Iterated Boolean random varieties and application to fracture statistics models

Abstract : Models of random sets and of point processes are introduced to simulate some specific clustering of points, namely on random lines in R2 and R3 and on random planes in R3. The corresponding point processes are special cases of Cox processes. The generating distribution function of the probability distribution of the number of points in a convex set K and the Choquet capacity T (K) are given. A possible application is to model point defects in materials with some degree of alignment. Theoretical results on the probability of fracture of convex specimens in the framework of the weakest link assumption are derived, and used to compare geometrical effects on the sensitivity of materials to fracture.
Type de document :
Article dans une revue
Applications of Mathematics, Akademie věd České republiky, Matematický ústav, 2016, Volume 61, Issue 4, pp 363-386. <10.1007/s10492-016-0137-7>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01430404
Contributeur : Dominique Jeulin <>
Soumis le : lundi 9 janvier 2017 - 18:38:30
Dernière modification le : mardi 12 septembre 2017 - 11:41:34

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Relations

Citation

Dominique Jeulin. Iterated Boolean random varieties and application to fracture statistics models. Applications of Mathematics, Akademie věd České republiky, Matematický ústav, 2016, Volume 61, Issue 4, pp 363-386. <10.1007/s10492-016-0137-7>. <hal-01430404>

Partager

Métriques

Consultations de la notice

81