p,q (]−1,t[,E)
] (4.10)
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Writing ‖u∗‖Lp(]−1,t[,E) = ‖u−u(0)‖Lp(]0,t[,E), ‖u−u(0)‖
B

1
2
+η

p,q (]0,t[,E)
≤ ‖u∗‖

B
1
2
+η

p,q (]−1,t[,E)
and using

lemma 4.2, we obtain:

‖u− u(0)‖
B

1
2
+η

p,q (]0,t[,E)
≤ CT[‖u− u(0)‖Lp(]0,t[,E) + ‖u

′‖
B

−
1
2
+η

p,q (]0,t[,E)
] (4.11)

Now, due to 3.24, we obtain 4.8.
c) Since s − 1

p
> 0, inequality 4.9 follows from the embedding Bsp,q(R,E) →֒ L∞(R,E) and

the definition of ‖u‖Bs
p,q(]0,t[,E).

As a consequence of Poincaré inequality, lemma 4.2 holds true for B
1
2
+η

p,q (]0,T[,E):

Lemma 4.3. Let T > 0, 1 ≤ p, q ≤ ∞ and 0 < η ≤ 1/2 with ω(η, p) > 0. There exists CT > 0

such that, for any 0 < t < T and u ∈ B
1
2
+η

p,q (]− 1, t[,E) with u|]−1,0[ = 0, we have:

‖u‖
B

1
2
+η

p,q (]0,t[,E)
≤ ‖u‖

B
1
2
+η

p,q (]−1,t[,E)
≤ CT‖u

′‖
B

−
1
2
+η

p,q (]0,t[,E)
≤ C∗

T‖u‖
B

1
2
+η

p,q (]0,t[,E)
(4.12)

Proof. We easily derive form corollary 4.1 b) that, for any 0 < t < T, ‖u‖
B

1
2
+η

p,q (]−1,t[,E)
≤

CT‖u
′‖

B
−

1
2
+η

p,q (]−1,t[,E)
. Hence, inequality ‖u‖

B
1
2
+η

p,q (]−1,t[,E)
≤ CT‖u

′‖
B

−
1
2
+η

p,q (]0,t[,E)
follows from u′|]−1,0[ =

0 and lemma 4.2. In order to prove the last inequality, let z ∈ B
1
2
+η

p,q (R,E) be any exten-

sion of u. Then, z′ ∈ B
− 1

2
+η

p,q (R,E) is an extension of u′, and by continuity of the derivation
‖z′‖

B
−

1
2
+η

p,q (R,E)
≤ C‖z‖

B
1
2
+η

p,q (R,E)
. It follows that ‖u′‖

B
−

1
2
+η

p,q (]0,t[,E)
≤ C‖z‖

B
1
2
+η

p,q (R,E)
, and taking the

inf on the above extensions z, we obtain ‖u′‖
B

−
1
2
+η

p,q (]0,t[,E)
≤ C‖u‖

B
1
2
+η

p,q (]0,t[,E)
.

5 Framework in the linear case

We now turn to define κM. We use the Bony decomposition.

Lemma 5.1. Assume that 1 ≤ p, q ≤ ∞ and 0 < α ≤ η ≤ 1/2 with ω(α, p) > 0. Then, for

any open interval I, and any κ ∈ B
− 1

2
+η

p,q (I,L (F,E)), M ∈ B
1
2
+α

p,q (I,F), we have:

‖κM‖
B

−
1
2
+η

p,q (I,E)
≤ C‖κ‖

B
−

1
2
+η

p,q (I,L (F,E))
‖M‖

B
1
2
+α

p,q (I,F)
(5.1)

The constant C > 0 depends on η, α, p, q but not on I.

Proof. 1) Case I = R. In the sequel, we often omit R and/or E in the notations. We start with
the remainder term and distinguish two cases. In the case 1 ≤ p ≤ 2 ≤ p′, we have (see [4],
p.104):

B
− 1

2
+η

p,q × B
1
2
+α

p,q →֒ B
− 1

2
+η

p,q × B
1
2
+α− 1

p
+1− 1

p

p′,∞

R
−→ B

α+η+1− 2
p

1,∞ →֒ B
− 1

2
+η

p,q

The arrow
R
−→ follows from α + η + 1 − 2

p
= ω(α, p) + ω(η, p) > 0. The last injection follows

from:

α + η + 1−
2

p
+

1

p
− 1 = α−

1

p
+ η > −

1

2
+ η

In the case 1 ≤ p′ ≤ 2 ≤ p, we have:

B
− 1

2
+η

p,q × B
1
2
+α

p,q
R
−→ Bη+αp/2,∞ →֒ B

η+α− 1
p

p,∞ →֒ B
− 1

2
+η

p,q
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The last embedding is a consequence of η + α − 1
p
−
(

− 1
2
+ η
)

= ω(α, p) > 0. We now deal

with the paraproducts. We have (see [4], p.103):

B
1
2
+α

p,q × B
− 1

2
+η

p,q →֒ L∞ × B
− 1

2
+η

p,q
Π
−→ B

− 1
2
+η

p,q

B
− 1

2
+η

p,q × B
1
2
+α

p,q →֒ B
− 1

2
+η− 1

p
∞,q × B

1
2
+α

p,∞
Π
−→ B

α+η− 1
p

p,q →֒ B
− 1

2
+η

p,q

The second arrow
Π
−→ follows from −1

2
+ η − 1

p
< 0, and the last injection is a consequence of

− 1
p
+ α > −1

2
. Thus, the product is continuous from B

− 1
2
+η

p,q (R)× B
1
2
+α

p,q (R) to B
− 1

2
+η

p,q (R).

2) Case of an interval I.
2) a) Assume p 6=∞, q 6=∞. For (κ,M) ∈ C∞(̄I,L (E,F))×C∞(̄I,F) the product κM is well

defined, and for any extensions κ∗ ∈ D(R,L (E,F)) and M∗ ∈ D(R,F) of κ and M respectively,
the first case provides ‖κM‖

B
−

1
2
+η

p,q (I,E)
≤ ‖κ∗M∗‖

B
−

1
2
+η

p,q (R,E)
≤ C‖κ∗‖

B
−

1
2
+η

p,q (R,L (F,E))
‖M∗‖

B
1
2
+α

p,q (R,F)
.

Taking the inf on the set of the above D(R) extensions, and using a density argument, we get

5.1. In the general case (κ,M) ∈ B
− 1

2
+η

p,q (I,L (E,F))×B
1
2
+α

p,q (I,F), the definition of the product
κM and inequality 5.1 follow by a uniform continuity/density argument.

2)b) Assume p 6=∞, q 6=∞.

We write B
− 1

2
+η

p,q (I,L (E,F)) →֒ B
− 1

2
+η1

p1,1 (I,L (E,F)) and B
1
2
+α

p,q (I,F) →֒ B
1
2
+α1

p1,1 (I,F) for some
0 < η1 < η ≤ 1/2, 0 < α1 < inf{η1, α} ≤ 1/2, 1 ≤ p1 < ∞ with ω(α1, p1) > 0. Hence, κM is

defined as an element of B
− 1

2
+η1

p1,1 (I,F) by the case 2)a), and inequality 5.1 follows from 1).

We shall also need an integration by part formula:

Lemma 5.2. Let I =]a, b[ be a bounded interval. Assume that 1 < p, q < ∞, 0 < η ≤ 1/2,

ω(η, p) > 0, and let u ∈ B
1
2
+η

p,q (I,E), v ∈ B
1
2
+η

p,q (I,L (E,F)). Then:

1) B
1
2
+η

p,q (I,E) →֒ B
1
2
−η

p′,q′(I,E).
2) < u′, v >η,p,q= − < v′, u >η,p,q + < v, u >L (E,F),E (b)− < v, u >L (E,F),E (a)

Proof. 1) Note that:

ω(η, p) +
1

p′
=

1

2
− η + 2ω(η, p) >

1

2
− η

Hence, B
1
2
+η

p,q (I,E) →֒ B
ω(η,p)+ 1

p′

p′,q (I,E) →֒ B
1
2
−η

p′,q′(I,E).

2) Let V be a Banach space. In the sequel, V = E or L (E,F). We deduce from ω(η, p) > 0
and the first part of the lemma that:

B
1
2
+η

p,q (I,V) →֒ C(I,V) ∩ B
1
2
−η

p′,q′(I,V) ∩ B
− 1

2
+η

p,q (I,V) (5.2)

Let ∆(u, v) :=< u′, v >η,p,q + < v′, u >η,p,q − < v, u >L (E,F),E (b)+ < v, u >L (E,F),E (a), which

is well defined and continuous on B
1
2
+η

p,q (I,E) × B
1
2
+η

p,q (I,L (E,F)) due to 5.2. Since ∆ = 0 on

C∞(I,E)× C∞(I,L (E,F)) and C∞(I, V ) is dense in B
1
2
+η

p,q (I,V), the lemma follows.

6 Solutions of a linear system of equations with coefficients with

negative power of derivability.

We now prove the existence of solutions for a system with coefficients with negative power of
derivability. Derivatives are taken in the distributionnal sense. In the sequel, we omit in the
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writing the dependence with respect to the initial time t0 and write M(t) in place of M(t, t0).
Hence, in the following, M′ ∈ D ′(]0,T[,E). We first define weak solutions of the following
system:

{

M′ = κM+ φ

M(t0) = M0

(6.1)

Definition 6.1. Let I =]a, b[ be an open, bounded interval, 0 < η ≤ 1/2, 1 < p ≤ ∞,

1 ≤ q ≤ ∞ with 1
2
+η− 1

p
> 0. Let t0 ∈ I be fixed, and assume that (κ, φ,M0) ∈ B

− 1
2
+η

p,q (I,L (E))×

B
− 1

2
+η

p,q (I,E)× E.

1) We say that M is a weak B
1
2
+η

p,q (I,E) solution of system 6.1 if M(t0) = M0 and, for any

θ ∈ B
1
2
+η

p,q (I,L (E)):

− < θ′,M >η,p,q +θ(b)M(b)− θ(a)M(a) =< κM+ φ, θ >η,p,q (6.2)

2) A distributional solution M of system 6.1 is defined as in 1), except that we take θ ∈

D(I,L (E)) in place of B
1
2
+η

p,q (I,L (E))

A weak solution is also a distributional solution, and, for p 6= ∞ 6= q, the converse is true
by lemma 5.2. Observe also that these definitions extend in an obvious way to non linear
equations. We shall use such extensions without any comment.

We now prove global well-posedness for the above linear system.

Theorem 6.1. Let I =]0,T[ (T > 0), 0 < η ≤ 1/2, 1 < p ≤ ∞, 1 ≤ q ≤ ∞ with 1
2
+ η− 1

p
> 0.

Let (κ, φ,M0) ∈ B
− 1

2
+η

p,q (]0,T[,L (E))× B
− 1

2
+η

p,q (]0,T[,E)× E and set t0 = 0. Then:

1) Problem 6.1 admits exactly one distributional solution.

2) Denote by st0(κ, φ, ,M0) the above solution. Then, function

st0 : B
− 1

2
+η

p,q (]0,T[,L (E))× B
− 1

2
+η

p,q (]0,T[,E)× E→ B
1
2
+η

p,q (]0,T[,E)

is locally Lipschitz continuous.

Proof. a) Existence of a solution.

We begin with an a priori estimate in B
1
2
+η

p,q (] − 1,T[,E). We first restrict to 1 < p < ∞.
Assume that (κ̃, φ̃) ∈ C∞([−1,T],L (E))×C∞([−1,T],E) with support in [0,T], and M0 ∈ E,
are given. Let M̃ ∈ C∞([−1,T],E) be the unique solution of system:

{

M̃′ = κ̃M̃ + φ̃

M̃(−1) = M0

(6.3)

For another (µ̃, ψ̃) ∈ C∞([−1,T],L (E)) × C∞([−1,T],E) with support in [0,T] and N0 ∈ E,
we can define in a same manner a function Ñ ∈ C∞([−1,T],E). Since we argue locally, we
assume that all the norms of the data ‖κ̃‖

B
−

1
2
+η

p,q (]−1,T[)
, ‖φ̃‖

B
−

1
2
+η

p,q (]−1,T[)
..., ‖N0‖E are bounded

by some R > 0. Set Z = Ñ− M̃ and Φ = (µ̃− κ̃)Ñ + (ψ̃ − φ̃). Due to lemma 5.1:

‖Φ‖
B

−
1
2
+η

p,q (]−1,t[)
≤ CT‖Ñ‖

B
1
2
+η

p,q (]−1,t[)
‖µ̃− κ̃‖

B
−

1
2
+η

p,q (]−1,t[)
+ ‖ψ̃ − φ̃‖

B
−

1
2
+η

p,q (]−1,t[)
(6.4)

Function Z satisfies equations Z′ = κ̃Z + Φ and Z(−1) = N0 −M0. Hence, for 0 ≤ t ≤ T:

‖Z‖Lp(]−1,t[) + ‖Z
′‖

B
−

1
2
+η

p,q (]−1,t[)
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≤ ‖Z‖Lp(]−1,t[) + CT‖κ̃‖
B

−
1
2
+η

p,q (]−1,t[)
‖Z‖

B
1
2
+α

p,q (]−1,t[)
+ ‖Φ‖

B
−

1
2
+η

p,q (]−1,t[)
(6.5)

with 0 < α < η, see lemma 5.1. Due to 6.5, 4.6 and 4.7, we have:

γT‖Z‖
B

1
2
+η

p,q (]−1,t[)
≤ ‖Z‖Lp(]−1,t[) + ‖Z

′‖
B

−
1
2
+η

p,q (]−1,t[)

≤‖Z‖Lp(]−1,t[) + CT‖κ̃‖
B

−
1
2
+η

p,q (]−1,t[)

(

ǫ‖Z‖
B

1
2
+η

p,q (]−1,t[)
+ Cǫ‖Z‖Lp(]−1,t[)

)

+ ‖Φ‖
B

−
1
2
+η

p,q (]−1,t[)

with γT > 0, ǫ = γT/(2CTR) and Cǫ > 0 choosen accordingly. Therefore, by definition of ǫ and
R, we have:

‖Z‖
B

1
2
+η

p,q (]−1,t[)
≤ CT,R(‖Z‖Lp(]−1,t[) + ‖Φ‖

B
−

1
2
+η

p,q (]−1,t[)
) (6.6)

and, due to inequality 6.4 and 4.9 (recall that ω(η, p) > 0):

‖Z(t)‖E ≤ CT,R

{

‖Z‖Lp(]−1,t[) + ‖Ñ‖
B

1
2
+η

p,q (]−1,t[)
‖µ̃− κ̃‖

B
−

1
2
+η

p,q (]−1,t[)
+ ‖ψ̃ − φ̃‖

B
−

1
2
+η

p,q (]−1,t[)

}

(6.7)

Set y(t) =
∫ t

−1
‖Z(τ)‖pEdτ . Inequality 6.7 provides:

y′(t) ≤ CT,Ry(t) + CT,R

(

‖Ñ‖
B

1
2
+η

p,q (]−1,t[)
‖µ̃− κ̃‖

B
−

1
2
+η

p,q (]−1,t[)
+ ‖ψ̃ − φ̃‖

B
−

1
2
+η

p,q (]−1,t[)

)p
(6.8)

Inequality 6.8 holds true for t ∈ [0,T]. As κ̃, µ̃, φ̃ and ψ̃ are equal to zero on [−1, 0], we have
y(0) = ‖N0 −M0‖

p
E. We deduce from Gronwall lemma that:

y(t) ≤
[

‖N0 −M0‖
p
E + t(‖Ñ‖

B
1
2
+η

p,q (]−1,T[)
‖µ̃− κ̃‖

B
−

1
2
+η

p,q (]−1,T[)

+ ‖ψ̃ − φ̃‖
B

−
1
2
+η

p,q (]−1,T[)
)p
]

eCT,Rt (6.9)

Finally, due to inequalities 6.4 and 6.6 and 6.9 we get:

‖Ñ− M̃‖
B

1
2
+η

p,q (]−1,T[)
≤ CT,R

[

‖N0 −M0‖E

+ ‖Ñ‖
B

1
2
+η

p,q (]−1,T[)
‖µ̃− κ̃‖

B
−

1
2
+η

p,q (]−1,T[)
+ ‖ψ̃ − φ̃‖

B
−

1
2
+η

p,q (]−1,T[)

]

(6.10)

For (µ̃, ψ̃) = (0, 0) and N0 = 0, we obtain:

‖M̃‖
B

1
2
+η

p,q (]−1,T[)
≤ AT,R (6.11)

We come back to the case of a general bounded set of data (µ̃, ψ̃,N0). Using 6.11, with Ñ in
place of M̃ in 6.10, we get:

‖Ñ− M̃‖
B

1
2
+η

p,q (]−1,T[)
≤ CT,R

[

‖N0 −M0‖E + ‖µ̃− κ̃‖
B

−
1
2
+η

p,q (]−1,T[)
+ ‖ψ̃ − φ̃‖

B
−

1
2
+η

p,q (]−1,T[)

]

(6.12)

which is the required estimate. Assume now that (κ, µ) ∈ D
(

]0,T[,L (E)
)2

and (φ, ψ) ∈
D(]0,T[,E)2 with norms ‖κ‖

B
−

1
2
+η

p,q (]0,T[)
, ‖µ‖

B
−

1
2
+η

p,q (]0,T[)
, ‖φ‖

B
−

1
2
+η

p,q (]0,T[)
, ‖ψ‖

B
−

1
2
+η

p,q (]0,T[)
, bounded

by R > 0. These functions are restriction of functions (κ̃, µ̃) ∈ D
(

] − 1,T[,L (E)
)2

and

(φ̃, ψ̃) ∈ D(]−1,T[,E)2, to which we apply the above computations. Due to ‖Ñ−M̃‖
B

1
2
+η

p,q (]0,T[)
≤

‖Ñ − M̃‖
B

1
2
+η

p,q (]−1,T[)
, estimate 6.12, lemma 4.2 (or simply the continuity of the zero-extension

operator B
− 1

2
+η

p,q (]0,T[)→ B
− 1

2
+η

p,q (]− 1,T[)) and definition of the tilde functions, we get:

‖Ñ− M̃‖
B

1
2
+η

p,q (]0,T[)
≤ CT,R

[

‖N0 −M0‖E + ‖µ− κ‖
B

−
1
2
+η

p,q (]0,T[)
+ ‖ψ − φ‖

B
−

1
2
+η

p,q (]0,T[)

]

(6.13)
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Appealing to 6.3, we also have on ]0,T[:

{

M̃′ = κM̃ + φ

M̃(0) = M0

(6.14)

and similarly for Ñ. Now, the existence part of the theorem, as well of the local Lipschitz
continuity with respect to the data follow readily from the classical C∞ theory, the density of

D(]0,T[,V) (V = E or L (E)) in B
− 1

2
+η

p,q (]0,T[,V) for 1
p
− 1 < −1

2
+ η < 1

p
, 6.14 and 6.13.

b) Uniqueness of a solution.

We first restrict to 1 < p < ∞ and 1 ≤ q < ∞. Let κ ∈ B
− 1

2
+η

p,q (]0,T[,L (E)) be fixed. We

prove by duality that a solution M ∈ B
1
2
+η

p,q (]0,T[,E) of 6.1 with φ = 0 and M0 = 0 is equal to

zero. Let θ ∈ D(]0,T[,E∗), and let N ∈ B
1
2
+η

p,q (]0,T[,E∗) be a solution of:

{

N′ = −κ∗N + θ

N(T) = 0
(6.15)

where, κ∗ ∈ B
− 1

2
+η

p,q (]0,T[,L (E∗)) is obtained from κ by adjonction. The existence of N follows
from a). Using lemma 5.2, we get:

< θ,M >η,p,q =< N′ + κ∗N,M >η,p,q

=< −M′,N >η,p,q + < κM,N >η,p,q

+ < N(T),M(T) >E∗,E − < N(0),M(0) >E∗,E (6.16)

Since N(T) = M(0) = 0, we obtain:

< θ,M >η,p,q =< −M
′ + κ,N >η,p,q= 0 (6.17)

Therefore, M = 0, which proves the uniqueness.

c) Uniqueness and existence in the cases p =∞ or q =∞.
In the case p = ∞ or q = ∞, let 0 < ρ < 1 and 1 < γ < p. Since ω(η, p) > 0, we can

assume that ω(ρη, γ) > 0. Let also 0 < ρ < ρ′ < 1 with

ρ′ > ρ+
1

η
(
1

γ
−

1

p
)

. It follows from these definitions that

B
− 1

2
+η

p,q (]0,T[,F) →֒ B
− 1

2
+ρ′η

γ,γ (]0,T[,F) →֒ B
− 1

2
+ρη

p,q (]0,T[,F)

For such (ρ′, γ), problem 6.1 admits a unique solution in B
1
2
+ρ′η

γ,γ , hence in the smaller space

B
1
2
+η

p,q . In order to prove the existence in B
1
2
+η

p,q , let M ∈ B
1
2
+ρ′η

γ,γ be the solution of 6.1. We

have M′ = κM+ φ, which belongs to B
− 1

2
+ρ′η

γ,γ →֒ B
− 1

2
+ρη

p,q . In consequence, M belongs to B
1
2
+ρη

p,q .

Appealing once again to M′ = κM+φ, κ ∈ B
− 1

2
+η

p,q and lemma 5.1, we obtain M ∈ B
1
2
+η

p,q , whence
the existence. The proof of continuity with respect to the data is omitted.

Appealing to standard argument, we also have:

Corollary 6.1. Theorem 6.1 holds true for any t0 ∈ [0,T].
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7 Critical spaces.

We now turn to discuss a few critical cases that are not covered by theorem 6.1. For that
purpose, we prove well-posedness when κ belongs to some set of smooth enough measures. We
restrict to initial times t0 = 0.

Let T > 0. Denote by B(0,T) the class of Borel sets in [0,T] and let M
(

B(0,T),L (E)
)

the space of all bounded countably additive (with respect to B(0,T)) measures with value in
L (E). For µ ∈M

(

B(0,T),L (E)
)

, we can define its variation |µ| ∈M
(

B(0,T),R+

)

by

|µ|(A) = sup
(

Σ‖µ(Ai)‖L (E)

)

(7.1)

the sup being being taken on all the denumerable partition of A ∈ L (E), i.e A = ∪i∈NAi with
Ai ∈ B(0,T) and Ai ∩ Aj = ∅ for i 6= j. We say that µ ∈ Mc

(

B(0,T),L (E)
)

- or that µ is
continuous - if the function

{

[0,T[ → R+

t 7→ |µ|([0, t[)
(7.2)

is continuous. For such measures, and for f ∈ C0([0,T[,E), 0 ≤ t ≤ T, the integral
∫ t

0
fdµ can be

defined by elementary means (Riemann sums). Moreover, ‖
∫ t′

t
fdµ‖E ≤ ‖f‖C0([t,t′[,E)|µ|([t, t

′])
for any 0 ≤ t ≤ t′ ≤ T. With the above notations, we have the following simple

Theorem 7.1. Let T > 0, M0 ∈ E and let µ ∈Mc

(

B(0,T),L (E)
)

. Let also φ ∈Mc

(

B(0,T),E
)

.
Then, the problem: find M ∈ C0([0,T],E) such that, for any 0 ≤ t ≤ T

M(t) = M0 +

∫ t

0

Mdµ+ φ(]0, t[) (7.3)

admits exactly one solution.

Proof. An application of Picard fixed point theorem in C0([0,T[,E). For any 0 ≤ τ ≤ T, let
Λτ : C0([0, τ ],E) → C0([0, τ ],E) be defined by Λτ (M)(t) = M0 + φ(]0, t[) +

∫ t

0
Mdµ for any

0 ≤ t ≤ τ .
a) Stability. For any M ∈ C0([0, τ ],E) and any (t1, t) ∈ [0, τ ]2 (for instance t1 ≤ t) , we

have: ‖Λτ(M)(t) − Λτ (M)(t1)‖E ≤ ‖M‖C0([0,τ ],E)|µ|([t1, t]) + |φ|([t1, t]) → 0 as t → t1, due to
the continuity of |µ| and |φ|. Hence, Λτ (M) ∈ C0([0, τ ],E)

b) Contraction for 0 < τ ≤ T small enough. For any (M,N) ∈ C0([0, τ ],E)2 and any
t ∈ [0, τ ], we have: ‖Λτ(M)(t) − Λτ (N)(t)‖E ≤ ‖M − N‖C0([0,τ ],E|µ|([0, τ ]). By continuity of µ,
we can choose τ > 0 such that |µ|([0, τ ]) ≤ 1/2, i.e such that Λτ is 1/2-Lipschitz. It follows
from a), b) an Picard fixed point theorem that the problem 7.3 is well posed for such small
τ = τ∗ > 0. The proof of the global existence is omitted.

We now apply theorem 7.1 to some critical cases excluded by theorem 6.1. Note the following

diagram of critical κ-besov spaces B
− 1

2
+η

p,q (]0,T[,L (E)) with ω(η, p) = 0 or/and η = 0

B0
1,1 →֒ ... →֒B

1
p
−1

p,1 →֒ ... →֒B
− 1

2

2,1 ←֓ ... ←֓B
− 1

2

r,1 ←֓ ... ←֓B
− 1

2

∞,1

↓ ↓ ↓ ↓ ↓

B0
1,q →֒ ... →֒B

1
p
−1

p,q →֒ ... →֒B
− 1

2

2,q ←֓ ... ←֓B
− 1

2
r,q ←֓ ... ←֓B

− 1
2

∞,q

↓ ↓ ↓ ↓ ↓

B0
1,∞ →֒ ... →֒B

1
p
−1

p,∞ →֒ ... →֒B
− 1

2

2,∞ ←֓ ... ←֓B
− 1

2
r,∞ ←֓ ... ←֓B

− 1
2

∞,∞
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(7.4)

where vertical arrows also denote continuous embeddings, and p ≤ 2 ≤ r. We shall only deal
with the cases B0

1,1(]0,T[,L (E)) and B0
1,∞(]0,T[,L (E)).

a) Case κ ∈ B0
1,1(]0,T[,L (E)). One can assume that φ = 0, since it plays no significant role

in the sequel. Our goal is to prove the existence of exactly one solution M of 6.1 in the space
B1

1,1(]0,T[,E).
Notice that B0

1,1b(]0,T[,L (E)) →֒ L1(]0,T[,L (E)). Consequently, looking for M ∈ C0([0,T],E)
solution of 7.3 is equivalent to looking for M ∈ C0([0,T],E) solution of 6.1 in the distributional
sense. Hence, theorem 7.1 gives the existence of exactly one solution M to 6.1 in C0([0,T],E).
This ensures uniqueness in the smaller space B1

1,1(]0,T[,E). In order to get the existence in the
same space, we appeal to equation 6.1 and obtain that M ∈W1,1(]0,T[). By Bernstein inequali-
ties, W1,1(]0,T[) →֒ B1

1,∞(]0,T[)∩L∞(]0,T[). It follows that κM is an element of B0
1,1(]0,T[,E).

Indeed, using the paraproduct and remainder for spaces with domains equal to R

B0
1,1 ×W1,1 →֒ B0

1,1 × B1
1,∞ →֒ B−1

∞,1 × B1
1,∞

Π
−→ B0

1,1

W1,1 × B0
1,1 →֒ L∞ × B0

1,1
Π
−→ B0

1,1

W1,1 × B0
1,1 →֒ B1

1,∞ × B0
1,1 →֒ B0

∞,∞ × B0
1,1

R
−→ B0

1,1 (7.5)

Therefore, the product is continuous from B0
1,1(R) ×W1,1(R) to B0

1,1(R), and by usual argu-
ments from B0

1,1(]0,T[) ×W1,1(]0,T[) to B0
1,1(]0,T[). Finally, since κM ∈ B0

1,1(]0,T[) equation
6.1 ensures that M ∈ B1

1,1(]0,T[). The problem 6.1 is well posed (existence and uniqueness) in
B1

1,1(]0,T[,E).

b) Case κ ∈ B0
1,∞(]0,T[,R). We assume that φ = 0 and T = 1. We are looking for solutions

M of 6.1 ibn C0([0, 1],R) and give two examples.

• Let κ = δ1/2 ∈ B0
1,∞(]0, 1[,R) (Dirac measure at 1/2).

As readily checked, necessarily M = M0, which is not a solution. Hence, equations 6.1 are
ill-posed within the above functional frame.

However, this may only be one aspect of the problem, and it is not clear that Besov spaces are
well suited when dealing with critical cases. Actually, there exist irregular κ ∈ B0

1,∞(]0, 1[,R) for
which existence of solutions of 6.1 in C0([0, 1],R) can be proved.b As an example, we consider
the case of κ = derivative of the (ternary) Cantor function.

• Let κ = µ ∈Mc

(

B(0, 1),R
)

be the derivative of the Cantor function.

We only prove the existence of a solution to problem 6.1.
We first show that µ belongs to B0

1,∞(]0, 1[,R). Notice that µ can be written as the limit in
D ′(]0, 1[,R) of functions Fn|]0,1[ with

Fn = (
3

2
)n
∑

1≤k≤2n

χEn,k
(7.6)

Here, the sets En,k are disjoint subintervals of [0, 1] with the same length (1
3
)n and χEn,k

: R→ R

is the characteristic function of interval En,k. Appealing to inequality 3.13 with m = 1, ǫ = 1/m
and t = (1/3)n, we obtain

‖Fn‖B0
1,∞(R) ≤ (

3

2
)n
∑

1≤k≤2n

‖χEn,k
‖B0

1,∞(R)
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≤ C(
3

2
)n
∑

1≤k≤2n

‖χ[0,1]‖B1
1,∞(R)(

1

3
)n ≤ C (7.7)

Notice that B0
1,∞(R) can be identified with the dual space of

o

B
0

∞,1 (R), the completion of S (R)
in B0

∞,1(R) (see [26] p. 180). Extracting if necessary a subsequence, we infer from estimate 7.7
that (Fn)n∈N converges weakly-* to some F ∈ B0

1,∞(R). Consequently, fn = Fn|]0,1[ → F|]0,1[ in

D ′(]0, 1[,R). Therefore, µ = F|]0,1[ ∈ B0
1,∞(]0, 1[). Moreover, µ /∈ B

− 1
2
+η

p,q (]0, 1[) with ω(η, p) > 0

and 0 < η ≤ 1/2. This follows from the fact that, for such η, p, B
1
2
+η

p,q (]0, 1[) →֒ B
ω(η,p)
∞,∞ (]0, 1[), a

Zygmund space, and that the Cantor function is not Holder continuous.
Observe now that µ ∈ Mc

(

B(0,T),L (E)
)

. This implies the existence of exactly one
solution M∗ in C0([0, 1],R) of equation 7.3 (see theorem 7.1). Invoking Fubini’s theorem, we
check that for any φ ∈ D(]0, 1[), we have

<

∫ t

0

M∗dµ, φ
′ >= − < M∗µ, φ >

Thus, M∗ ∈ C0([0, 1],R) is also a distributional solution of equation 6.1 for κ = µ, the product
M∗µ being directly defined in the sense of the measure theory. In contrast with the case
κ ∈ B0

1,1(]0,T[,E), it seems that no smoothness on M∗ can be recovered from equation 6.1 by
the usual bootstrap procedure. For instance, starting from M∗ ∈ C0([0, 1],R) ⊂ L∞([0, 1]) ⊂
B0

∞,∞(]0, 1[) and κ ∈ B0
1,∞(]0, 1[), one obtains by usual means that κM∗ ∈ B−1

∞,∞(]0, 1[) whereas
M∗ ∈ B0

∞,∞(]0, 1[) is already known.

Finally, as easily checked by density, the usual representation formula M∗(t) = M0exp
(

µ([0, t])
)

holds true.

8 Properties of the resolvent.

We now adress the case of A-valued distributions, where A is a complex Banach algebra. We
assume that A is endowed with a unit element 1A and denote by A× the group of invertible
elements of A. As customary, we define the continuous morphism A

r
−→ L (A) by r(x).y = y.x

, (x, y) ∈ A2. A similar notation A
l
−→ L (A) holds for the left multiplication. Last, recall

that for κ ∈ D ′(]0,T[,A) = L
(

D(]0,T[),A
)

, we can define r∗(κ) ∈ L
(

D(]0,T[),L (A)
)

=

D ′(]0,T[,L (A)) by r∗(κ) := roκ. For future reference, notice that if κ ∈ B
− 1

2
+η

p,q (]0,T[,A),

then r∗(κ) ∈ B
− 1

2
+η

p,q (]0,T[,L (A)). This follows from r Lipschitz. Denoting by R the resolvent
associated with system 6.1,our first task is to prove that function R(., t0)

−1 is well defined and
depends continuously on κ. The proof relies on theorem 6.1 and the fact that, for ω(η, p) > 0,

B
1
2
+η

p,q (]0,T[,A) is an algebra. In the following, for t0 given, R′(., t0) still denotes the distribu-
tional derivative of R(., t0).

Proposition 8.1. Let T > 0, 0 < η ≤ 1/2, 1 < p ≤ γ ≤ ∞, 1 ≤ q ≤ ∞ with 1
2
+ η − 1

p
> 0.

Let t0 ∈ [0,T] be fixed, and assume that κ ∈ B
− 1

2
+η

p,q (]0,T[,A). Then:
1) The problem:

find R(., t0) ∈ B
1
2
+η

p,q (]0,T[,A) such that:
{

R′(., t0) = κR(., t0)

R(t0, t0) = 1A

(8.1)

admits exactly one distributional solution. Moreover:
2) For any (t, τ, t0) ∈ [0,T]3, R(t, τ)R(τ, t0) = R(t, t0).
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3) R(., t0) ∈ B
1
2
+η

p,q (]0,T[,A×).
4) The mapping:

{

B
− 1

2
+η

p,q (]0,T[,A) → B
1
2
+η

p,q (]0,T[,A×)

κ 7→ R(., t0)
−1

(8.2)

is well defined and continuous.

5) R ∈ B
1
2
+η− 1

p
+ 1

γ
γ,q (]0,T[2,A×)

Proof. 1) We know that l∗(κ) ∈ B
− 1

2
+η

p,q (]0,T[,L (A)). Therefore, we can apply theorem 6.1
with E = A and 1) follows.
2) For any (t, τ, t0) ∈ [0,T]3, set Sτ,t0(t) = R(t, τ)R(τ, t0). Function Sτ,t0 satisfies 6.1 with φ = 0
and Sτ,t0(τ) = R(τ, t0). By uniqueness, we have Sτ,t0(t) = R(t, t0), which is 2).
3) Consequence of 1) and 2).

4) We first restrict to the case 1 ≤ p, q < ∞. Appealing to r∗(κ) ∈ B
− 1

2
+η

p,q (]0,T[,L (A)) and

to theorem 6.1, we can define Lt0,κ ∈ B
1
2
+η

p,q (]0,T[,A), solution of problem 6.1 with −r∗(κ) in
place of κ, i.e L′

t0,κ
= −Lt0,κκ and Lt0,κ(t0) = 1A. Assume first that κ ∈ C∞([0,T],A). We get

Lt0,κ ∈ C∞([0,T],A) and R(., t0) ∈ C∞([0,T],A). Due to definitions of Lt0,κ and R(., t0), we

have
(

Lt0,κR(., t0)
)′

= L′
t0,κ

R(., t0)+Lt0,κR
′(., t0) = 0 and also Lt0,κR(., t0)(0) = 1A. Therefore:

Lt0,κR(., t0) = 1A. (8.3)

Next, denote momentarily R(., t0) by Rt0,κ. Since ω(η, p) > 0, B
1
2
+η

p,q (]0,T[,A) is an algebra.

Using theorem 6.1 2), we conclude that the applicationW : B
− 1

2
+η

p,q (]0,T[,A)→ B
1
2
+η

p,q (]0,T[,A)
defined by W(κ) = Lt0,κRt0,κ is continuous. Moreover, by 8.3, W = 1A on C∞([0,T],A), a

dense subset of B
− 1

2
+η

p,q (]0,T[,A). Finally, W = 1A on the whole space B
− 1

2
+η

p,q (]0,T[,A). It

entails that R(., t0)
−1 = Lt0,κ ∈ B

1
2
+η

p,q (]0,T[,A), with continuous dependence with respect to

κ ∈ B
− 1

2
+η

p,q (]0,T[,A). In the cases p = ∞ or q = ∞, we write as usual κ ∈ B
− 1

2
+η

p,q →֒ B
− 1

2
+ρη

γ,γ

with 1 − ρ > 0 small and γ > 0 large enough. The previous proof asserts that R(., t0)
−1 =

Lt0,κ ∈ B
− 1

2
+ρη

γ,γ . But due to theorem 6.1, Lt0,κ also belongs to B
1
2
+η

p,q , with local Lipschitz

continuity with respect to κ ∈ B
− 1

2
+η

p,q .

5) From 2) and 4), we have R = R(., 0)⊗R(., 0)−1 ∈ B
1
2
+η

p,q (]0,T[2,A), which is 5) for γ = p. In

the general case, we write κ ∈ B
− 1

2
+η

p,q (]0,T[,A) →֒ B
1
2
+η− 1

p
+ 1

γ
γ,q (]0,T[,A) and apply the previous

result.

Proposition 8.2 is the variation of constants formula in our functional setting. It essentially
follows from the continuity of R(., t0)

−1 with respect to κ. In what follows, we restrict our
statement to t0 = 0 and 1 ≤ p, q < ∞. Notation I[0,t] stands for the characteristic function of
[0, t] ⊂ [0,T].

Proposition 8.2. Let T > 0, t0 = 0, 0 < η ≤ 1/2, 1 ≤ p, q <∞ with 1
2
+ η − 1

p
> 0. Assume

that κ ∈ B
− 1

2
+η

p,q (]0,T[,L (E)), φ ∈ B
− 1

2
+η

p,q (]0,T[,E), M0 ∈ E and let M ∈ B
1
2
+η

p,q (]0,T[,E) be the
solution of 6.1. Then, for any t ∈ [0,T], we have:

M(t) = R(t, 0).M0+ < R(t, .), I[0,t]φ >η,p,q (8.4)

Proof. Let (t, t0) ∈ [0,T]2. Set G = B
− 1

2
+η

p,q (]0,T[,L (E)) × B
− 1

2
+η

p,q (]0,T[,E). Let Λ be the
mapping:

{

G → E

(κ, φ) 7→ Mκ,φ(t)− Rκ(t, 0).M0− < Rκ(t, .), I[0,t]φ >η,p,q

(8.5)
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where Mκ,φ and Rκ denote respectively the solutions of 6.1 and 8.1. Function Λ is identically
equal to zero on C∞([0,T],L (E)) × C∞([0,T],E). It remains to prove that Λ is continuous.
We just deal with the bracket in the definition of Λ, since the other terms are simpler. Writ-
ing Rκ(t, .) = Rκ(t, 0)Rκ(0, .), we essentially have to prove that function Λ1 : G → E with
Λ1(κ, φ) =< Rκ(0, .), I[0,t]φ >η,p,q is continuous. First, notice that:

B
− 1

2
+η

p,q (]0,T[,L (E))
R(0,.)
−−−→ B

1
2
+η

p,q (]0,T[,L (E)) →֒ B
1
2
−η

p′,q′(]0,T[,L (E))

In the first injection, R(0, .) is considered as a function of the variable κ. The second injec-

tion follows from lemma 5.2, 1). It remains to prove that function Λ2 : B
− 1

2
+η

p,q (]0,T[,E) →

B
− 1

2
+η

p,q (]0,T[,E) with Λ2(φ) = I[0,t]φ is continuous. This follows from the fact that I[0,t] is a

multiplier for B
− 1

2
+η

p,q (]0,T[,E).

As a final remark, let’s mention that all the classical results do not extend immediately to
our functional frame. For instance, Floquet’s theorem (case E = Cn) still holds true, whereas
the perturbation/stability theory is unlikely to work, unless serious modifications.

9 The nonlinear case.

We now turn to generalize theorem 6.1 to the nonlinear case. The main issue is to define
suitable restriction operations for a global operator, denoted below by HT,α. Let 1 < p, q <∞,
0 < α < 1/2 with ω(α, p) > 0. For any t ∈ R+, ρ > 0, M0 ∈ E, define Bt,α(M0, ρ) as the open

ball of B
1
2
+α

p,q (]0, t[,E) with center M0 and radius ρ, and set :

Bt,α(M01]0,t[, ρ) = {M ∈ Bt,α(M01]0,t[, ρ) with M(0) = M0} (9.1)

Denote also by B̄t,α(M01]0,t[, ρ) its closure in B
1
2
+α

p,q (]0, t[,E) and a similar notation for Bt,α(M0, ρ).
Until the end of the paper, we abusively identify M01]0,t[ with M0 and, for instance, often write
Bt,α(M0, ρ) in place of Bt,α(M01]0,t[, ρ). For future reference, we first prove

Lemma 9.1. Let 1 < p, q < ∞, 0 < α < 1/2 with ω(α, p) > 0, ρ > 0, 0 ≤ t1 ≤ t2. Let
M0 ∈ E. Then

1) Bt1,α(M0, ρ) = Bt2,α(M0, ρ)|]0,t1[.
2) Bt1,α(M0, ρ) = Bt2,α(M0, ρ)|]0,t1[.

Proof. We only prove 1). Inclusion Bt2,α(M0, ρ)|]0,t1[ ⊂ Bt1,α(M0, ρ) is clear. We prove the

opposite inclusion. Let M ∈ Bt1,α(M0, ρ). Set ǫ =
1

2
(ρ− ‖M−M0‖

B
1
2
+α

p,q (]0,t1[,E)
). By definition

of ‖.‖
B

1
2
+α

p,q (]0,t1[,E)
, there exists M∗ ∈ B

1
2
+α

p,q (R,E) such that:

M∗|]0,t1[ = M−M0 (9.2)

and also:

‖M∗‖
B

1
2
+α

p,q (]0,t2[,E)
≤ ‖M∗‖

B
1
2
+α

p,q (R,E)
≤ ‖M−M0‖

B
1
2
+α

p,q (]0,t1[,E)
+ ǫ < ρ (9.3)

Set M∗∗ = M∗+M0,∗ with M0,∗ ∈ B
1
2
+α

p,q (R,E) and M0,∗|]0,t2[ = M0. By 9.2, M∗∗(0) = M(0) = M0.
Hence, by 9.3, M∗∗|]0,t2[ ∈ Bt2,α(M0, ρ). With 9.2, this provides the lemma.

21



Let now R > 0, T > 0, 0 < α < η < 1/2, 1 ≤ p, q < ∞ with ω(α, p) > 0, and M0 ∈ E
be fixed. Let also L ⊂]0,T] with T ∈ L and 0 ∈ L̄ (closure of L in R). In the following, V

denotes BT,α(M0,R) or BT,α(M0,R). Let finally HT,α : V → B
− 1

2
+η

p,q (]0,T[,E). Consider the
three following properties: for any (M,N, t) ∈ V2 × L, we have

• (L1) ‖HT,α(M)−HT,α(N)‖
B

−
1
2
+η

p,q (]0,T[,E)
≤ CT‖M−N‖

B
1
2
+α

p,q (]0,T[,E)

• (L1′) The operator HT,α is continuous on V.

• (L2) If M|]0,t[ = N|]0,t[, then HT,α(M)|]0,t[ = HT,α(N)|]0,t[

When condition L2 is satisfied, we can define for any t ∈ L an operator:

Ht,α : V|]0,t[ → B
− 1

2
+η

p,q (]0, t[,E)

by restriction. It means that, for any M ∈ V|]0,t[ (= Bt,α(M0,R) or Bt,α(M0,R), see lemma
9.1), we have:

Ht,α(M) = HT,α(M∗)|]0,t[ (9.4)

with M∗ ∈ V and M∗|]0,t[ = M.
Using L2, we now localize properties L1 and L1′. We need the following:

Lemma 9.2. Let T > 0, 0 < α < 1/2, 1 ≤ p, q <∞ with ω(α, p) > 0.

1) There exists a bounded family (Pt)0<t<T of extension operators Pt : B
1
2
+α

p,q (]− 1, t[,E)→

B
1
2
+α

p,q (]− 1,T[,E).
2) The family (φt)0<t<T of linear maps defined by

φt :

{

B
1
2
+α

p,q (]0, t[,E) → B
1
2
+α

p,q (]0,T[,E)

M 7→ M(0)
(9.5)

is bounded by CT := C∞‖1]0,T[‖
B

1
2
+α

p,q (]0,t[,E)
.

Proof. 1) Let P : B
1
2
+α

p,q (] − 1, 0[,E) → B
1
2
+α

p,q (] − 1,T[,E) be a continuous extension operator.
With the notations of lemma 3.1, write µ = ψt,t+1 and φ = µ−1 = ψ−t(t+1)−1,(t+1)−1 . Note

that µ|]−1,0[(] − 1, 0[) =] − 1, t[ and φ|]−1,T[(] − 1,T[) =] − 1, T−t
t+1

[⊂] − 1,T[. Therefore, for

u ∈ B
1
2
+α

p,q (]−1, t[,E), we can define Pt(u) = P
(

uoµ|]−1,0[

)

o(φ|]−1,T[). Due to φ(]−1, t[) =]−1, 0[,
we have Pt(u)|]−1,t[ = u. Now, applying lemma 3.1 and the continuity of the operator P , we
get the boundedness of (Pt)0<t<T, say:

ΛT,1 := sup0<t<T

(

‖Pt‖
B

1
2
+α

p,q (]−1,t[,E),B
1
2
+α

p,q (]−1,T[,E)

)

<∞ (9.6)

2) Let 0 < t < T and M ∈ B
1
2
+α

p,q (]0, t[,E). Then

‖M(0)‖
B

1
2
+α

p,q (]0,T[,E)
≤ ‖M(0)‖E‖1]0,T[‖

B
1
2
+α

p,q (]0,T[,E)

≤ C∞‖1]0,T[‖
B

1
2
+α

p,q (]0,t[,E)
‖M(0)‖

B
1
2
+α

p,q (]0,t[,E)
(9.7)

due to inequality 4.9. This proves 2).
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In the sequel, the constant ΛT,1 ≥ 1 is fixed, given by 9.6. It is independent of M0 and R.

For any 0 < t < T, 0 < α < 1/2, 1 ≤ p, q < ∞ with ω(α, p) > 0 set B
1
2
+α

p,q,o(]0, t[,E) = {f ∈

B
1
2
+α

p,q (]0, t[,E) with f(0) = 0} and define

Et : B
1
2
+α

p,q,o(]0, t[,E)→ B
1
2
+α

p,q (]− 1, t[,E)

as the zero-extension operator. Set:

ΛT,2 := sup0<t<T

(

‖Et‖
B

1
2
+α

p,q,o(]0,t[,E),B
1
2
+α

p,q (]−1,t[,E)

)

(9.8)

Clearly, 1 ≤ ΛT,2 <∞ (see lemma 4.3). As usual, the dependence with respect to α in omited
in the notations.

Lemma 9.3. Let T > 0, 0 < α < η < 1/2, 1 ≤ p, q <∞ with ω(α, p) > 0, M0 ∈ E, R > 0.

1) Let HT,α : BT,α(M0,R)→ B
− 1

2
+η

p,q (]0,T[,E) satisfies properties (L1) and (L2). Then:

• (L1t) For any t ∈ L and (M,N) ∈ Bt,α(M0,R/ΛT,1ΛT,2)
2 we have

‖Ht,α(M)−Ht,α(N)‖
B

−
1
2
+η

p,q (]0,t[,E)
≤ CTΛT,1ΛT,2‖M− N‖

B
1
2
+α

p,q (]0,t[,E)

2) Let HT,α : BT,α(M0,R)→ B
− 1

2
+η

p,q (]0,T[,E) satisfies properties (L1′) and (L2). Then:

• (L1′t) For any t ∈ L, function Ht,α is continuous on Bt,α(M0,R/ΛT,3).

Here, ΛT,3 > 0 is a constant depending only on T.

Proof. We only prove 2). Let t ∈ L and (M,N) ∈ Bt,α(M0,R/ΛT,3)
2. The constant ΛT,3 ≥

ΛT,1ΛT,2 will be determined later. We have

‖
(

PtoEt)(M−M(0)
)

‖
B

1
2
+α

p,q (]−1,T[,E)
≤ ΛT,1ΛT,2‖M−M(0)‖

B
1
2
+α

p,q (]0,t[,E)
(9.9)

Using lemma 9.2, this implies

‖M(0) +
(

PtoEt)(M−M(0)
)

−M0‖
B

1
2
+α

p,q (]0,t[,E)

≤ ‖M(0)−M0‖
B

1
2
+α

p,q (]0,t[,E)
+ ΛT,1ΛT,2‖M−M(0)‖

B
1
2
+α

p,q (]0,t[,E)

≤
[

CT + ΛT,1ΛT,2(1 + CT)
]

‖M−M0‖
B

1
2
+α

p,q (]0,t[,E)
(9.10)

Hence, for ΛT,3 := CT + ΛT,1ΛT,2(1 + CT), inequality 9.10 and M ∈ Bt,α(M0,R/ΛT,3) provides
M(0) +

(

PtoEt)(M−M(0)
)

∈ Bt,α(M0,R). The same holds true for N. As a consequence:

‖Ht,α(M)−Ht,α(N)‖
B

−
1
2
+η

p,q (]0,t[,E)

≤ ‖HT,α

(

M(0) +
[

(PtoEt)(M−M(0))
]

|]0,T[

)

−

HT,α

(

N(0) +
[

(PtoEt

)

(N− N(0))
]

|]0,T[

)

‖
B

−
1
2
+η

p,q (]0,T[,E)
(9.11)

Recall that HT,α, is continuous. Hence, due to 9.11, it’s now enough to show that for any t ∈ L,
the function

{

Bt,α(M0,R/ΛT,3) → B
1
2
+α

p,q (]0,T[,E)

M 7→ M(0) +
[

(PtoEt)(M−M(0))
]

|]0,T[

(9.12)

is continuous. This follows from 9.6, 9.8 and lemma 9.2 2).
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From now on, we denote by DT,α the constant CT appearing in 4.12 with α in place of η,
and by J the constant C of theorem 3.1 b).

Theorem 9.1. Let M0 ∈ E, T > 0, R > 0, 0 < α < η < 1/2, 1 ≤ p, q <∞ with ω(α, p) > 0.

I) Assume that HT,α : BT,α(M0,R) → B
− 1

2
+η

p,q (]0,T[,E) satisfies conditions (L1) and (L2).
Then, for any 0 < ρ < R/ΛT,1ΛT,2 there exists t0 ∈ L such that the problem: find M ∈
B̄t0,α(M0, ρ) with:

{

M′ = Ht0,α(M)

M(0) = M0

(9.13)

admits exactly one distributional solution. This solution belongs to B
1
2
+η

p,q (]0, t0[,E). Moreover,
one can choose

t0 ∈ L ∩
]

0, inf
(

T,
( D

−1
T J−1ρ

CTΛT,1ΛT,2ρ+ ‖HT,α(M0)‖
B

−
1
2
+η

p,q (]0,T[,E)

)
1

η−α

)

[

(9.14)

II) Assume that E has finite dimension and assume thatHT,α : BT,α(M0,R)→ B
− 1

2
+η

p,q (]0,T[,E)
satisfies conditions (L1′) and (L2). Then, there exists ρ > 0 and t1 ∈ L such that, for any
M1 ∈ E ∩ B̄t1,α(M0, ρ), the problem: find M ∈ B̄t1,α(M1, ρ) with:

{

M′ = Ht1,α(M)

M(0) = M1

(9.15)

admits at least one distributional solution. This solution belongs to B
1
2
+η

p,q (]0, t1[,E).

Proof. An application of Picard and Schauder fixed point theorem.
I) a) Stability.

Let 0 < ρ < R/ΛT,1ΛT,2 and let t0 ∈ L as in 9.14. Define:

St0 :

{

B̄t0,α(M0, ρ) → B
1
2
+α

p,q (]0, t0[,E)

M̃ 7→ M
(9.16)

where M is given by equation 3.31 with Ht0,α(M̃) in place of ψ and α = α.
Let now M̃ ∈ B̄t0,α(M0, ρ) and M = St0(M̃). Appealing to lemmas 3.3, 4.3 and theorem 3.1 for
0 < α < η we have:

‖M−M0‖
B

1
2
+α

p,q (]0,t0[,E)
≤ DT,α‖M

′‖
B

−
1
2
+α

p,q (]0,t0[)
= DT,α‖Ht0,α(M̃)‖

B
−

1
2
+α

p,q (]0,t0[)
(9.17)

≤ DT,αJt0
η−α
(

‖Ht0,α(M̃)−Ht0,α(M0)‖
B

−
1
2
+η

p,q (]0,t0[)
+ ‖Ht0,α(M0)‖

B
−

1
2
+η

p,q (]0,t0[)

)

(9.18)

Due to lemma 9.3, ‖M̃−M0‖
B

1
2
+α

p,q (]0,t0[)
≤ ρ and 9.14, we get:

‖M−M0‖
B

1
2
+α

p,q (]0,t0[,E)
≤ DTJt0

η−α(CTΛT,1ΛT,2‖M̃−M0‖
B

1
2
+α

p,q (]0,t0[)
+ ‖Ht0,α(M0)‖

B
−

1
2
+η

p,q (]0,t0[)
)

≤ ρ

Hence, the stability is proved.

b) Proof that St0 is a B
1
2
+α

p,q (]0, t0[) contraction.
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Let M̃ ∈ B̄t0,α(M0, ρ), Ñ ∈ B̄t0,α(M0, ρ) and set M = St0(M̃) and N = St0(Ñ). Arguing as in
a), we get:

‖M−N‖
B

1
2
+α

p,q (]0,t0[)
≤ DT‖(M−N)′‖

B
−

1
2
+α

p,q (]0,t0[)

≤ CTDTJΛT,1ΛT,2t
η−α
0 ‖M̃− Ñ‖

B
1
2
+η

p,q (]0,t0[)
(9.19)

with CTDTJΛT,1ΛT,2t
η−α
0 < 1 for t0 as in I) a). Hence I) follows from Picard fixed point theorem

and lemma 3.3.

II) a) Stability.
Let 0 < ρ < R/2ΛT,3. Since HT,α is continuous at M0, restricting if necessary ρ, we can im-

pose thatHT,α

(

B̄T,α(M0, 2ρ)
)

is bounded in B
− 1

2
+η

p,q (]0,T[,E) by K = ‖HT,α(M0)‖
B

−
1
2
+η

p,q (]0,T[)
+1.

Let t1 ∈ L with

0 ≤ t1 ≤ (ρ/KDT,αJ)
1

η−α (9.20)

Appealing to lemma 9.1, definition of Ht1,α and the assumption on ρ, we obtain that

Ht1,α

(

B̄t1,α(M0, 2ρ)
)

is bounded in B
− 1

2
+η

p,q (]0, t1[,E) by K. Fix M1 ∈ E ∩ B̄t1,α(M0, ρ). For

M̃ ∈ B̄t1,α(M1, ρ) ⊂ B̄t1,α(M0, 2ρ) ⊂ Bt1,α(M0,R/ΛT,3), set M = St1(M̃). Here, application St1
is given by 9.16 with M1 and t1 in place of M0 and t0. Arguing as in I) a) (see 9.17), we have

‖M−M1‖
B

1
2
+α

p,q (]0,t1[,E)
≤ DT,α‖Ht1,α(M̃)‖

B
−

1
2
+α

p,q (]0,t1[,E)

≤ DT,αJ‖Ht1,α(M̃)‖
B

−
1
2
+η

p,q (]0,t1[,E)
tη−α1 ≤ KDT,αJt

η−α
1 (9.21)

since ‖Ht1,α(M̃)‖
B

−
1
2
+α

p,q (]0,t1[,E)
≤ K for M̃ ∈ B̄t1,α(M0, 2ρ). Hence, using 9.20, the stability

St1(B̄t1,α(M1, ρ)) ⊂ B̄t1,α(M1, ρ) is proved.
Until the end of the proof, the notations and the definitions of II)a) hold.

b) Continuity.
For another Ñ ∈ B̄t1,α(M1, ρ), set N = St1(Ñ). Arguing as in 9.17 and 9.18, we have

‖M− N‖
B

1
2
+α

p,q (]0,t1[,E)
≤ DT,α‖Ht1,α(M̃)−Ht1,α(Ñ)‖

B
−

1
2
+α

p,q (]0,t1[,E)
(9.22)

Note that B̄t1,α(M1, ρ) ⊂ Bt1,α(M0,R/ΛT,3). Invoking lemma 9.3, we get that function Ht1,α

is continuous on B̄t1,α(M1, ρ). Now, inequality 9.22 implies that St1 is also continuous on
B̄t1,α(M1, ρ).

c) Compactness.
Let 0 < α < α′ < η. Arguing as in 9.17 and 9.18, we have

‖M−M1‖
B

1
2
+α′

p,q (]0,t1[,E)
≤ DT,α′‖M′‖

B
−

1
2
+α′

p,q (]0,t1[,E)
= DT,α′‖Ht1,α(M̃)‖

B
−

1
2
+α′

p,q (]0,t1[,E)

≤ DT,α′‖Ht1,α(M̃)‖
B

−
1
2
+η

p,q (]0,t1[,E)
≤ KDT,α′ (9.23)

Note now, the space E being finite dimensional, that the injection B
1
2
+α′

p,q (]0, t1[,E) →֒ B
1
2
+α

p,q (]0, t1[,E)

is compact. Hence, due to 9.23, St1(B̄t1,α(M1, ρ)) has compact closure in B
1
2
+α

p,q (]0, t1[,E).

d) Finally, since B̄t1,α(M1, ρ) is a closed convex subset of B
1
2
+α

p,q (]0, t1[,E), the existence of a
solution of 9.15 follows from II) a-c), Schauder fixed point theorem and lemma 3.3.
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In order to apply theorem 9.1 to operators HT,α : U ⊂ B
1
2
+α

p,q (]0,T[,E) → B
− 1

2
+η

p,q (]0,T[,E),
it remains to identify the set

I(U) = {M0 ∈ E such that there exists 0 < TM0
≤ T with M0 ∈ U|]0,TM0

[}

We also need some uniform estimate on the time TM0
.

Proposition 9.1. Let T > 0, 1 ≤ p, q < ∞, 0 < α < 1/2 with ω(α, p) > 0, and let U be an

open subset of B
1
2
+α

p,q (]0,T[,E). Then
1) I(U) = U(0), where U(0) denotes the set of initial values of elements of U.
2) U(0) is an open subset of E. More precisely, for any M0 ∈ I(U) there exist γ > 0, R > 0

and T0 > 0 such that for any M1 ∈ E with ‖M1 −M0‖E ≤ γ, we have

M11]0,T0[ ∈ BT0,α(M01]0,T0[,R) ⊂ U|]0,T0[ (9.24)

Proof. The fact that U(0) is an open subset of E is obvious, as well as the inclusion I(U) ⊂ U(0),
which is a direct consequence of the definition of I(U). We prove the reverse inclusion -i.e that
for any M ∈ U, M(0) ∈ U|]0,T0[ for some 0 < T0 ≤ T- and 9.24 at the same time.

Let M ∈ U. For R > 0 small enough, we have BT,α(M,R) ⊂ U. Set ǫ = R/
[

4(C∞+2)
]

(see
corollary 4.1 c)). Pick up ψǫ ∈ BT,α(M,R) ∩ C∞([0,T],E) with ‖M− ψǫ‖

B
1
2
+α

p,q (]0,T[,E)
≤ ǫ. Set

φǫ = ψǫ−ψǫ(0)+M(0). By inequality 4.9, we have ‖M(0)−ψǫ(0)‖E ≤ C∞‖M−ψǫ‖
B

1
2
+α

p,q (]0,T[,E)
.

Using definition of φǫ and ψǫ, this implies that ‖M − φǫ‖
B

1
2
+α

p,q (]0,T[,E)
≤ (C∞ + 1)ǫ. Let now

α < η < 1/2 and M1 ∈ E with ‖M1 − M(0)‖E ≤ ǫ/‖1]0,T[‖
B

1
2
+α

p,q (]0,T[,E)
. Since φǫ(0) = M(0),

appealing to theorem 3.1 b) and corollary 4.1 b) we get, for any 0 < t < T

‖M−M1‖
B

1
2
+α

p,q (]0,t[,E)
≤ ‖M− φǫ‖

B
1
2
+α

p,q (]0,t[,E)
+ ‖φǫ − φǫ(0)‖

B
1
2
+α

p,q (]0,t[,E)
+

+ ‖M(0)−M1‖
B

1
2
+α

p,q (]0,t[,E)
≤ (C∞ + 1)ǫ+ CT‖φ

′
ǫ‖

B
−

1
2
+η

p,q (]0,t[,E)
tη−α + ǫ (9.25)

Set

T0 = inf

(

( (R/2)− (C∞ + 2)ǫ

CT‖φ′
ǫ‖

B
−

1
2
+η

p,q (]0,T[,E)

)1/(η−α)

,T

)

> 0

We infer from inequality 9.25 and lemma 9.1 b) that M1 ∈ BT0,α(M,R) = BT,α(M,R)|]0,T0[ ⊂
U|]0,T0[, which proves the proposition.

Let T > 0, 1 ≤ p, q < ∞, 0 < α < η < 1/2 with ω(α, p) > 0, and let U be an open subset

of B
1
2
+α

p,q (]0,T[,E). Consider an operator HT,α : U → B
− 1

2
+η

p,q (]0,T[,E) satisfying (L2). We say
that HT,α satisfies condition (Lo1) if, for any M0 ∈ I(U), there exists RM0

> 0, TM0
∈ L and

CTM0
> 0 such that, for any (M,N) ∈ BTM0

,α(M0,RM0
)2

• (Lo1) ‖HTM0
,α(M)−HTM0

,α(N)‖
B

−
1
2
+η

p,q (]0,TM0
[,E)
≤ CTM0

‖M−N‖
B

1
2
+α

p,q (]0,TM0
[,E)

The following result is an immediate consequence of theorem 9.1 and proposition 9.1

Theorem 9.2. Let T > 0, R > 0, 0 < α < η < 1/2, 1 ≤ p, q <∞ with ω(α, p) > 0, and let U

be an open subset of B
1
2
+α

p,q (]0,T[,E)

I) Assume that HT,α : U→ B
− 1

2
+η

p,q (]0,T[,E) satisfies conditions (L2) and (L01). Then, for
any M0 ∈ U(0), there exists ρ > 0 and t0 ∈ L such that, for any M1 ∈ E with ‖M1 −M0‖E ≤ ρ
the problem: find M ∈ Bt0,α(M0, ρ) with:

{

M′ = Ht0,α(M)

M(0) = M1

(9.26)
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admits exactly one distributional solution. This solution belongs to B
1
2
+η

p,q (]0, t0[,E).

II) Assume that E is finite dimensional and assume that HT,α : U → B
− 1

2
+η

p,q (]0,T[,E)
satisfies conditions (L1′) and (L2). Then, for any M0 ∈ U(0), there exists ρ > 0 and t1 ∈ L

such that, for any M1 ∈ E with ‖M1 −M0‖E ≤ ρ the problem: find M ∈ Bt1,α(M0, ρ) with:

{

M′ = Ht1,α(M)

M(0) = M1

(9.27)

admits at least one distributional solution. This solution belongs to B
1
2
+η

p,q (]0, t1[,E).

As an example, we apply theorem 9.2 to nonlinear operators with irregular coefficients. In
the following proposition, we assume that E = A is an algebra such as in section 8. One may

look for operators such as HT,α(M) =
∫

Rn φ(s,M)κ̄(s)dµ(s) with κ̄ : Rn → B
− 1

2
+η

p,q (]0,T[,A),

φ : Rn × B
1
2
+α

p,q (]0,T[,A) → B
1
2
+α

p,q (]0,T[,A) and µ a Radon measure on Rn. For results on
composition operators, see for instance [7], [4], [25]. In the following, we restrict to the simple
case of a serie.

Proposition 9.2. Let T > 0, R > 0, 0 < α < η < 1/2, 1 < p, q < ∞ with ω(α, p) > 0. Let

κj ∈ B
− 1

2
+η

p,q (]0,T[,A) (j ∈ N). Assume that, for some R > 0

∑

j∈N

‖κj‖
B

−
1
2
+η

p,q (]0,T[,A)
Rj <∞

Then, for r > 0 small enough, operator HT,α : BT,α(0, r) ⊂ B
1
2
+α

p,q (]0,T[,A)→ B
− 1

2
+η

p,q (]0,T[,A)
given by HT,α(M) =

∑

j∈N κjM
j is well defined and satisfies properties (L1) and (L2).

Proof. Denote by C1 the constant in inequality 5.1. Note also, since ω(α, p) > 0, that there
exists C2 > 1 with ‖MN‖

B
1
2
+α

p,q (]0,T[,A)
≤ C2‖M‖

B
1
2
+α

p,q (]0,T[,A)
‖N‖

B
1
2
+α

p,q (]0,T[,A)
for any (M,N)2 ∈

BT,α(0,R)
2. Using lemma 5.1, we infer that the operatorHT,α is well defined for r = R/C2 < R.

Moreover, for any (M,N)2 ∈ BT,α(0, r)
2

‖HT,α(M)−HT,α(N)‖
B

−
1
2
+η

p,q (]0,T[,A)

≤ C1

(

∑

j∈N

‖κj‖
B

−
1
2
+η

p,q (]0,T[,A)(]0,T[,A)
j(C2r)

j−1
)

‖M− N‖
B

1
2
+α

p,q (]0,T[,A)
(9.28)

Since C2r = R and
(

∑

j∈N ‖κj‖
B

−
1
2
+η

p,q (]0,T[,A)
jRj−1 < ∞

)

, the operator HT,α satisfies property

(L1). Property (L2) is obvious.
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[6] F. Bouchut, F. James, One-dimensional transport equations with discontinuous coeffi-
cients, Journal of Nonlinear Analysis: Theory, Methods Applications, Volume 32, Issue
7, pp. 891-933, June 1998.

[7] G. Bourdaud and W. Sickel, Composition Operators on Function Spaces with Fractional
Order of Smoothness, Harmonic analysis and nonlinear partial differential equations,
93132, RIMS Kkyroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011.

[8] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, Optimal control
and partial differential equations, Edited by J.L. Menaldi, E. Rofman and A. Sulem, IOS
Press, 439-455 (2001).

[9] J. Bourgain, H. Brezis, P. Mironescu, Limiting embeddings for Ws,p when s ↑ 1 and
applications, J. Anal. Math, pp.77-101, 87 (2002).

[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Springer Science, 2010.

[11] S. Ciuperca and A. Heibig, Existence and uniqueness of a density probability solution for
the stationnary Doi-Edwards equation, Annales de l’institut Poincaré, série C, Ann. Inst.
H. Poincaré Anal. Non Linéaire 33 (2016), no. 5, pp. 1353-1373.

[12] I.S. Ciuperca, A. Heibig and L.I. Palade, Existence and uniqueness of solutions for the
Doi Edwards polymer melt model: the case of the (full) nonlinear configurational density
equation, Nonlinearity 25, N4, 991-1009 (2012)

[13] F. Cobos, O. Dominguez, H. Triebel, Characterizations of logarithmic Besov spaces
in terms of differences, Fourier-analytical decompositions, wavelets and semi-groups. J.
Funct. Anal., pp. 4386-4425, 270 (2016), no. 12.

[14] G. Da Prato, M. Ianelli, Linear integrodifferential equations in Banach spaces. Rend. Sem.
Mat. Padova 62 (1980), 207-219.

[15] M. Doi, S. F. Edwards, Dynamics of concentrated polymer systems, Part 3.- The consti-
tutive equation, Journal of the Chemical Society, Faraday Transactions II, 74, 1818-1832,
1978.

[16] R. Di Perna and P.L Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Inventiones Mathematicae, 98(3), 1989, p. 511-549.

[17] P. Hartman, Ordinary differential equations. Corrected reprint of the second (1982) edi-
tion Birkhauser, Boston, MA. Classics in Applied Mathematics, 38. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2002. xx+612 pp.

[18] V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem
concerning limiting embeddings of fractional Sobolev spaces, Journal of Funct. Anal., pp.
230-238, 195 (2002).

28



[19] V. Maz’ya and T. Shaposhnikova, Erratum to ”On the Bourgain, Brezis, and Mironescu
theorem concerning limiting embeddings of fractional Sobolev spaces”, Journal of Funct.
Anal., pp. 298-300, 201 (2003).

[20] V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,
Grundlehren der mathematischen Wissenschaften, Springer 2011.

[21] P. B. Mucha Transport equation: Extension of classical results for divb ∈ BMO Journal
of Differential Equations Volume 249, Issue 8, pp. 1871-1883, 2010.
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