Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2017

Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration

Résumé

Sub-wavelength particles made from high-index dielectrics, either individual or as ensembles, are ideal candidates for multifunctional elements in optical devices. Their directionality effects are traditionally analysed through forward and backward measurements, even if these directions are not convenient for in-plane scattering practical purposes. Here we present unambiguous experimental evidence in the microwave range that for a dimer of HRI spherical particles, a perfect switching effect is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization. Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell's equations allows the generalization of our results to other frequency ranges and dimension scales, for instance, the visible and the nanometric scale.
Fichier principal
Vignette du fichier
ncomms13910.pdf (1.64 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01430138 , version 1 (09-01-2017)

Identifiants

Citer

Angela ´ Barreda, Hassan Saleh, Amelie Litman, Francisco González, Jean-Michel Geffrin, et al.. Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration. Nature Communications, 2017, 8, pp.13910. ⟨10.1038/ncomms13910⟩. ⟨hal-01430138⟩
107 Consultations
83 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More