Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming

Abstract : Discontinuous Skeletal methods approximate the solution of boundary-value problems by attaching discrete unknowns to mesh faces (hence the term skeletal) while allowing these discrete unknowns to be chosen independently on each mesh face (hence the term discontinuous). Cell-based unknowns, which can be eliminated locally by a Schur complement technique (also known as static condensation), are also used in the formulation. Salient examples of high-order Discontinuous Skeletal methods are Hybridizable Discontinuous Galerkin methods and the recently-devised Hybrid High-Order methods. Some major benefits of Discontinuous Skeletal methods are that their construction is dimension-independent and that they offer the possibility to use general meshes with polytopal cells and non-matching interfaces. In this work, we show how this mathematical flexibility can be efficiently replicated in a numerical software using generic programming. We describe a number of generic algorithms and data structures for high-order Discontinuous Skeletal methods within a " write once, run on any kind of mesh " framework. The computational efficiency of the implementation is assessed on the Poisson model problem discretized using various polytopal meshes and the Hybrid High-Order method.
Type de document :
Article dans une revue
Journal of Computational and Applied Mathematics, Elsevier, 2018, 344, pp.852-874. 〈10.1016/j.cam.2017.09.017〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01429292
Contributeur : Alexandre Ern <>
Soumis le : mardi 5 septembre 2017 - 23:33:46
Dernière modification le : mardi 18 décembre 2018 - 01:19:08

Fichier

disk.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Matteo Cicuttin, Daniele Di Pietro, Alexandre Ern. Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. Journal of Computational and Applied Mathematics, Elsevier, 2018, 344, pp.852-874. 〈10.1016/j.cam.2017.09.017〉. 〈hal-01429292v3〉

Partager

Métriques

Consultations de la notice

493

Téléchargements de fichiers

229