N

N

Explicit generators of some pro-p groups via
Bruhat-Tits theory

Benoit Loisel

» To cite this version:

Benoit Loisel. Explicit generators of some pro-p groups via Bruhat-Tits theory. Bulletin de la société
mathématique de France, 2021, 149 (2), pp.309-388. 10.24033/bsmf.2831 . hal-01428864v3

HAL Id: hal-01428864
https://hal.science/hal-01428864v3

Submitted on 14 Dec 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01428864v3
https://hal.archives-ouvertes.fr

Explicit generators of some pro-p groups via
Bruhat-Tits theory

Benoit Loisel

December 18, 2020

Abstract

Given a semi-simple group over a local field of residual character-
istic p, its topological group of rational points admits maximal pro-p
subgroups. Those of quasi-split simply-connected semi-simple groups
can be described in the combinatorial terms of a valued root groups
datum, thanks to the Bruhat-Tits theory. In this context, it becomes
possible to compute explicitly a minimal generating set of the (all con-
jugated) maximal pro-p subgroups thanks to parametrizations of a suit-
able maximal torus and of the corresponding root groups. We show
that the minimal number of generators is then linear with respect to
the rank of a suitable root system.
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1 Introduction

In this paper, a smooth connected affine group scheme of finite type over
a field K will be called a K-group. Given a base field K and a K-group
denoted by G, we get an abstract group called the group of rational points,
denoted by G(K). When K is a non-Archimedean local field, this group
inherits a topology from the field. In particular, the topological group G(K)
is totally disconnected and locally compact. The maximal compact or pro-p
subgroups of such a group G(K), when they exist, provide a lot of examples
of profinite groups. Thus, one can investigate maximal pro-p subgroups from
the profinite group theory point of view.

1.1 Minimal number of generators

When H is a profinite group, we say that H is topologically generated
by a subset X if H is equal to its smallest closed subgroup containing X;



such a set X is called a generating set. We investigate the minimal number
of generators of a maximal pro-p subgroup of the group of rational points of
an algebraic group over a local field.

Suppose that K = F,((t)) is a nonzero characteristic local field, where
g = p™ and G is a simple K-split simply-connected K-group of rank .
By a recent result of Capdeboscq and Rémy [CR14, 2.5], we know that any
maximal pro-p subgroup of G(K) admits a finite generating set X; moreover,
the minimal number of elements of such an X is m(l + 1).

We would like to generalize this result to more general algebraic groups
defined over any local field. If GG is a smooth algebraic group scheme over a
local field K of residual characteristic p, we know by [Loil6, 1.4.3] that G(K)
admits maximal pro-p subgroups (called pro-p Sylows) if, and only if, G is
quasi-reductive (that means the split unipotent radical over K of G is trivial).
When K is of characteristic 0, this corresponds to reductive groups because
a unipotent group is always split over a perfect field. To provide explicit
descriptions of a pro-p Sylow thanks to Bruhat-Tits theory, we restrict the
study to the case of a simply-connected quasi-split semi-simple group G over
a local field K.

Such a group G can be decomposed as a direct product of K-simple
groups. Moreover, by [BT65, 6.21] for a simply connected group, we know
that for any simply-connected K-simple group H, there exists a finite exten-
sion of local fields K’/K and an absolutely simple K’-group H’ such that
H is isomorphic to the Weil restriction Ry, (H'), that means H' seen as a
K-group. Since H(K) = H'(K') by definition of the Weil restriction, we will
assume that the simply-connected semi-simple group G is absolutely simple.

In the Bruhat-Tits theory, given a reductive K-group G, we define a
poly-simplicial complex X (G, K) (a Euclidean affine building), called the
Bruhat-Tits building of G over K together with a suitable action of G(K)
onto X (G, K). There exists an unramified extension K’/K such that the
K-group G quasi-splits over K’. There are two steps in the theory. The first
part, corresponding to chapter 4 of [BT84|, provides the building X (G’, K')
of Gk by gluing together affine spaces, called apartments. The second part,
corresponding to chapter 5 of |[BT84|, applies a Galois descent to the base
field K, using fixed point theorems.

In the non quasi-split case, the geometry of the building does not faith-
fully reflect the structure of the group. There is an anisotropic kernel of the
action of G(K) on X(G, K). As an example, when G is anisotropic over K,
its Bruhat-Tits building is a point; the Bruhat-Tits theory completely fails
to be explicit in combinatorial terms for anisotropic groups. Thus, the gen-
eral case may require, moreover, arithmetical methods. Hence, to do explicit
computations with a combinatorial method based on Lie theory, we have
to assume that G contains a torus with enough characters over K. More
precisely, we say that a reductive group G is quasi-split if it admits a Borel
subgroup defined over K or, equivalently, if the centralizer of any maximal



K-split torus is a torus [BT84, 4.1.1].

Now, assume that K is any non-Archimedean local field of residual char-
acteristic p # 2 and residue field kK ~ F, where ¢ = p"™. Let G be an
absolutely-simple simply-connected quasi-split K-group.

1.1.1 Theorem. Denote by l the rank of the relative root system of G, and
by n the rank of the absolute root system of G. Assume thatl > 2. If G has
a relative root system ® of type Go or BCy, assume that p # 3. Let P be a
maximal pro-p subgroup of G(K). Denote by d(P) the minimal number of
generators of P. Then, we have:

d(P)=m(l+1) orm(n+1)

depending on whether the minimal splitting field extension of short roots is
ramified or not.

This theorem is formulated more precisely and proven in Corollary 5.2.2.
According to [Ser94, 4.2], we know that d(P) can also be computed via coho-
mological methods: d(P) = dimZ/pZHl(P, Z/pZ) = dimg, ),z Hom(P, Z/pZ).

From now on, we need to be more explicit. In the following, given a
local field L, we denote by wy, the discrete valuation on L, by Oy, the ring of
integers, by my, its maximal ideal, by wy, a uniformizer, and by k;, = O /mp,
the residue field. Because we have to compare valuations of elements in L*,
we will normalize the discrete valuation wy, : L* — Q so that wp(L*) = Z.
When [ € R, we denote by || the largest integer less than or equal to | and
by [l] the smallest integer greater than or equal to .

If it is clear in the context, we can omit the index L in these notations.
When L/K is an extension, we denote by G, the extension of scalars of G
from K to L. When H is an algebraic L-group, we denote by Ry, x(G) the
K-group obtained by the Weil restriction functor Ry defined in [DGT0,
181 6.6].

1.2 Pro-p Sylows and their Frattini subgroups

Let K be a non-Archimedean local field and G be a semi-simple K-group.
We consider a maximal pro-p subgroup P of G(K). When G is simply
connected, we know by Bruhat-Tits theory [Loil6, 1.5.3], that there exists a
model G, that means a Og-group with generic fiber Gg = G, such that we
can identify P with the kernel of the natural surjective quotient morphism
G(Ok) — (QH/RU (Q,{)>(/<;). More precisely, G is a model of an Iwahori
subgroup corresponding to the unique maximal facet (the alcove) fixed by
P. The reductive group <g,.@/7?,u (gﬁ)) is, in fact, a k-torus. Indeed, it is

quasi-split since & is a finite field and its root system over k given by [BT84,
4.6.12 (i)] is empty. Thus, in other words, the pro-p Sylow P is the inverse
image of a p-Sylow along the surjective homomorphism G(Og) — G(k).



To compute the minimal number of generators, the theory of profinite
groups provides a method consisting of computing the Frattini subgroup.
The Frattini subgroup of a pro-p group P consists of non-generating elements
and can be written as Frat(P) = [P, P]PP, the smallest closed subgroup
generated by p-powers and commutators of elements of P [DASMS99, 1.13].
Once the elements of the group Frat(P) has been determined in order to
obtain the structure of the quotient group P/Frat(P), it becomes immediate
to provide a minimal topologically generating set X of P, arising from a
finite generating set of P/Frat(P).

From this writing, we observe that the computation of the Frattini sub-
group of P is mostly the computation of its derived subgroup. Despite P
is close to be an Iwahori subgroup I of G(K) (in fact, I = Ng(x)(P) is an
Iwahori subgroup and P has finite index in I), we cannot use the results of
[PR84, §6] because there are fewer semi-simple elements in P than in I. How-
ever, computations of Section 4 have some similarities with computations of
Prasad and Raghunathan.

A question that is not considered here is to study the minimal presenta-
tions of a pro-p group. We say that P is finitely presented as pro-p group
if there exists a closed normal subgroup R of the free pro-p group F,, gen-
erated by n elements such that P ~ F\np/ R and R is finitely generated as
a pro-p group. Let r(P) be the minimum of all the d(R) among the R and
n > d(P). According to [Ser94, 4.3|, P is finitely presented as pro-p group
if, and only if P is finitely generated as a pro-p-group and H?(P,Z/pZ) is
finite. In this case, we get r(P) = dimz/pZHQ(P, Z/pZ) and, for any R,
we have d(R) = n — d(P) + r(P). Note that r(P) does not depend on the
choice of a generating set and we can choose simultaneously a minimal gen-
erating set and a minimal family of relations. More generally, Lubotzky has
shown [Lub01, 2.5] that any finitely presented profinite group P can be pre-
sented by a minimal presentation as a profinite group. If we can show that
H?(P,7Z/pZ) is finite, then, by [Wil99, 12.5.8], we get the Golod-Shafarevich
inequality r(P) > d(f]:)Q. This has to be the case according to study of
Og-standard groups of Lubotzky and Shalev [[.S94, 5.2], at least for simply
connected split groups in positive characteristic.

Here, the main result is a description of the Frattini subgroup of P,
denoted by Frat(P), in terms of valued root groups datum. We assume that
K is a non-Archimedean local field of residue characteristic p and that G
is a semi-simple and simply-connected quasi-split K-group. To simplify the
statements, we assume, moreover, that G is absolutely almost simple; this is
equivalent to assuming that the absolute root system ® is irreducible. We
know that it is possible to describe a maximal pro-p subgroup P of G(K)
in terms of the valued root groups datum [Loil6, 3.2.9]. A maximal poly-
simplex of the building X (G, K), seen as poly-simplicial complex, is called
an alcove. Any maximal pro-p subgroup of G(K) fixes a unique alcove ¢



that is a fundamental domain of the action of G(K) on X (G, K). It is then
possible to describe the Frattini subgroup in terms of the valued root groups
datum, as stated in the following theorem:

1.2.1 Theorem. We assume that p # 2 and we denote by ® the relative root
system of G over the ground field K. If ® is of type G2 or BCj, we assume
that p > 5.

Then the pro-p group P is topologically of finite type and, in particular,
Frat(P) = PP[P, P|. Moreover, when ® is not of type BCy, we have PP C
[P, P].

The Frattini subgroup Frat(P) can be written as the image of the map
duced by multiplication from o direct product of some groups expressed in
terms of the valuation of a root group datum.

When ® is reduced (that means is not of type BCy), then Frat(P) is the
mazimal pro-p subgroup of the pointwise stabilizer in G(K) of the combina-
torial ball centered at ¢ of radius 1 (see Definition 3.1.11).

For a more precise version, see Theorems 5.1.1 and 5.1.2.

1.3 Structure of the paper

We assume that G is a simply-connected quasi-split absolutely simple K-
group. We fix a Borel subgroup B of G defined over K. By [Bor91, 20.5, 20.6
(iii)], there exists a maximal K-split torus S in G such that its centralizer,
denoted by T = Z5(S), is a maximal K-torus of G contained in B. We fix
a separable closure K of K; by [Bor91, 8.11], there exists a unique smallest
Galois extension of K, denoted by K , splitting 7', hence also splitting G by
[Bor91, 18.7]. We call the relative root system, denoted by ®, the root
system of G relatively to S. We call the absolute root system, denoted
by @, the root system of G'z relatively to T};. In particular, the choice of B
determines an order ®* of the root system ® and a basis A. N

In Section 2.1.2, we recall the definition of a Gal(K/K)-action on
which preserves the Dynkin diagram structure of Dyn(A) and on its basis A
corresponding to the Borel subgroup B. According to [BT84, 4.1.16], when
G is absolutely simple (hence Dyn(A) is connected), the group Aut(Dyn(A))
is a finite group of order d < 6. As a consequence, the degree of each splitting
field extension is small and does not interact a lot with Lie theory. One can
note that a major part of proofs in this paper is taken by the non-reduced
BC( cases and the trialitarian D, cases.

From this action and thanks to a rank 1 consideration, we define, accord-
ing to [BT84, §4.2], a coherent system of parametrizations of root groups in
Section 2.1.3 together with a filtration of the root groups in Section 2.1.4.

This provides us with a valued root groups datum (T(K), (Ua(K), @a)aeq))

built from (G, S, K, K ). This filtration corresponds to a prescribed affinisa-
tion of the spherical root system ®. From this, we compute, in Sections 2.2



and 2.3, various commutation relations between unipotent and semi-simple
elements in rank 1. This will be useful to describe, in Section 3.2, the action
of P onto a combinatorial ball centered at c of radius 1. This will also be
useful in Section 5.1 to generate semi-simple elements of Frat(P).

We denote by A = A(G, S, K) the “standard” apartment and we choose
an alcove cyr C A, to be a fundamental domain of the action of G(K)
on X(G,K). Those objects will be described in Section 3.1.1 and 3.1.2
respectively thanks to the sets of values, defined in Section 2.1.5, which
measure where the gaps between two terms of the filtration are and, in
the non-reduced case, what kind of gaps we must deal with. From this, we
deduce, in Section 3.1.3, the geometrical description of the combinatorial ball
centered at ¢ of radius 1. Consequently, the geometric situation provides, in
Section 3.2, an upper bound for Frat(P), that means a group @ containing
Frat(P).

Thus, we seek a generating set of () contained in Frat(P). As the Frattini
subgroup can be expressed as Frat(P) = PP[P, P], we seek such a generating
set by commuting elements of P. In Section 4.1, we invert the commutation
relations provided by [BT84, A] in the quasi-split case from which we deduce,
in Section 4.2, a list of unipotent elements contained in [P, P].

From these unipotent elements and from semi-simple elements obtained
by the rank 1 case, we obtain, in Section 5.1, a generating set and a descrip-
tion of the Frattini subgroup as a product of groups. In Section 3.1.3, we go
a bit further than Bruhat-Tits in the study of quotient subgroups of filtered
root groups. From this, we can compute the finite quotient P/Frat(P) and
deduce, in Section 5.2, a minimal generating set of P. The minimal number
of elements of such a family is stated in Corollary 5.2.2.

We summarize this in the following graph:




2 Rank 1 subgroups inside a valued root group da-
tum

We keep notations of Section 1.3. In particular, we always denote by
K a field and by G a quasi-split absolutely simple K-group. From Sec-
tion 2.1.4, we will assume that K is a non-Archimedean local field, and we
will assume that G is simply-connected. In order to compute the Frattini
subgroup of a maximal pro-p subgroup of G(K), we adopt the point of view
of valued root groups datum. In Section 2.1, we recall how we define a val-
uation on root groups, and how these groups can be parametrized. Thanks
to these parametrizations, given in Section 2.1.3, we compute explicitly, in
Sections 2.2 and 2.3, the various possible commutators, and the p-powers
of elements in a rank 1 subgroup corresponding to a given root. The rank
1 case is not only useful to define filtrations of root groups, but also useful
to compute elements in the Frattini subgroup corresponding to elements of
the maximal torus T'. There are exactly two root systems of rank 1, up to
isomorphism, whose types are named A; and BC1, corresponding to groups
SLa (Section 2.2) and SU(h) C SL3 (Section 2.3) respectively.

We denote by T'(K) the maximal bounded subgroup of T'(K), defined in
[BT84, 4.4.1]. We denote by T'(K); the (unique) maximal pro-p subgroup
of T(K )b.

2.1 Valued root groups datum

We want to describe precisely the derived group of a maximal pro-p
subgroup. We do it in combinatorial terms, thanks to a filtration of root
groups. Because we have to deal with non-reduced root systems, we recall
the following definitions:

2.1.1 Definition. Let ® be a root system. A root a € & is said to be
multipliable if 2a € ®; otherwise, it is said to be non-multipliable. A
root a € ® is said to be divisible if %a € ®; otherwise, it is said to be
non-divisible.

The set of non-divisible roots, denoted by ®,4, is a root system; the set
of non-multipliable roots, denoted by @y, is a root system.

2.1.1 Root groups datum

For each root a € @, there is a unique unipotent subgroup U, of G whose
Lie algebra is the weight subspace with respect to a. In order to define an
action of G(K) on a spherical building with suitable properties, it suffices
to have suitable relations of the various root groups U, (K). These required
relations are the axioms given in the definition [BT72, 6.1.1] of a root groups
datum.



Now, given a connected reductive group G over a field K, with a relative
root system ®, we provide a root groups datum of G(K). Let a € ®. By
[Bor91, 14.5 and 21.9], there exists a unique closed K-subgroup of G, denoted
by U,, which is connected, unipotent, normalized by T" and whose Lie algebra
is g, if the root a is non-multipliable and g, + goq if the root a is multipliable,
where g, denotes the root subspace of the Lie algebra g of G with respect
to a, as defined in [Bor91, 8.17]. This group U, is called the root group
of G associated to a. By [BT84, 4.1.19|, there exists cosets M, such that

(T(K), (Ua(K), Ma)ag@) is a generating root groups datum of G(K) of type
.

2.1.2 The Galois action on the absolute root system and splitting
extension fields of root groups

As before, for simplicity, G is a quasi-split absolutely simple K-group.
As in Section 1.3, we denote by K the minimal splitting field of G over K
(uniquely defined in a given separable closure K of K).

We consider the canonical action of the absolute Galois group ¥ =
Gal(Ks/K) on the abstract group G(Ks). Since G is quasi-split, we can
choose a maximal K-split torus S and we get a maximal torus T' = Z5(S5)
of G defined over K. Thus, we define an action of ¥ on X*(Tk,) by:

Yo €5, ¥x € X*(Tie.), 0-x =t o (x(o7'(1))

2.1.2 Notation (The Galois action on the absolute root system). This is a
summary of [BT65, §6] for a quasi-split absolutely simple group G. Denote
by A the set of absolute simple roots corresponding to the Borel subgroup
B and by Dyn(A) its associated Dynkin diagram. The above action induces
an action of the Galois group ¥ = Gal(K/K) on Dyn(A) which preserves
the diagram structure. This action can be extended, by linearity, to an
action of ¥ on V* = X*(Tz) ®z R, and on ®. The restriction morphism
Jj=u": X*(T) — X*(S), where ¢ : S C T is the inclusion morphism, can be
extended to an endomorphism of the Euclidean space p : V* — V*. This
morphism p is the orthogonal projection onto the subspace V* of fixed points
by the action of 3 on V*. From the inclusion of ® in the Euclidean space v+
providing a geometric realization of absolute roots, we deduce a geometric
realization of ® = p(®) in V*. The orbits of the action of ¥ on ® are the
fibers of the map p: & — ®.

2.1.3 Notation (A separable field extension). According to [BT84, 4.1.2], by
definition of K as minimal splitting extension, the action of ¥ = Gal(K/K)
on Dyn(A) is faithful since G is semi-simple. Because we assumed that G is
absolutely simple, its absolute root system @ is irreducible. Denote by d the

degree of the extension K /K. Because of the classification of root systems,
the index d is an element of {1,2,3,6} [BT84, 4.1.16].



Ifd=1welet ' =K =K.

Ifd =2, welet L' = K; we fix 7 € Gal([?/K) to be the non-trivial
element.

If d > 3, we let L' be a separable sub-extension of K (possibly non-
Galois) of degree 3 over K; we fix 7 € Gal(K/K) to be an element of order
3.

Thus, we denote d’ = [L' : K| € {1,2,3}. In practice, d = min(d, 3).
Note that if d > 3, then ® is of type Dy and ® is of type Go. Thus, if there
is a multipliable root (i.e. @ is of type BC,,), then we are in the case d = 2.

2.1.4 Definition. Let o € ® be an absolute root. Denote by 3, be the
stabilizer of « for the canonical Galois action. The field of definition of
the root « is the subfield of K fixed by Y, denoted by L, = K=o,

Let a = a|g. The splitting field extension class of a is the isomor-
phism class of the field extension L, /K, denoted by L,/K.

Proof that this definition makes sense. We know, by [BT65, §6], that the set
{a € ®, a = a|g} is a non-empty orbit of the canonical Galois action on ®.
Hence, by abuse of notation, we denote a = {«a € P, a= als}. Thus, given
any relative root a € ®, the field extension class L, /K does not depend of
the choice of a € a. O

2.1.5 Remark. If a € ® is a multipliable root, then there exists o, &’ € a such
that a + o/ € & [BT84, 4.1.4 Cas II]. Because a is an orbit, we can write
o/ = o(a) where 0 € ¥ is of order 2. As a consequence, the extension of
fields Lo /La1o is quadratic. By abuse of notation, we denote this extension
class by L,/ Lag; the ramification of this extension will be considered later.

2.1.3 Parametrization of root groups

In order to value the root groups (we do it in Section 2.1.4) thanks to
the valuation of the local field, we have to define a parametrization of each
root group. Moreover, these valuations have to be compatible. That is why
we furthermore have to get relations between the parametrizations.

Let (Zq),c5 be a Chevalley-Steinberg system of G . This is a parametriza-

tion of the absolute root groups z, : G, — U, over K satisfying some com-
patibility relations, that will be exploited to get commutation relations in
Section 4.1. We recall the precise definition and that such a system exists in
Section 4.1. Such a Chevalley-Steinberg system determines parametrisations
x, of relative root groups U, over K.

Let a € ® be a relative root. To compute commutators between elements
of opposite root groups, or between elements of a torus and of a root group,
it is sufficient to compute inside the semi-simple K-group G* = (U_,, U,)
generated by the two opposite root groups U—, and U,. Note that if G is
simply connected, then so is G*. Let m : G* — G® be the universal covering

10



of the quasi-split semi-simple K-subgroup of relative rank 1 generated by
U, and U_,. The group Ge splits over L, (this explains the terminology of
“splitting field” of a root). A parametrization of the simply-connected group
G is given by [BT84, 4.1.1 to 4.1.9]. We now recall notations and the matrix
realization that we will use later.

The non-multipliable case: Let a € ® be a relative root such that 2a ¢
® and choose a € a. By [BT84, 4.1.4], the rank-1 group Ga is isomorphic to
Rr,/k(SL2,L,). Inside the classical group SLg 1., a maximal L,-split torus
of SLa 1, can be parametrized by the following homomorphism:

Z Gm,La — SLQ’LQ

t 0
t — <0 t‘1>

The corresponding root groups can be parametrized by the following homo-
morphisms:

y—: Ggr, — Slor, y+: Gar, — Slar,

N 1 0\ and quu
—v 1 0 1

According to [BT84, 4.1.5], there exists a unique L,-group isomorphism,
denoted by &, : SLo , — éo‘, satisfying Ti, = 7o &, o y+ where G is the
simple factor of CNJ% of index a.

Thus, we define a K-homomorphism z, = o Ry, /x(§a © y+) which is
a K-group isomorphism between Ry, /k(Gq,r,) and U,. We also define the
following K-group homomorphism:

a= ﬂ—oRLa/K(éa OZ) : RLQ/K(Gm,LQ) — T

where T = T' N (U_,, U,).

The multipliable case: Let a € ® be a relative root such that 2a €
®. Let o € a be an absolute root from which a arises, and let 7 € ¥
be as in Notation 2.1.3 so that a 4+ 7(a) is again an absolute root. To
simplify notations, we let (up to compatible isomorphisms in ¥) L = L, =
L, and Ly = Lo, = La+T(a) whenever there is no possible confusion on
the considered root a. By [BT84, 4.1.4|, the K-group G is isomorphic to
Rr,/k(SU(h)), where h denotes the hermitian form on L x L x L given by
the formula:

1
h: (l’fl,ibo,l'l) — Z $Z'TZLLi

i=—1
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The group C~¥“L2 can be written as é‘iQ = [secal(ra/x) Go(2),0(r(@)) where
each G7(@):9(7() denotes a simple factor isomorphic to SU(h), so that SU(h), ~
SL3.1.-

We define a connected unipotent La-group scheme by providing the Lo-
subvariety Ho(L,L2) = {(u,v) € L X L, w'u = v+ "} of L x L with the
following group law:

(u,v), (W, ") = (u+u' v+ +uu)

Then, we let H(L, L2) = Ry, x(Ho(L, L2)). For the rational points, we get
H(L,L2)(K) ={(u,v) € L x L, w"u =v+ "v}.
We parametrize a maximal torus of SU(h) by the isomorphism

zZ . RL/LQ(Gm,L) — SU(h)
t 0 0
t — |0 t7't 0
o o0 7!

We parametrize the corresponding root groups of SU(h) by the homo-
morphisms:

y_ Ho(L,Lz) — SU(h)
1 0 0
(u,v) — u 1 0
—v —"u 1
and
y+: Ho(L,L2) — SU(h)

By [BT84, 4.1.9], there exists a unique La-group isomorphism, denoted by
€ : SU(R) — G¥™(@) satisfying T+q = 7 0 &, 0 y+. From this, we define a
K-homomorphism z, = 7o Rp, k(a0 y+) which is a K-group isomorphism
between the K-group H(L, L2) and the root group U,. We also define the
following K-group homomorphism:

a=7oRp,/k(o02): Ryk(Gmr) — T
where T% =T N (U_q, Uy).

2.1.6 Notation. For any multipliable root a € ®, in [BT84, 4.2.20] are
furthermore defined the following notations:

o IV ={y €L, y+Ty =0}, this is an Lo-vector space of dimension 1;

e L' ={yecL, y+7y=1}, thisis an L%affine space.

12



Indeed, if K is not of characteristic 2, then L° = ker(7 4 id) is of dimen-
sion 1 because Ly = ker(7 —id) is of dimension 1 and %1 are the eigenvalues
of 7 € Gal(L/Ls). If K is of characteristic 2, then L = ker(7 + id) = L.
Moreover, in both cases, since the quadratic extension L/Ls is separable,
the trace map L — Lo is surjective and, therefore, the affine space L' is
non-empty.

2.1.7 Remark (Interest of such notations). For any A € L? so that A # 0, we
have an isomorphism of abelian groups given by the relation

Ly — I°
y = Ny

so that z4(0, \y) = x24(y). This constitutes an additional uncertainty when
we want to perform computations in G(K). Because of valuation consid-
erations, we will have to choose a A\ whose valuation is minimal. To avoid
confusion, it is better to work with the isomorphism of abelian groups

LO — UQQ(K)
y = 24(0,y)

in order to realize this group as a subgroup of U, (K).
The affine space L' has an interest in the context of a valued field. In

particular, since L' is non-empty, we can write L = Lo\ @® L° with a suitable
Ae Ll

2.1.4 Valuation of a root groups datum

If L/K is a finite extension of local fields, the valuation w over K* can
be extended uniquely to a valuation over L™, still denoted by w because of
its uniqueness.

For each root group, we now use its parametrization to define an ex-
haustion by subgroups. In order to define an action of G(K) on an affine
building with suitable properties, it suffices to have suitable relations between
the terms of filtration of root groups. More precisely, given a quasi-split re-
ductive group G over a non-Archimedean local field K, with a relative root
system ®, we provide a valued root groups datum of G(K) (see Definition
[BT72, 6.2.1]). We define a valuation (ggq)qce of the rational points U, (K)
of each root group by:

e vu(24(y)) = w(y) if a is a non-multipliable and non-divisible root, and
ify € Lg;

e vu(za(y,y)) = sw(y’) if a is a multipliable root and if (y,y') €
H(Lm LQa);

e ©02,(74(0,v")) = w(y') if a is a multipliable root and if 3’ € LY.

13



By [BT84, §4.2|, the family (T, (Ua(K), M,, goa)aeq)> is a valued root groups

datum. In the following, we denote by U, ; = ¢, ([l, +00]) for any root a € ®
and any value [ € R.

2.1.5 Set of values

We let I'f, = w(LX).

Because we considered a discrete valuation w, the terms of filtration
indexed by R can, in fact, be indexed by discrete subsets. These subsets
will be used in Section 3.1, to provide an “affinisation” of the spherical root
System.

Let a € ® be a root. We define the following sets of values:

o Iy = @a(Ua(K) \ {1});
o I = {pa(u), u € Us(K)\ {1} and pq(u) = sup pq(ulaa(K))};

where U, denotes the trivial group for 2a ¢ ®. Furthermore, for any value
| € R, we denote T = min{l’ € Ty, I > [}. This is the lowest value,
greater than [, for which we will detect a change in the valued root groups
(Ugr)r>1- In order to characterize I',, we complete the notations of 2.1.6
introducing the following L ... = {z € L, w(z) = sup{w(y), y € Li}}
for a multipliable root a. It is the subset of L. whose elements reach the
maximum of the valuation.

2.1.8 Remark. Be careful that the value [T also depends on a.
The sense of '), will be provided by Lemma 3.1.14, as the set of values
parametrizing the affine roots.

2.1.9 Lemma. If a is a non-multipliable non-divisible root, then we have
r,=r,=ry,.

Proof. This is obvious by the isomorphism between U,(K) and L. O

Now, we assume that a € ® is a multipliable root.

Let p be the residue characteristic of K. Even if the sets of values can be
computed for any p, we assume here that p # 2. This assumption provides
a short cut in the computation of sets of values (mostly because % € L}l’max
in this case), and will be necessary later for more algebraic reasons.

Since w is a discrete valuation and since for any y € L., we have w(y) <

0, it is clear that Lzlz,max is non-empty. Moreover, when p # 2, we have
;€ L} max- Hence, by [BT84, 4.2.21 (4)], we know that Ty = 1T, and that
r=ryg,.

By BT84, 4.3.4], we know that:

e when the quadratic extension L,/ Lo, is unramified, we have the equal-
ities Ty = I, = w(LY\ {0}) =T, =Tp1,.;
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e when the quadratic extension L, /Lg, is ramified, we have the equalities
Poq = Ty = w(LO\ {0}) = w(wg,) + Ly,

2.1.10 Lemma (Summary). Let a € ® be a multipliable root. If we normal-
1ze the valuation w so that I'y, = 7Z, then we get:

Lo/ Lo, | unramified | ramified
Iy, Z Z
Tz, Z 27

T, 37 57
|5 A 1+ 27
iy Z Z

2.1.11 Remark. The case of a divisible root has been treated. It is the case
2a of a multipliable root a.

2.1.12 Remark (The case of residue characteristic 2). When the residue
characteristic is any prime number (and in particular if p = 2), it can be
seen via further investigations, that the set L}Lmax is non-empty and we let
{6} = w(L} nax)- We can compute the sets of values, depending on ¢ and
on the ramification of L,/Lo,. We get the following results:

o I/ =16+Ty,;

o =T} U320 = 5T,

e if L,/Lo, is ramified, then I/, N %FQQ =0 and 'y, =0+ w(wr, )+ L,,;
o if L,/ Lo, is unramified, then I, N 3T, # 0 and T'aq = T'p,, =T,

Because § = 0 when p # 2, this is, in fact, the generalisation to any
residue characteristic.

2.2 The reduced case

Let a € ® be a non-multipliable root of ® arising from an absolute root
a € ®. In this section, in order to simplify notation, we denote L = L, = L,.
The universal covering 7 : RL/K(SLQ’L) — G is a central K-isogeny, which
allows us to compute relations between the elements of U,, U_, and T by
the parametrizations x,, ¥_, and @ thanks to matrix realizations in SLs.

We denote by 7% = T'N G* the maximal torus of G* and by T%(K);
the image of the group homomorphism a : 1+ my, — T%K). If G* is
simply-connected, then the torus T is an induced torus and T%(K ),j =
T(K); NT%(K) is the maximal pro-p subgroup of T%(K), by [Loil6, 3.2.10].

2.2.1 Lemma (Commutation relation [T, U,] in the reduced case).
(1) Let t € T(K). Then, for any x € L, we have

[ma(:c)ﬂf} = J:Q((l - oz(t))x)
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(2) Normalize the valuation w by 'y =T = Z. For anyl € Ty, we have:

Ua,H—l pr 7& 2
Ugi1 D [T(K)f Uay] O [TK)f Uay] =4 Uayrz  ifp=2 and L # Qy

Usiys f L=Q =K

Proof. (1) By definitions, tzq(z)t ™' = x4 (a(t)z). Hence [z4(2),t] = z4(z)zq(—
at)z) = aca((l — a(t))ac).

(2) Since a(T(K);) is a pro-p-subgroup of L*, it is contained in 1+my,.
Thus, we deduce [T‘I(K) LU, l] C [T(K);,Ua l] C Ug,41 from (1).

We prove U, j4i = [T“(K)b ,Uqu] where i € {1,2,3} is, as in statement,
depending on L. Let t € T(K); and u € U,;. Write u = z4(z) with
x € L such that w(z) > 1. Write t = a(1 + z) with z € my, so that a(t) =

(1+2)2. Applying (1), we get [z4(x),t] = :Ea<— (2+z)zx> € Uy(K). Thus
goa([xa(x)j]) = w(@)+w(z)+w(2+2) > I+i. Thus [T9(K)}, Uay] € Uppss.

If p # 2, then cpa([ a(x),t]) = w(x) + w(z) > 1+ 1. Conversely, let
y € L be such that w(y) > [+ 1. Let z be a uniformizer of Of, and = =

—(2z + 22)71y. Thenw(aj) w(y) —1 > 1 and z4(y) = [za(z),a(1 —l—z)]
This gives [Ta ] Uai+41-

If p=2and L 7é Qg, then w(2 + z) + w(z) > 2. Hence goa([xa(:c)ﬂ) >
[+ 2. Conversely, let y € L be such that w(y) > 1 + 2. If 2 is a uniformizer
of Or, that means L is an unramified (non-trivial) extension of Q2, then
there is a unit w € O] such that 1+ u is also a unit. We take z = 2u
and z = —(4u(1 + u))_ly. Otherwise, if @ be a uniformizer of Op, then
s0is 24 w. We take z = w and z = —(2(2 + z))_ly Then, in both cases,
we have w(z) = w(y) — 2 > | and 24(y) = [z.(x),a(l + z)] This gives
[T(K), Uait] = Ugyo.

If L =K = Qy, then w(2 + z) + w(z) > 3. Hence goa<[a:a(:n),t]> >
[ 4+ 3. Conversely, let y € L be such that w(y) > [+ 3. Let z = 2 and
= —(8)"1y. Then w(z) = w(y) —3 >l and z,(y) = [z4(x),a(1+2)]. This
gives [T*(K)}, Uay] = Uaiys- O

2.2.2 Lemma (Commutation relation [U_,, U, ] in the reduced case). (1)
For any x,y € L such that 1 + zy € Of, we have:

[2-aly) 2al@)| =20 (fﬂy) a(l+ay)zo <1_f1yy>

(2) Let I,I' € Ty, be such that 1 +1" > 0. The product U_a,lTa(K)l'fUa,l/
is a group.

(3) Let I,I" € Ty be such that | +1' > 0. Normalize w by T, =T1 =7,
so that 1 +1' > 1. Then [U,a’l, Ua,l’] - U,a,lJrlTa(K);—Ua,l/_;_l.
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Proof. (1) If z,y € L satisfy 1 + 2y € OF, then in SLy(L), we have:

) = T 1
—y 1) \0 1 Y A ==y AV

Applying 7 to this equality, we get the desired equality.
(3) For any =,y € L such that w(x) > 1" and w(y) > [, we have w(xy) =
w(z) +w(y) > 0. Hence 1+ 2y € 14+ my, and therefore a(1+ zy) € T*(K); .

2 2
Moreover, w (%) =w(z) +2w(y) > 1+w(y) and w (%) = 2w(x) +
w(y) > 1+ w(z). Hence z_, (f’f;y) € U_g 41 and z, (%) € Uyprt1- As

soon as we know (2), this will prove (3).

(2) By the calculation in (1), we have Uy -U_q; C U_qy ~T“(K)b+ Ug .
By Lemma 2.2.1, we have that Ta(K)l;|r U_qy=U_q;- T“(K);' and U,y -
TYK) =T(K) -Uyy. Hence U_q ;- TK)} Ugp-U_qi-T*(K)f -Ugy C
U_ay - T“(K)g|r “Ugy. Thus U_g; - Ta(K)l'f - Ugy is stable by multiplication
and inverse. O

2.2.3 Proposition. Assume that p#£2 and 'y =1y =Z. Letl € Z =T1,.
Let H be the subgroup H = Uy T(K)}U_q 141 of GY(K). Then HP C
[H, H] and the derived group [H, H] contains the subgroups Uy 11, U_q —142
and T*(K)j .

Proof. Denote by w a uniformizer of L. We firstly show that T“(K)Z is
contained in [H, H]. For any t € 1+mp, t # 1 and any u € L\ {0}, one can
check the following equalities inside SLs:

G (e -G 0w
(7))L D6y o

For any t —1 =s € wOp, we have w(l1+t) = w(2+s) = 0 because p # 2,
and w(t) = 0. Hence, for any u € w't1Op, we have the following:

8‘&\»—!

«(i) = 0 ol ol 4 =0
w(—(lt_gi)Q) = 2w(s) —w(u)

Moreover, we have:
2w [t? —tTtu t 0
o t2)lo 2 ) \o ¢+ (3)
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Lett=14s€1+wO. Set u =) g0 that w (125_7@2) = [ and

(1-12)2 = : X
w (_W) > —I+1. Hence, g 1 € Handm| (g 1 € .

t t2u

2

Thus, according to the equation (1), we get 7 <to

t";’g) € [H, H] . Similarly,

2 —t
0 t2
for any ¢ € 1+ wOy, we have a(tt) € [H, H] according to the equation (3).
14+4my, — 1+mg
t =t
since p # 2, for any y € my, one can apply Hensel’s Lemma to polynomial
Q = X? +2X — y. This polynomial has a root € my, so that Q(z) =
(14 )% — (1 +y) = 0. Hence a(t) = a(s*) € [H, H] for some s € 1 +my.
As a consequence, the elements:

-y o () o (452%)

where u € @Oy and t = 1 + @=L are in [H, H]. Indeed, w(u) — 1 >
(I41)—1 = 1so that tisin 1+my. Moreover, w (%) =w(u)—w(l—t?) =

w(u)—(w(u)—=1) =1land w ((175)2) =2w(1—1?)—w(u) = w(u)—20 > 1-1.

substituting u by —t%u, we get 7 < ) € [H,H]. As a consequence,

The group homomorphism { is surjective. Indeed,

+4
Hence, the group [H, H] contains Ug ;4.

Similarly, it contains U_, (_j11y41 = Uq 142, using the equation (2) in-
stead of (1).

It remains to prove that HP C [H, H]. Let g € H = U,a7,l+1T“(K):Ua,l
and write g = x_q(v)a(t)z,(u). Consider the quotient morphism 7 : H —
H/[H,H]. Then 7(¢*) = w(g)? = (7T(a:_a(v))ﬂ(fi(t))ﬂ(l‘a(u)))p. Since
H/[H, H] is commutative, we have m(gP) = m(2_q(v))"m(a(t))" 7 (za(u))’ =
T(2_qo(pv))m(a(t?))m(zq(pu)). We have seen that a(t) € [H, H] so that
a(t?) € [H,H]. Moreover, because w(pu) > w(u) and w(pv) > w(v), we
have x_q(pv) € U_q 142 C [H,H] and z,(pu) € Uyy41 C [H,H]. Thus
m(gP) = 1. Hence ¢? € [H, H|. O

2.3 The non-reduced case

Let a € ® be a multipliable root of ® arising from an absolute root a € .
In this paragraph, we denote by L = L, = L, and Ly = Lyt7q = Lag,
where 7 = 7, is the non trivial element of Gal(L/L2). In order to simplify
notations, for any x € L, we denote "x = 7(z). Denote by h the Lo-Hermitian

form:
h: LxLxL — L

1
(x_1,x0,71) > Zx,ﬂ(z‘i)

i=—1
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Recall that the universal covering is a central K-isogeny 7 : Ry /i (SU(h)) —
G, from which we compute, inside SU(h), relations between elements of U,
U_, and T thanks to parametrizations x,, _, and a.

Denote by T% = T N G* and T“(K)l;F the image of the group homo-
morphism: @ : 14+ my, — T%K). When G° is simply-connected, then
T(K)f = T(K) NT*(K). For any | € N*, set T%(K)! = a (14 m}).
Normalize w by 'y = I'_, = 1Z, so that I'y, = Z and 'z, = 2Z or Z de-
pending on whether the extension L/Ls is ramified or not. The analogue to
Proposition 2.2.3, in the non-reduced case, is the following:

2.3.1 Proposition. Assume that p > 5. Letl € I'y, = %Z. Let H be the
subgroup H = U,a’,lT“(K);rUa,H% of G(K).

If L/ Ly is not ramified, then there exists I € N* such that [H, H] con-
tains the following subgroups T*(K)L , U_, 111 and Ua’H_%.

If L/ Ly is ramified, then there exists I € N* such that [H, H] contains
the following subgroups T“(K)g/, U_a7_l+% and Ug 42.

Precisely, up to exchanging a with —a, we can assume | € ', = Z and,
i this case, we get:

" = max(1+ 2,3 +¢)

where

|1 if L/Ly is ramified and l € 2Z+1 =T\ T,
| 0 otherwise

Moreover, if K is of characteristic p or if the extension K/Q), is ramified
(so that w(p) > 2w(wy)), we have HP C [H, H].

2.83.2 Remark. Since the maximal pro-p subgroups are pairwise conjugate by
[Loil6, 1.2.1], by the choice of a maximal pro-p subgroup corresponding to a
suitable alcove, we can assume later that € = 0. Such a choice will be done in
Section 3.1.2. Moreover, because of the lack of rigidity, computations in the
rank 1 case give large inequalities for the commutator group. In fact, when
the rank is > 2, we can make a stronger assumption, to get a more precise
computation of the Frattini subgroup, as stated in Proposition 2.3.11.

In order to simplify notation, denote by H(L, Lg) the rational points
of the K-group H(L, L), instead of H(L, Ly)(K). For any (x,y), (u,v) €
H(L,Ls) and for any t € 1 + wyOp, up to precomposing by 7, we have the
following matrix realization:

t 0 0
at)y=(0 1t 0
0o o0 7!
1 -z —y 1 0 0
zo(lz,y) =0 1 =z T gu,v) = uw 1 0
0 0 1 —v ="y 1
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We want to obtain some unipotent elements, and some semi-simple el-
ements, by multiplying suitable commutators and p-powers of elements in
H, as we have done, previously, in the reduced case. In particular, in
Lemma 2.3.4 we bound explicitely, thanks to these parametrizations, the
group generated by commutators of elements of the torus and unipotent ele-
ments in a given root group. In Lemma 2.3.6, we provide an explicit formula
for the commutators of unipotent elements taken in opposite root groups, in
terms of the parametrizations. Finally, thanks to Lemma 2.3.10, we invert
such a commutation relation. At last, we prove Proposition 2.3.1 thanks to
these lemmas.

The following lemma provides the existence of elements with minimal
valuation, used in the parametrization of coroots.

2.3.3 Lemma. Let L/K be a quadratic Galois extension of local fields and
T € Gal(L/K) be the non-trivial element. Let wy, be a uniformizer of the
local ring Op. Denote by p the residue characteristic and assume that p # 2.

(1) For any t € 1+ my, we have w (t* =) > w(wy) and w (£ —1) >
w (wr).

(2) If the extension L/K is unramified, then there exists t € 1 + my such
that w (1t — 1) =w (t* =) = w (wg).

(3) If the extension L/K is ramified, then for any t € 1 +my, we have the
inequality w (tt — 1) > 2w (). If p > 5, then there existst € 1 +myp,
such that w (£ — 1) = 2w (t* = ) = 2w (wy).

Proof. (1) Write t = 1 + s with w(s) > w(wy). Then w(t? — ) = w(2s +
52 —7s) > w(s) and w(tt — 1) = w(s + s + 57s) > w(s).

(2) If L/K is unramified, one can choose a uniformizer w; € O N K.
Let t = 1+ wp, so that t? — % = wy, + w?. Since p # 2, then w(2) = 0.
Hence w (tt — 1) = w (2o, + @} ) = w (wy).

(3) If L/K is ramified, the inequality w ("t —1) > w(wy) is never an
equality because tt — 1 € K. Consequently, w ("t — 1) > 2w (wr). Remark
that w(wp + "wr) > 2w (wy) = w(wp™r). Define t = 1+ wy, so that
t2 — "t = 2wy — T + w%.

By contradiction, if we had w (2w, — ") > 2w (wy ), then, by triangle
inequality, we would get w (3wy) > min (w (wy, + "wpr) ,w 2wy — "wyr) | >
2w (wr). When p # 3, we have w(3wy) = w(wyr). Hence, there is a
contradiction with w () > 0. As a consequence, w (2w, — "wr) = w (wr)
and w(t? — ) = w(wy), for any uniformizer wy, € Of.

Define w’ = wy, + @y wy,. This element @) € Of is also a uniformizer.
Define ¢ = 1+ @),. We have seen that w (¢ — ') = w (wy).

Claim: Either ¢ or ¢’ satisfies the desired equalities.

Indeed, we have tt — 1 = wy + "y + wr o and 't — 1 = wp + ", +
3wrwr + Trp i (w%TwL) + Np Kk (wL)z.
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By contradiction, assume that we have w (wyp, + "wp + wp @) > 2w (wr)
and w (wr, + "y, + 3w wy) > 2w (wr). Then, by triangle inequality, we
get w (2w ™wr) > 2w (wyr). Since p # 2, we have w (2w ™wr) = 2w (wy)
and there is a contradiction.
Hence, we have, at least, w (wy, + "oy, + wr ™) = 2w (wr), or w (wr + "y, + 3w @) =
2w (wr). So, at least one of the two following equalities w (¢t — 1) = 2w (wp)
or w ('™ — 1) = 2w (wy) is satisfied. Hence ¢ or ¢’ is suitable. O

Denote by H(L, Ls); = {(u,v) € H(L, Ly), jw(v) > 1} the filtered sub-
group of H(L,Ls). Remark that H(L,Ls); can be seen as the integral
points of a Og-model of the K-group scheme H(L, Ly), namely the group
scheme H' defined by [Lan96, 4.23]. Recall that for any I € R, we have
H(L,Ly); ~ U,y, by definition of the filtration on root groups, through the
isomorphism (u,v) — x4(u,v). Recall that we also have an isomorphism
a:l+my~TYK).

2.3.4 Lemma. Letl e, = %Z. Then we have:
[T} Uad] © [TV U] € Uy
Moreover, if L/ Lo is unramified, we have:
Ugis1 C [TYK); Uy
If L/ Ly is ramified and p > 5, we have:
Usies € [T V]

Proof. Let t € T(K); . Then a(t) belongs to the maximal pro-p subgroup of
Of. Thus 1 — a(t) € my and 1 — "o(t) € my. Let (u,v) € H(L,Ls). Then
txa(u, v)t ™ = 24 (a(t)u, a(t)"e(t)v) by definition. Thus

[t, 24 (u,v)] =24 (a(t)u, a(t) a(t)v)z,(—u, v)
a(t) = 1)u, —"a(t)uu + a(t)a(t)v + Tv)
(

at) = u, (1 ="Ta(t)v + Ta(t) (aft) — l)v) since 'uu = v+ v

Hence

ul[t, (1, v)]) :%w((l ~ (1)) + a(t) (alt) ~ 1)v)
z% min (01— "a(0)) + (), w(a(t) +w(alt) 1) +w(v))
>2 (@) +0(0) = 5 + Palralu,0)

It proves that [T%(K);,U,,] C [T(K);,Uayl C Ua,l—i—%‘
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For any ¢t € 1+ w,Op ~ T(K); and all (u,v) € H(L, Ly);, we have:

1 —"u —wv t 0 O 1 U -V
0 1 w],fo X ofl=(0 1 U
0 0 1 00 % 0o 0 1

where U = ( — ?) wand V = ( — ?) v+ (tTt — ?) ™. One can check

that (U,V) € H(L, Lz). We have:

w(V) > min (w (t =) + w(v) —w(t),w (L) +w (2 =) +w (Tv)>
by the triangle inequality

= w) 4w (t2 — Tt) because T preserves the valuation

> 2l+1 by lemma 2.3.3(1)

From this inequality, we deduce (U,V) € H(L, L2), 1, hence we have
2
[Uat T(K)y ] €Uy
Conversely, let I € 3Z. Let (U, V) € H(L,Ls)y. We want elements
t €1+ my and (u,v) € H(L, Ly) such that [a(t), zq(u,v)] = z4(U, V) and
so that w(v) is as big as possible.

Choose t satisfying the equalities (2) or (3) in Lemma 2.3.3 applied to the

extension of local fields L/Ly. Let u = —U. We seek X,Y € Ok (t,7)
such that (1 — ?) v+ (tTt — ?) v =V where we set v =XV +YV. It

suffices to find X, Y such that:

Tt 2 Tt 2

) x4 (m-T)v =1

1=y 4 (- 2)x = 0

The unique solution of this linear system is:

X = ——L

(1—tm)(1- 2

Tg? ¢ )

Y = —1—

(1—m)(1_#)

so that: ,
V+ v

v=XV+YV = L

(1—t7) (1 - %2)

satisfies (u,v) € H(L, Ls).
By a matrix computation, and because ¢, u,v have been chosen for this,
we can check that [z4(u,v),a(t)] = 24(U, V). Moreover, the valuation gives

s w(v) > w(V) — w(l — %) — w(t — *2) because w (v + ?Tv) > w(V).
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When L/Ls is unramified, by 2.3.3(2), this gives us w(v) > 2!’ — 2. From
this inequality, we deduce (u,v) € H(L, L)y _1, hence:

[Ua,l’—laTa(K)lj_} - Ua,l’

When L/Ls is ramified, by 2.3.3(3), this gives us w(v) > 2’ — 3. From
this inequality, we deduce (u,v) € H(L, Lg)l,_%, hence:

|:U ’l/_%,Ta(K);] D) Ua’[/

a

O

2.8.5 Remark. These inequalities could be refined, with a deeper study on
the arithmetic properties of the local fields. As an example, when L/L, is
ramified, and [ € Z, we obtain [T“(K)ZF, Ua,l] CUgit1-

2.3.6 Lemma (Commutation of opposite root groups). Let [,I' € Iy = 1Z
be such that l+1 > 0. Let (x,y) € H(L,La); and (u,v) € H(L,Ls)y. We
have [x_q(x,y), zqa(u,v)] = 2_o(X,Y)a(T)xa(U, V) where:

T = 1—Tux+ vy

U = % (uQTx —Tvx — uTva)
Vv * (v — v + vTvy)
X = ; (Tua:2 —uy — vxy)

Y = % ("zuy — "uxy + vyTy)

Moreover, w(V) > [3l' + 1] and w(Y') > [I' + 31].
Consequently, U_a’%Ta(K);Um% is a group and
[U-atUar] < U_, a4 TYK), U, a
C U gt TUE) Uy
Proof. Because T preserves w, we have the following in H (L, Lo):
2w(u) = w(uu) =wv+ V) > w(v)

Hence, we have:

w(z) +w(u) > = (wly) +w() =1+ >0

N | =

By a matrix computation in SU(h), we have:

1w —v 1 0 0 1 0 0\ /T 0 0\ /1 -
0 1 u z 1 0|l=[X 1 oflo F o][o 1
0o 0 1 —y ="z 1 Y, —"Xp 1 0 0 &/ \0 o



where

T = 1—Tux+ vy
Uy = H(u—"Tvz)
W= o

Xo = #(z—uy)

Yo = 7y

Because w(uz) > sw(vy) > 0, we get T € 1+ my. Hence £ € OF is

T
well-defined. It follows:

1 0 0 1 —"u —v 1 0 0 T 0 0 1
—z 1 0|, {0 1 w||l=(Xx 1 o]fo F o]fo
-y w1/ \0 0 1 -y =X 1/ \0 0 2/ \0
where

T = 1—Tux+ vy

U = %(uz%—vx—uvy)

Vv %(uvx—%vx—{-vvy)

X = T(Tua:2—uy—vxy)

Y = 4 (wuy — "uzTy + vyy)
We have

w(V)

> min (w(uw),w(uvz),w(vvy)
> w(v) + min (w( ) +w(x),w) +w(y ))
> 20 +14+7

Because w(V) € Z, we have in fact w(V) > [3l' + 1] > 2" + 1.

We proceed in the same way to find a lower bound of w(Y).

We got that for any I,1' € 1Z with [+1' > 0, any u € U_,; and v € U, p,
the commutator [u,v] belongs to the set H = U_avL;mTa(K):Ua’”%g,q C

U_q,T%(K); Uy It remains to prove that H is a group. Since T%(K); is
contained in T'(K)p, it normalizes the valued root groups. Thus H is stable
by left (resp. right) multiplication by elements in 7%(K); and in U_, i

)

2
(resp. U_pyar1). Let h € H and write it h = utv with v € U__ as11,
’ 2 2

t e T‘L(K)l‘)F and v € Ua sy . For any w € Ua 41, we have wh =
’ 2 ’ 2

wutv = ufu~t, wlwtv. Since u € U_,,; and w € U, y, We have shown that
[u=',w] € H. By left multiplication, we have u[u~!,w] € H. Finally, by
right multiplication, we get wh € H, so that H is a group and we get the
desired inclusion. O

In order to compute a derived group in terms of root groups, we would
like to invert the above equations. Precisely, given a t € 1 + mlff, we seek
elements (u,v), (z,y) € H(L, Ly) with prescribed valuations [,!’ € 1Z such
that ¢ = 1 — "ux 4+ vy. The existence of such (u,v), (z,y) is not guaranteed
if I is not large enough. Firstly, we seek an element (u,v) € H(L, Lo); such
that w (Tr(w)) is minimal.
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2.3.7 Lemma. Let L/K be a quadratic Galois extension of local fields with
residue characteristic p # 2 and a discrete valuation w : L* — 7Z. There
exists a uniformizer wy, in Or, such that Trp k(o) is a uniformizer of Ok.

Proof. If L/K is unramified, we can choose a uniformizer wy, of O, in Ok.
Because p # 2, the element Try,/x (wy) = 2oy, is a uniformizer in Of.

If L/K is ramified, let @’ be a uniformizer of Or. We know that
w (Trp k(@) > min (w (@) ,w ("@’)) = 1. This is never an equality be-
cause 'y = w(K*) = 2Z.

If w (TrL/K(w’)) = 2, then we set wy, = @’. Otherwise, we set wy =
@' + Np/k(w'). Thus, @y is a uniformizer because w (Ny/x(w@')) = 2 >
1 = w(w@). Moreover, Try g (wr) = Trp /(@) + 2Ny /k(@'). Because
w(Trp k(@) > w (2N k(@) = 2, we get the result. O

2.3.8 Lemma. Assume that p # 2 and letl € I'y = 7.
If L/ Ly is unramified, set € = 0.

If L/ Lo is ramified, set ¢ = (1) Z;llzeeruzgz =2
There exists uw € L such that:
(a) w(u) =1;
(b) w (TrL/LQ(u)) =l+e¢;
(c) (u,zu™) € H(L,Ly).
Proof. Let wy, be a uniformizer of Of, such that wr, = TrL/L2 (wp) is a

uniformizer of Or,, such a uniformizer exists by Lemma 2.3.7. Define u =

l—¢

(@) - (wr,) ' "he

(a) w(u) = ew(wyp) + w(l;;)w(wLQ) =1
(b) We have:
l—e
Trrp,(w) = Trpp, ((WZL)E) (wp,) )
I T R T
- l—¢
2(wp,) L) ife=0

Hence w (Trpp, (u)) = (1775 + 5) w(wr,) =1—¢+ew(wr,) =1 +e.

U.)(WLQ )

(c) We have Ny, (u) = uu = Tr (u™). O

As a consequence, we got an element (u,v) such that Tryr,(u) is min-
imal. Secondly, we seek an element (x,y) € H(L, L)y such that t =
1 — "ux 4+ vy. This is a quadratic problem. That is why we recall the
following lemma on the existence of square root.
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2.3.9 Lemma. Let L be a local field of residue characteristic p # 2. For all
a € my, there exists b € my, such that (1 +b)*> =1+ a and w(a) = w(b).

Proof. Let a € my,. By Hensel’s Lemma, the polynomial X2 — 1 — a admits
exactly two roots 1 +b and —1 + b in Op, with b,b' € my, since 1 and —1
are two distinct roots in xr of the polynomial X2 — 1. Moreover w(a) =
w((1+b)?—1) =w(b) +w(2+b). Since p # 2, we have w(2+b) = 0. Hence,
w(a) = w(b). O

We provide a solution (z,y) € H(L, La)y of t = 1—"ux+vy for a suitable
value I such that ¢t € 1 +m/ .

2.3.10 Lemma. Assume that p # 2. Let I,l' € Ty be such that | +1' > 0
and | € Tl =Z. Define € € {0,1} as in Lemma 2.5.8. Define

" = max (1 +2¢,e+ 21 +2l') € N*

For any w € mb | there exist (u,v) € H(L, La); and (x,y) € H(L, Ly)y such
that "'ux — vy = w.

Proof. In order to simplify notation in this proof, we denote by T the field
trace operator Try r, : L — Lo.

Let w € (mL)l”. Choose u € L satisfying the properties (a),(b) and (c)
of Lemma 2.3.8 and set v = Ju™u. We seek an element (z,y) € H(L, Ly) N
(Lo x L) such that "ux — vy = w, which is equivalent to

y = —w+"ux
{ 2?2 =T(y) = =T (¥) + =T ()

because v # 0 (otherwise property (a) would be contradicted).

Denote § = 4TT(C§))2. We have T' (%) = 2:2(:;) by definition of v = Ju"u €
Ly and by Lo-linearity of T. Hence w (T () = w (T(u)) — 2w(u) = —l +e.
We have w (T (%)) > w(w) —w(v) > 1" —2l. Hence w(f) = w (T (%)) —
2w (T (%“)) > 1" —2¢ > 1. By Lemma 2.3.9, there exists b € my, such
that (1+b)2 =1 — 6 and w(b) = w(d). We denote v/1 — & = 1+ b. Hence
V1—6€1+4060y, is well-defined and w (V1 — 6 — 1) = w(d).

Set x = %T(%“) (1— \2/1—6) € Lo and set y = w_TTw € L. We have
22 = T(y). Moreover, w(z) = w(8) + & — I. We check the valuation of y:

w(y) > min (w(w),w(u) + w(:n)) —w(v)
>min (I",w(d) +¢) — 2
> min (l", " — 2+ 5) -2l

=l"—¢e—-2l
>21'
Hence (u,v) € H(L, L2); and (z,y) € H(L, La)p are suitable. O
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Finally, we can combine Lemmas 2.3.4, 2.3.6 and 2.3.10 in order to prove
Proposition 2.3.1.

Proof of Proposition 2.3.1. Up to exchanging a and —a, one can suppose
lel, =Z=Tp. Welet I” = max(1 + 2¢,3 + ) where
. { 1 if L/Lo is ramified and [ € 2Z +1 =T\ Ty,
0 otherwise

By Lemma 2.3.4, we get U_, ;41 C [H, H] and Ua’H% C [H, H] when
L/Ly is unramified; we get U_a’_l+% C [H,H] and U, 42 C [H, H] when
L/ Ly is ramified.

Let t € T%(K)! and write it t = a(1 + w) where w € (mL)ZN. Set lp =
—l+3 € Zand I = |+ 1. By Lemma 2.3.10, there exist (u,v) € H(L, L),
and (z,y) € H(L, L)y, such that —w = "uz — vy.

We use the commutation relation of opposite root groups 2.3.6. Let:

T = 14w

U = % (uQTx — Tvx — uTva)
Vo= Z(wT—"uTvz + vvy)
X = % Tuz? — uy — vxy)

Y = 4 (wuy — "uzTy + vy'y)

By Lemma 2.3.6, we have [x_q(z,v),z4(u,v)] = 2_o(X,Y)a(T)z,(U,V)
with w(V') > 3l + lo] and w(Y") > [l + 3lo].

Because | € Z, we have $[3l) + o] = 1+ 2 and 1[I + 3lg] = —1 + 3.
Hence z_4(X,Y) € [T%K)},U_q ] and z,(U,V) € [Ta(K);,UaH%] by
Lemma 2.3.4. Because a(1+w) = 2_o(X,Y) " [z_o(2,9), 2o (u, )] 2, (U, V)7L €
[H, H], we get T*(K)}' C [H, H].

It remains to check the inclusion HP? C [H, H| when K is of positive
characteristic or is a ramified extension of Q,. Let g € H and write it as a
product g = z_,(x,y)a(l+w)xe(u,v) with w € my, and (z,y) € H(L, La)_y,
(u,v) € H(L,LQ)H_% so that w(y) > —2l and w(v) > 2l + 1. Consider the
quotient homomorphism 7 : H — H/[H, H]. Then

7(g7) = 7 (e, ) )7 (@1 + w0)? )7 (2o, v)7).
with

—1
T—q (.’L’, y)p =T—q (pxapy + Z)(Z)2)me>

a(1 +w)? =a (1 +ki @))“’k)

-1
zq (u,v)P =z, (pu,pv + p(p2)uTu>
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If K is of positive characteristic, then inside H/[H, H], the element
Zq (u,v)P is the neutral element in characteristic p # 2 and the same is for
the element z_,(z,y)?. We have (14+w)? = 1+w?P with w(wP) >p >5>1".
Hence a(1 +w)? € T*(K)!' C [H, H]. Thus ¢? € [H, H].

If K is of characteristic 0 and the extension K/Q, is ramified, then we
have:

u (2 (1,0)") =30 (pv i p<p2—1>uu>

1 -1
>— | w(p) + min | w(v),w (p) + 2w(u)
2 2 ——
%,—/ ZUJ(’U)

1
>w(wg) + 1 since w(p) > 2w(wg) and §w(v) >1

If L/Lo is unramified, then w(wg) +1 =1+ 1 and in this case z, (u,v)? €
Usj+1 C [H,H]. If L/Ls is ramified, then w(wg) +1 = 2+ and in this
case g (u,v)! € Uy jqa C Ua,H—% C [H, H]. The same is true for z_,(z,y).
Finally, for a(1 4+ w)P, we have:

>2w(wg) + 1
>2(1+e)+1=3+2
>1" = max(1 + 26,3 + ¢)

Hence (1 4+ w)? € T*(K)! € [H, H] and we finally obtain that g” € [H, H]
for any g € H. O

In the case of higher rank, we obtain in Proposition 4.1.3 some inclusions
of the form U,,;, C [H,H] with a suitable value [,, by commuting some
root groups corresponding to non-collinear roots. Hence, it is useful to do a
further assumption on subgroups contained in [H, H].

2.3.11 Proposition. Assume that p > 5. Letl € 'y = %Z. Let P be a
compact open subgroup of G(K) containing H = U_a,_lT“(K);UaH_;. Let

’ 2
" =1+ 2¢ where

[ 1 if L/Ly is ramified and 1 € 2Z +1 =T\ T,
T 0 otherwise

If [P, P] contains Uy 41 and U_ then T*(K)}' C [P, P

a,—l—i—%’
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Proof. In the above proof, up to exchanging a and —a so that [ € Z+ % and
I € Z, we can replace the equalities Ij = [4+1 and lp = —I+3 by [[ = l—ié €7
and lp = —I. Indeed, in this case we obtain [3lo+1{] = [-2]+ 3] = —21+1,
so that U—a,%(SloHH C [P, P] by the additional assumption. In the same
way, [3l 4+ lo] = 2l + 2 so that Ua,%(l()+3l01 C [P, P]. As a consequence, we
can conclude as before. O

To conclude this section, we compute the commutation relation between
elements of the same root group. This is non-trivial because, in the non-
reduced case, the root group is non-commutative. This will be useful in
order to understand the action of a maximal pro-p subgroup on the Bruhat-
Tits building.

2.3.12 Lemma (Computation of the derived group of a valued root group:
specificity on the non-reduced case). Letl,l' e T, = %Z. In general, we have
[Ua,h Ua,l’] C U2a,|—l-\+fl"\ .

If L/ Ly is unramified and p # 2, then [Ua1, Uqai] = Usgap)-

If L/ Ly is ramified and p # 2, then [Ua, Uai] = Usq 21 41-

Proof. Let (u,v),(x,y) € H(L, Ly). In matrix-wise terms, we have

1 "z —y 1 —"u —v 1 0 27u—u"z
0 1 z |,10 1 U =10 1 0
0 0 1 0 O 1 0 0 1

We deduce that [z4(z,y), z4(u,v)] = x4 (0, 0"z — z7u).

If w(y) > 2l, then w(z) > [l] because w(z) € I', = Z. Likewise, if
w(v) > 2, then w(u) > [I']. Hence w (z7u — uz) > w(u)+w(z) > [11+]1'].
We obtain [Ua,lv UaJI] - UZa,H]-&-[l/]-

Conversely, we show that any element of Uy, oy can be written as the
commutator of two suitable elements in U,;. For that, it suffices to show
that for any w € LY with w(w) > 2[1], there exist (u,v), (z,y) € H(L, La),
such that w = 2™u — u"z.

We firstly consider the case of a unramified extension L/Lo with p # 2.
In this case, we have I}, = I'y, = Z by Lemma 2.1.10. Hence, there exists
o € L with w(Ag) = 0. Let w € O, be a uniformizer. Set x = Ao !t
and set y = 327z so that (z,y) € H(L, Ls);. Let w € L with w(w) > 2[1].
Then v = % € Lo. Indeed, "u = T;fm = 7(;1”%) = u. Moreover,
w(z — ) = w (o —No)w@') = w(2Xo) + w(w) Il because p # 2.
Hence w(u) = w(w) — w(z —2) = [I]. Set v = LuTu = % so that (u,v) €
H(L, Ly);. We have 2™u — ux = u(x — ") = w.

We secondly consider the case of a ramified extension L/Lo with p #
2. In this case, I',, = 'y, = 2Z + 1 by Lemma 2.1.10. Thus Usa2) =
Usa,211+1- Moreover, there exists Ao € LY with w(X\g) = 1. Let @ € Or, be
a uniformizer.
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If [1] € 2Z, we set x = )\Ow% and y = 1272 so that (z,y) € H(L, Lo);.

Otherwise, [I] € 2Z + 1. We set z = A\w M and y = 327z so that
(.%', y) S H(L, Lg)l.

Let w € L° with w(w) > 2[1]41. Then, as before, we get u = —“— € Ls.
Moreover, w (Ag — "Ag) = w(2X\g) = 1 because p # 2. Hence, we obtain the
inequalities w(z) > [l] and w(x —"x) < [I] + 1. Hence w(u) = w(w) —
w(z —z) > [1]. We set v = $uu = “72 so that (u,v) € H(L,Ls);. We get
2w —ur = u(x — ) = w. O

3 Bruhat-Tits theory for quasi-split semi-simple groups

In Bruhat-Tits theory, a building is attached to a reductive group in
two steps. The first step, in [BT84, §4], corresponds to split and quasi-
split groups. The second step in [BT84, §5] is an étale descent to the base
field. In order to describe some subgroups in terms of the action on the
Bruhat-Tits building, in Section 3.1, we recall how the simplicial structure
of the building is defined thanks to the valuation of root groups. Then, in
Section 3.2, we consider the action of the group G(K) on its Bruhat-Tits
building X (G, K). In this section, K is a local field and G is an absolutely
simple simply-connected quasi-split K-group.

3.1 Numerical description of walls and alcoves

The Bruhat-Tits building of (G, K) is obtained by gluing together affine
spaces, called apartments, having the same given simplicial structure. This
consists in defining the building as X (G, K) = G(K) x A/ ~, where A is
a suitable affine space, called the standard apartment, see [Lan96, §9]. The
apartments are glued together along hyperplanes called walls, that we will
describe as zero sets of affine functions thanks to the sets of values defined
in Section 2.1.5. In Section 3.1.1, we recall how we deduce the simplicial
structure of an apartment from the definition of walls. More precisely, we
define an “affinisation” of the spherical root system following the Bruhat-Tits
method. In Lemma 3.1.14, we check that this construction coincide with the
affine root system defined by Tits in [Tit79]. In Section 3.1.2, we describe,
thanks to the sets of values, a well-chosen alcove, which is the candidate to be
a fundamental domain of the action of G(K) on X (G, K). In Section 3.1.3,
we will study locally the building in the neighbourhood of an alcove.

3.1.1 Walls of an apartment of the Bruhat-Tits building

In [Lan96, §1|, we define a simplicial structure for apartments as fol-
lows. Firstly, we let A = A(G, S, K) be the unique affine space under V =
X.(9) ®z R together with a suitable group homomorphism v : Ng(S)(K) —
Aff(A).
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Secondly, each relative root a € & C X*(S) induces a linear form on V'
deduced by linearity from the dual pairing X, (S) x X*(S) — Z. Hence, up
to choice of a special vertex defining an origin O € A of the affine space,
each relative root induces an affine map on A.

Thirdly, from the spherical root system (where each root is seen as a
linear form), we define an “affinisation”. Hence, each affine map 6(a,l) =
a(-—0)+1: A — R, where a € & and | € R, determinates a unique
half-apartment denoted by:

D(a,l) ={x € A, 0(a,l)(xz) > 0}

whose border (an affine subspace of codimension one) is denoted by H,; =
{z € A, 0(a,l)(z) = 0}. When [ € I",, the affine map 6(a,l) is called an
affine root. In Lemma 3.1.14, we will see that the set of affine roots is the
affine root system of [Tit79, 1.6].

For each affine root 6(a,l), the corresponding H,; is called a wall of A.
The walls induce a structure of poly-simplicial complex on A: a connected
component of A\ U H,, is called an alcove. It is a simplex of maximal

aed, ler,

dimension. More generally, we define an equivalence relation on points on
A by z ~ y if, for any affine root 6, the real numbers 6(x) and 6(y) have
the same sign or are both equal to zero. That means x ~ y if, and only
if, x and y always are in the same half-apartment. An equivalence class
is called a facet; alcoves are the facets of maximal dimension. The set
of facets constitutes a partition of A. Finally, the affine space A together
with the affine root system {0(a,l), a € ® and [ € T',} and the structure
of poly-simplicial complex deduced from the walls is called the standard
apartment.

3.1.1 Notation. For any non-empty bounded subset €2 of A, according to
[BT72, §6 & §7|, [BT84, §4] and [Lan96, §5], we denote:

e for any relative root a € ® [BT72,6.4.2 & 7.1.1]:
fala) = inf{leR, a(x)+1>0VeeQ}
= sup{—a(x), z € Q} [Lan96, §5] ’
Ua, = Uq fo(a) for any relative root a € ®;
fola) = inf{lell, 1> foa)or,if £ € ®, 21> fo(%)} [BT84, 4.5.2]
= inf{l €T}, I > fo(a)} because, by definition fo(%) = 3 fa(a)
= inf{l €T}, Uy C U, s} by [BT72,6.4.9 (i)];

e Uq the subgroup of G(K) generated by the groups U, o where a € ®
[BT72, 6.4.2];

o No ={neNg(S)(K), Vo €Q, n-z=az} [BT72, 7.1.10];
o Po=Uq -T(K)p, (we recall that T'(K), normalizes Uq) |[BT72, 7.1.1];
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e P, the subgroup of G(K) generated by Uq and Ng [BT72, 7.1.10].

f¢, is called the optimized of fo. According to [BT84, 4.5.2], it satisfies
Uaf1(a) = Ua, fo(a) S0 that fola) = sup{l € R, Uy = U, f,(a)} since w is
discrete.

Moreover, because G is a (quasi-split) semi-simple K-group, the group
Py, can be realized as the integral points of some suitable model &g of G
(denoted by & in [BT84]). According to [BT84, 4.6.32], because G is simply
connected, if € is contained in a panel of X (G, K), then we have &g = &g,.
According to [BT84, 4.6.28], the group Py = 3 (Ok) is the connected
pointwise stabilizer in G(K) of the subset @ C X (G, K) (indeed, we have
G = G! since G is semi-simple, see definition [BT84, 4.2.16]).

Recall that ® and ® are irreducible since G is absolutely simple. From
the dual pairing, each relative root a € ® can be realized geometrically in
the Euclidean dual space V*. By [Bou81, VI.1.4 Prop. 12|, there are exactly
one or two values for the length of a root if ® is reduced; and by [Bou81,
VI.4.14] there are three values if ® is non-reduced. Moreover, when the
irreducible root system ® is non-reduced, it is entirely determined, up to
isomorphism, by its rank. We say that a root a € ® is a long root if its
length is maximal, and is a short root otherwise. More precisely, if & is
a reduced non-simply laced root system, the ratio between the length of a
long root and the length of a short root is exactly v/d' where the integer
d € {1,2,3} has been defined in 2.1.3 considering the smallest extension of
K splitting G. Note that if d' > 3, then by [BT84, 4.1.16], the root system
® is of type D4 and the root system @, of type Ga, is reduced.

3.1.2 Proposition. Let d and L' as in 2.1.3.

(1) If d = 1, every root a € ® has L, = L' = K=K as splitting field
(up to isomorphism, in the sense of 2.1.4).

(2) If d > 2 and ® is reduced, every short root has L' as splitting field;
every long root has K as splitting field.

(3) If d = 2 and ® is non-reduced, every non-divisible root has L' as
splitting field; every divisible root has K as splitting field.

Proof. (1) If d = 1, then ¥ = X, for any root a € & = ®. Hence, we have
the equality of the corresponding fixed fields K=K-= L,=1L1".

Suppose now that d > 2. Because Dyn(ﬁ) has a non-trivial symmetry,
all the absolute roots have the same length in the geometric realisation in v+
defined in 2.1.2. Let a be a relative root, seen as orbit, which contain several
absolute roots. In the geometric realization, the orbit a can be geometrically
realized as the orthogonal projection of its absolute roots. Hence, the length
of the orbits having several roots is shorter than that of the orbits having
only one root.

Let a € ® be a relative root and let a € ® be an absolute root so that

the relative root a = a|g is its orbit for the Galois action.
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(2) If d > 2 and @ is reduced. If a is short, then ¥ does not fix a.
Moreover, we observe that for d = 6 (hence ® is of type Dy), the stabilizer of
o in ¥ ~ G3 has index 3. Hence L, is a separable extension of K of degree
3 if d > 3 and of degree 2 otherwise, hence isomorphic to L. Thus L' = L.
If a is long, then ¥ is the stabilizer of a. Hence K = L.

(3) If d = 2 and ® is non-reduced. If a is divisible, then a is a long root.
Hence ¥ is the stabilizer of . Thus K = L,. Otherwise, a is a short root.
Hence the stabilizer of o is trivial. Thus L' = K = L,,. d

3.1.2 Description of an alcove by its panels

An alcove is the candidate to be a fundamental domain of the action of
G(K) on its Bruhat-Tits building X (G, K).

3.1.3 Definition. A panel is a facet of X (G, S) of codimension 1.

We want to describe precisely, thanks to some relative roots and their
sets of values, walls bounding a given alcove. To do this, we may have to
consider a dual root system, which appears to be necessary in some ramified
cases.

Firstly, we define a dual root system of ® by a suitable normalisation of
the canonical dual root system in Lie considerations.

3.1.4 Notation. We consider a geometric realization of ®,4 in the Euclidean
space (V*,(-|-)). For each root a € ®pq, we set A\, = % € {1,d'} and
aP? = \sa € V where p is the length of a long root in ®,4, so that a” = a
for any long root of ®,q. The set <I>nDd = {aD, a € $,q} is a root system,
because it is proportional (by a factor “—22) to the dual root system @, of
[Bou81, VI.1.1 Prop. 2|. In particular, ®, = ®,4 if, and only if, ® is a
simply laced root system (type A, D, or E). Moreover, by [Bou81, VI.1.5
Rem.(5)], if A is a basis of ®, then AP = {a”, a € A} is a basis of ®2,.

Whereas @V and ®P are constructions strictly in terms of Lie theory, we
have found it was more convenient to introduce the following root system ®°
which takes into account the splitting field extensions of root groups.

3.1.5 Definition. For any non-divisible root a € ®,4, we denote by §, €
{1,d'} the order of the quotient group I'; /T'x (resp. Iy /T'1/) if @ is reduced
(resp. non-reduced), by a® = §,a and by @ﬁd = {d’, a € ®,q}. We denote
by A = {a’, a € A}. We will see below that ®, = ®,4 or 7.

3.1.6 Notation. In the following, we denote by:
e h the highest root of ® with respect to the chosen basis A;
e 0 € B4 the root such that €° is the highest root of (IDfld with respect
to the basis A9.
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3.1.7 Proposition. Let c,s be the intersection of half-apartments D(a,0)
fora € ®F and D(b,0%") for b € ®. Then cat is an alcove and any panel of
Car 15 contained in one of the walls Hapo for a € A, or H_go+.

If @ is reduced, we have:

o & =& when L'/K is unramified;
o O =P when L' /K is ramified.
If ® is non-reduced, we have (I)gd = (I)nDd = &y, so that h = 26.

Proof. Note that if a is multipliable and 21 € T%,, it is possible that Haq 2 =
Mo, be a wall even if [ ¢ I',. Moreover, we have I'y =T", U %F’Qa in this case.
Otherwise, if a is non-multipliable and non divisible, we have I, = I", by
Lemma 2.1.9. In fact, the walls of A are described by the various a € ®,q
and [ € T',.

According to [BT84, 4.2.23], we can classify the scalings to describe the
various alcoves for an absolutely simple group G. In a similar way, there
exists a classification of (quasi-split) absolutely almost-simple groups over a
local field, provided by Tits in [Tit79, §4]|. Here, we reduce the discussion to
three types of behaviours.

First case: ® is reduced and L'/K is unramified. These groups are
the residually split groups named A,, B, C,, Dy, Eg, E7, Es, Fy and Go;
and the non-residually split groups named 245, 1, 2D, 11, Dy and 2Fg in
the Tits tables [Tit79, 4.2, 4.3]. These correspond respectively to scalings,
classified in |[BT72, 1.4.6], of type A,,, By, Cyn, Dy, Eg, E7, Eg, Fy and Gb;
and C,, By, F; and Gs.

Let a be a relative root. Because ® is reduced, I'; = I'r,, by Lemma 2.1.9.
Because L'/ K is unramified, we have I'y, = T'i. Hence, by Proposition 3.1.2,
we have T', = I'x. Hence ® = ® and h = 6.

In order to simplify notations, we normalize the valuation w so that 'y, =
7Z =Tk and 0T = 1. By definition of alcoves as connected components, we
can define an alcove as the intersection of all the various half-apartments
D(a,l) and D(b,I") where a € ®T, b€ & and | € RT. Because D(a,l) C
D(a,l’) for any [ < 1’, we are in fact considering the finite intersection of all
the various half-apartments D(a,0) and D(b,1) where a € ®* and b € ™.
We call it “the” fundamental alcove, denoted by cy¢.
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N Db,1) 7

bed—

By [Bou81, V1.2.2 Prop. 5|, its panels are exactly contained inside the
walls Hq,0, where a € A, and H_p1 = H_g o+

3.1.8 Example (The apartments and their fundamental alcoves in dimen-

sion 2).

Type A, Type Cy Type Go

Second case: ® is reduced and L'/K is ramified. These groups are
the residually split groups named B-C,,, C-B,,, F{ and G¥ in the Tits tables
[Tit79, 4.2]. These correspond respectively to scalings, classified in [BT72,
1.4.6], of type B-C,,, C-By,, F{ and GI.

Because L'/ K is ramified, d’ € {2,3}, hence ® is a non-simply laced root
system. Moreover, we have d'T';, = I'. Let a be a relative root. Because
® is reduced, Iy, = I'r, by Lemma 2.1.9. By Proposition 3.1.2, if a is a
long root, I'y; = I'x; if a is a short root, I'y = 'y, Thus, §, = A,. Hence
&0 = dL and for any root a € ®, we have §,[', = 'k.

In order to simplify notations, we normalize the valuation w so that
'y = Z. The intersection of all the various half-apartments D(a,0) and
D(b,0") where a € ®* and b € ®~ is exactly an alcove. If b € ® is short,
then I'y, = T'z/ so that D(b,07) = D(b,1); if b € ®~ is long, then [y, = Tk
so that D(b,07) = D(b,d’). We call it “the” fundamental alcove, denoted by
Caf-

Its panels are exactly contained inside the walls H, o, where a € A, and
H_91="H_go+- Indeed, let a € ® and | € R. Let 1P = §,l so that for any
r € A:

a(z—0)+1l=0d’@x-0)+1P =0

By definition, the set H,; is a wall of A if, and only if, I € I';; hence if, and
only if, I” € I'. Thus, the panels of c,s are contained in the walls Hop 0

35



described in the first case. Because the highest root #” is a long root in ®%
by [Bou81, VI.1.8 Prop. 25 (iii)], hence 6 is a short root in ® and &y = d'.

3.1.9 Remark. The ramification has the effect of adding some walls in the
direction corresponding to short roots. For instance, if d = 2 and if the
absolute root system ® is of type As, then the relative root system is of type
(5 and we obtain the following picture where we print the “added” walls
with dotted lines, and the root system ®% instead of ®:

Z9m.

Third case: ® is non-reduced. These groups are named C-BC,, and
2AL in the Tits tables [Tit79, 4.2, 4.3]. These correspond respectively to
scalings, classified in [BT72, 1.4.6], of type C-BCL!! and C-BCIV.

Because @ is non-reduced, d = d’ = 2. In order to simplify notations,
we normalize the valuation w so that 'y = Z. Let a be a non-divisible
relative root. If a is multipliable, by Lemma 2.1.10, we have I', = %FL/ and
dq = Aq = 2 since a is short in ®,4; if @ is non-multipliable, by Lemma 2.1.9,
and by Proposition 3.1.2, we have I'y =I'y,, = 'y and 6, = Ay = 1 since a
is long in ®,q. Thus, §,Iy =T/ and ®°; = &L, = .

As above, one can see that the intersection of all the various following
half-apartments: D(a,0) where a € @, D(b,1) where b € ®_, is non-
multipliable, and D(V, 1) where ¥’ € @, is multipliable, is exactly an alcove.
We call it “the” fundamental alcove, denoted by c,¢. Its panels are exactly
contained inside the walls H, o, where a € A, and 7—[_97% =H_po+-

Indeed, we proceed in the same way as in the previous case, with the
reduced root system <I>nDd. O

3.1.10 Example (;I; of type Ay and ® of type BC»).
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3.1.3 Counting alcoves of a panel residue

Because a maximal pro-p subgroup P fixes an alcove c, it acts on the set
of alcoves which are adjacent to c¢. We want to describe this set of alcoves.

3.1.11 Definition. Let F' be a panel. The panel residue with respect to
F, denoted by Ep, is the set of the alcoves whose closure contains F.
The combinatorial unit ball centered in ¢, denoted by B(c,1), is the
union of all the panel residues with respect to a panel F' in the closure of c.
We say that two alcoves are adjacent if they have a common panel.

In what follows, we provide a reformulation and a proof of [Tit79, 1.6].

3.1.12 Proposition. Let a € ® and | € T'y. The group U, ;+ is a normal
subgroup of Uqy. We denote by Xog = Uy /U, 1+ the quotient group.

If a is non-multipliable, then there exists a canonical ki, -vector space
structure on X, of dimension 1.

If a is multipliable, then there exists a canonical group embedding Xoq 21 —
Xa,; so that we have the inclusion [Xq 1, Xq1] C Xogu and, in particular,
Xaq 21 15 a normal subgroup of Xq ;. There exists a canonical k1, -vector space
structure on the quotient group Xq;/Xoq 2 of dimension 0 or 1.

Proof. Suppose that a is non-multipliable, then U, (K) is commutative. Hence
U, i+ is a normal subgroup of U,; and the quotient group X, is commuta-
tive. We define a Or,,-module structure on X, ; by:

Vo € Or,, Yy € L, such that w(y) > 1, z-24(y)Uy 1+ = za(2y)Uy v

For any € wp,Or, and any y € L, such that w(y) > [, we have
w(zy) > 17, hence U, C U, +. This provides a sz, = Or,, /wr,Of,-vector
space structure on X, ;. We check that this vector space is of dimension 1:
for any y,y’ € L, such that w(y) = w(y’') = [, since y is invertible, we have
r =y 'y € Op,. Moreover, such elements y,y’ exist by definition of I',.

Suppose now that a is multipliable. By Lemma 2.3.12 applied to [,IT €
[a, we get that U, ;+ is a normal subgroup of Uy .
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The normal subgroup Usg o1+ of Usqor is the kernel of the canonical
group homomorphism U, 9 — X, ;. Hence we deduce a group embedding
Xog,21 — X, Passing to the quotient the formula of Lemma 2.3.12, we get
[(Xa1, Xa,i] C Xog2- In particular, the inclusion [Xg 1, Xog 2] C [ X1, Xai] C
X421 shows that Xy, 9 is a normal subgroup of X, ;.

In particular, the group X, /X2, 2/ is commutative. There exist an Oy, -
module structure given by:

Vo € Or,, Y(y,y') € H(Lq, Lag) such that w(y') > 21,
T - xa(:% 3//>Ua,l+ U2a,2l = xa(:cy, QTTJTZ//)U(L’H U2a,2l

For any = € wy,, O, and any (y,y’) € H(Lg, Lag) such that w(y’) > 21,
we have w(z"zy’) > 2(I*). This defines a rp,-vector-space structure on
Xa,1/X2q,21. This vector-space is of dimension at most 1. Indeed, if there
exist elements (y,v'), (z,2") € H(Lg, La,) such that w(y') = w(z') = 2I,
then we can set = y~ 'z € O, because y is invertible. Hence, we have
zo(2,2") € x - 24 (y, Y ) Usa - O

If a is a non-multipliable root, we set Xo, 9 = 0 and xr,, = kr,. Hence,
the dimension d(a,l) = dimy,, Xa,1/X2q,21 has a sense for any root a € ®.
3.1.13 Remark. Let F' be a panel contained in a wall H,; corresponding to
an affine root 6(a,l). Denote ¢ = Card(kr,,). The panel residue Er contains
1+ Card(X,;) =1+ qd(%’%)+d(“’l)+d(2“’2l) elements. This is a consequence
of Lemma 3.2.6.

Indeed, let ¢ be an alcove whose F' is a panel residue in the wall H,
with fc(a) = I. Then Card(Er) = 1 + Card(X,;) when a is non-divisible
and Card(Ep) =1+ Card(X%vé) when a is divisible since H, 1 is the same

2772
wall. If a is non-divisible, then d(%,1) = 0, ¢¥@) = Card (X,;/X24.21)
and ¢42e2) — Card(Xaq,21) since kr,, = kr,,.- Thus, Card(Er) = 1+
Card(X,;) = 1+ gUaD+d(2a2) 1 ¢ ig divisible, then KL, = KL,, and

qd(%’%) = Card(X%7é/Xa7l), ¢ ) = Card(X,,) and d(2a,2l) = 0. Thus,
Card(Ep) =1+ Card(X. 1) =1+ q(5-3)rd(ad)
272

The following lemma states that the affine root systems defined in [BT72,
6.2.6] and in |Tit79, 1.6] are the same.

3.1.14 Lemma. Let a € ® be a root and | € R. Then d(a,l) > 0 if, and
only if, l € T.

Proof.
le F:z < due Ua(K)v @a(u) =t= Sup(ﬂa(UUmz(K))
& FueUy(K), po(u) =1and Yu" € Uy (K), @q(uu”) <1t
& Ugy # Uyt and Ju € Uy, YVu” € Usge(K), uu” € U, j+
~ Xa,l 7é 0 and Xa,l 7’é X2a,2l
< d(a,l)#0
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This affine root system is an affinisation of the spherical root system.
It can be obtained by adding affine reflections corresponding to elements
m(u) = v'uu” where for any u € U,(K) \ {1}, there exist v/, u” € U_,K
uniquely determined such that m(u) € Ng(S)(K).

3.2 Action on a combinatorial unit ball

We consider a maximal pro-p-subgroup P = PJ of G(K) for an alcove
c C A. For any a € @, if there exists a wall H,; bounding ¢, we denote by
Fe o the panel of ¢ contained in Hy . Let FEc o = EF,, be the panel residue
of F¢ ,. We want to study the action of the derived group and of the Frattini
subgroup of P on the Bruhat-Tits building X (G, K) of G over K. For this,
we consider the action, on each set E¢,, of the various valued root groups
Ua,c and of the group T(K); .

3.2.1 Lemma. Let c; and co be two adjacent alcoves of the apartment A
along a wall directed by a root a € ®. If b € ®\ Ra, then f¢ (b) = fe,(b)
where f' is defined in 3.1.1. In particular, we have Upc, = Upc,-

Proof. In order that f¢ (b) # fe,(b), it is necessary and sufficient that there
exists a wall directed by b separating the alcoves c¢; and cy in two opposed
half-apartments. The alcoves c¢; and co contain a panel contained in a wall
directed by a. This wall is the only one separating the alcoves in two opposed
half-apartments. Hence, if f, (b) # fe,(b), then a and b are collinear. O

Note that, as we have assumed that G is simply-connected, then by
[BT84, 4.6.32], stabilizing a facet is equivalent to pointwise fixing it. Thus,
we consider E. , as finite set of alcoves.

3.2.2 Proposition. Let a € & = ®(G,S) be a relative root such that there
erists a wall Hq; bounding c. If a is non-multipliable or if the quadratic
extension Lo/ Lag is ramified, then the Frattini subgroup Frat(P) fizes Ecq
pointwise.

As a consequence, if © is a reduced root system or if the extension I?/K
is ramified, then Frat(P) fizes pointwise the simplicial closure cl(B(c, 1)) of
the combinatorial unit ball.

In general, denoting by QQ, the pointwise stabilizer of E¢ o in P, we have
the group inclusion

QuUsac if a is multipliable, Lo/ Lo, is unramified and fe(a) € T,
Qa otherwise.

Frat(P) C {

The rest of this section consists in proving the above proposition.
Let ¢’ be an alcove of A adjacent to c. In particular, we have ¢’ € B(c, 1).
Write @’ 4+ 7/, with @’ € ® and 7’ € Ty, the affine root directing the wall

separating the alcoves ¢ and ¢’. If @’ is divisible, we set a = %a’ and r = %r’ :
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Remark that we still have » € I', but a 4+ r may or may not be an affine
root according to r is an element of I, or not. Otherwise, we set a = d
and r = 7/. We also have the following definition of r by the equality
r = fe(a) = fl(a) by [Lan96, 7.7]. Up to exchanging a and —a, one can
assume that fo(a) = fe(a)™ > fe(a) and that fo(—a) < fe(—a) = fo(—a)t.

The group P acts on the finite set of alcoves E., and fixes c. Hence,
it acts on the set of alcoves F , = Ecq \ {c}. Denote by Q, the kernel of
this action. We will show that the quotient group P/Q, is isomorphic to
UG,T’/UCL,T+'

3.2.3 Lemma. The group U, acts transitively on the set E .

Proof. By construction of the building, the subgroup P. acts transitively
on the set of apartments containing ¢ [Lan96, 9.7 (i)]. Because the action
preserves the type of facets, we obtain Fg , = P - c'.

Wiite Po = Use - Tlyeqs \(a) U - Umtt o - T(K)y [BT72, T.1.8]. The
group T(K), fixes A pointwise [Lan96, 9.8], hence it also fixes ¢/. For any
b€ @\ Ra, by Lemma 3.2.1 we have Uy ¢ = Uy . Hence Up fixes ¢’. Since
we assumed that fo(—a) < fc(—a), we have U_4c C U_, . Hence U_gc
fixes ¢’. As a consequence Eg , = U, - €/, because the valued root groups
Uep and the group T'(K), fix c’. O

3.2.4 Lemma. Let g € P be an element fizing c’. If for every v € U, ¢ the
element v, g| fizes ¢/, then g fizes Ec 4.

Proof. Let c¢” € Eg,. By Lemma 3.2.3, there exists an element v € Uy
such that ¢’ = ve’. We do the following computation:

g-c’ = gv-c
= U[U_lvg]g'cl
= vjv7lg]-¢  because g fixes ¢’
= oc because [v~!, g] fixes ¢/
— c//

Since this is true for any c¢” € Ej .,

we conclude that g fixes Fyc. O

Hence, to show that g € [P, P] fixes E q, it suffices to verify that [U, c, g

fixes ¢/. We are reduced to compute commutators. Recall that the group

Ua, fo(a)+ = Ua,er fixes .

3.2.5 Lemma. The following groups:
L Ua fe(art
2. T(K);
3. Uy where b e @\ Ra
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4. U_ge
fiz the panel residue Ec 4.

Proof. (1) Let u € Uy s, (a)+- Then u fixes . Let v € Uye.

If @ is non-multipliable, then [v,u] = 1 because the root group U,(K) is
commutative.

If a is multipliable, by Lemma 2.3.12, we know that [v=!, u] € Usa,[fo(@)F1+[ fo(a)]-
Since [fe(a)™] + [fe(a)] > 2fe(a), we deduce that [v™',u] € Uy, s 0+ =
Ua,fc/ (a) fixes c’.

Applying Lemma 3.2.4, we obtain that u fixes Fc .

(2) Let t € T(K);. The element ¢ fixes ¢’ because T(K), fixes the
apartment A. By Lemmas 2.2.1 and 2.3.4, we know that [T(K);",Usc| C
Ua,fo(a)yt = Uaer- Hence [v,t] € U, o fixes ¢ for any v € U, . We deduce
from Lemma 3.2.4 that T(K); fixes Ec q.

(3) Let g € Upe and v € Uye. By Lemma 3.2.1, we get Upe = Uper.
Hence g - ¢/ = ¢’. By quasi-concavity of the functions f’ applied in the case
where a and b are not collinear, we get by [BT84, 4.5.3]:
~1

[U ) g] € H Uma+nb,fé (ma+nb)

m,neN*, ma+nbed

Applying again Lemma 3.2.1, we get Unginb,c = Umatnb,e’- Thus [v, g] fixes
¢’ for any v, hence, by Lemma 3.2.4, the element g fixes E 4.

(4) Let w €e U_4c and v € Uy . Since fo(—a) < fe(—a), we get U_qc C
U_qc- Hence u fixes c'.

According to whether a is multipliable or not, we know that [v,u] C
U,a7fc(,a)+T(K);'U&fc(aﬁ, by applying either Lemma 2.3.6 or Lemma 2.2.2.
The groups Uy, ¢, (q)+ T(K);, and U_afo(—a)+ C U_q fo(—a) fix /. Thus, the
commutator [v,u] fixes ¢ because it can be written as the product of three
such elements. Applying lemma 3.2.4, we conclude that u fixes E¢,. O

In fact, we have seen that the action of an element of U, either acts
trivially on Eg , or does not fix any point of Ey ,. That gives:

3.2.6 Lemma. The group X, ;. (a), defined in Proposition 3.1.12, actls simply
transitively on the set B ,.

Proof. From the equalities fc(a)™ = fer(a) = feue(a), we deduce U, g (a)+ =
Uscue = Une NUge. Thus, Uy is the stabilizer in U, of ¢/. Hence
Uq, fo(a)+ 18 the kernel of this action (Lemma 3.2.5 (1)). We know that U,c
acts transitively on E{:,a (Lemma 3.2.3). Hence the quotient group Xa,fc(a) =
Ua,e/Ua,fo(a)+ acts simply transitively on E .

3.2.7 Proposition. Let c,c’ be two alcoves of A adjacent along a panel Fg 4,
where the oot a is so that fc(a)™ = fo(a) = feue(a). Let the mazimal pro-
p-subgroup P of the pointwise stabilizer of ¢ in G(K) be acting on the panel

41



residue E¢ o and Qq be the pointwise stabilizer in P of this action. Then Q)
is the (unique) mazimal pro-p subgroup of the pointwise stabilizer in G(K)
of cUC.

Proof. From the equalities fc(a)" = fe(a) = fever(a), we deduce U, 1, o)+ =
Usgcue'- For any root b € ®pq \ Ra, by Lemma 3.2.1, we get fi(b) =
fo(b) = fo e (b). Hence Uy g5y = Up cuer- Finally, because we have assumed
o(—a) < fe(—a), we get the equality of groups U_gcuer = U_q p1(—a) N
U_af(~a) = U_amax(fi(~a).f",(~a)) = U-ae. From this, we deduce the
equajl}tgf o)f groups: Ve ez

Ua,fc(a)"’ H Ub,C T(K);U—qf",c = U<I>+,cUc’T(K)1;FU—<D+7CUC’
bG@nd\{a}

We denote this group by PCJ[J o because one could show (as in [Loil6,
3.2.9]) that it is the (unique because of simply connectedness assumption on
G) maximal pro-p subgroup of the pointwise stabilizer in G(K) of cUc'.
By Lemma 3.2.5, the subgroup ), contains the subgroup P(Lc,. Con-
versely, Q, C PN Py C Pyue. Since @, is a subgroup of P, it is a pro-
p-group. Thus Q, = Pctc, by maximality. Moreover @), is a normal sub-
group of P being the kernel of the action of P on E¢, and the quotient

P/P+ = P/Q, is isomorphic to Ua,fc(a)/Ua,fc(a)+ = Xa,fo(a)- O

cUc’

If the quotient group X, f,(4) is not commutative, that can happen when
the root a is multipliable, then the Frattini subgroup of P is different from
Qq. Thus, we have to enlarge @, onto a group @/, so that the quotient P/Q,
becomes a commutative group so that )/, contains the Frattini subgroup of
P.

Proof of Proposition 3.2.2. We define a subgroup Q;, by Q = QaUszq 2. (a)
if a is multipliable, L, /Lo, is unramified and fc(a) € I',; and by Q) = Q,
otherwise. We show that the quotient group P/Q/, can be endowed with a
vector space structure.

If a is non-multipliable, then by Proposition 3.1.12, we know that the
quotient group P/Q!, = P/Q. = Xa,fo(a) 18 @ KL, -vector space (of dimension
1). Now, suppose that a is multipliable.

If fe(a) ¢ T, then by Lemma 3.1.14, we know that d(a,l) = 0 so that
P/Q), = P/Qq = Xa; = Xoq21 1S & Kr,,-vector space of dimension 1 since
2a is non-multipliable. Now, suppose that fe(a) € T,

If L,/La, is ramified. By Lemma 2.1.10, we know that 2fc(a) & ey =
I'y,. Hence by Lemma 3.1.14, we know that Xo, of,(q) = 0. Then, by Propo-
sition 3.1.12, we know that P/Q:z = P/Qa = Xa,fc(a) = Xa7fc(a)/X2a,2fc(a)
is a kr,-vector space of dimension 1.
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Finally, the remaining case is L,/Ls, unramified, fc(a) € T',. It this
case, because Q) = QuUzq2.(a), We have P/Ql, = X, 1 (a)/ X24,2f.(a) Which
is a k1, -vector space of dimension 1 by Proposition 3.1.12.

As a consequence, on the one hand, the group P/Q, is commutative;
hence [P, P] C Q). On the other hand, the group P/Q’, is of exponent p;
hence PP C Q!,. We get PP[P, P|] C Q. Because G(K) acts continuously on
X (G, K), the group @, is an open subgroup of P as the kernel of the action
of P on E¢,. Moreover, the group QaUsq 27, () is still open, hence closed.

Hence Frat(P) = PP[P, P] C Q..

If @ is a reduced root system or if the extension L'/K is ramified, then
for any root a € ® corresponding to a panel of ¢, we get that Frat(P) fixes
E. . pointwise and so it fixes the combinatorial ball of radius 1 centered in c,
denoted by B(c, 1), which is the union of all the E.,. By continuity of the
action, the group Frat(P) = PP[P, P] fixes pointwise the simplicial closure
of B(c,1). O

3.2.8 Remark. In fact, when K /K is unramified and the irreducible root
system @ is non-reduced, for any multipliable root a € ®, according to
Lemma 2.1.10, we have either fc(a) € ', or fo(—a) = —fe(a)t € T%.

3.2.9 Remark. Though the bounded torus T'(K); fixes pointwise the apart-
ment A, its action on the 1-neighbourhood of this apartement is, in general,
non-trivial. For instance, assume that ® is a reduced root system and choose
a spherical root a € ® directing a wall bordering the alcove c¢. The action of
T(K)p on Ecq corresponds to the action of a subgroup of &Zf C lﬁza. Let
us explain this.

Normalise w so that I'r,, = I', = Z and choose w as a uniformizer of Oy, .
By simple transitivity of the action of X, f (,) (Lemma 3.2.6), we identify
By o with Uy 1.(a)/Ua fo(a)+ by € = z4(u) - ¢’ = 24(u) mod U, s (a)+- Be-
cause X, f,(q) is isomorphic to xr, (Proposition 3.1.12), we identify X, s (q)
with k1, by zo(u) mod U, ,(a)+ — uw=f<(® mod my,. From the parametriza-
tion @ : G, (Or,) = TUK)y, = T(K)p N (U_o(K),U,(K)), the action of
T(K), on E, correspond to the action of x; on kp, given by z-u =
a(a(z))u = z%u. Indeed, for any z € L}, we have:

for some u € Ug ¢

3.2.10 Corollary (of Proposition 3.2.2). For any non divisible relative root
ac (I)nd7
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L] ’Lf(l ¢ AU {—9}, we set Va,c = Ua,cs
e if a € AU{-0} is non-multipliable, we set Vo = U, f,(a)+;

e ifa € AU{—0} and if a is multipliable, and either L, /Lo, is ramified
or fe(a) € T5, we set Voo = Ug fo(a)t5

e ifa € AU{—0} and if a is multipliable, the extension L,/ Lo, is unram-

ified and fc(a,) S F:w we set Va,c = Ua,fc(a)+U2a,2fc(a) = Ua7fc(a)+U2a,C'

We have the following:

Frat(P) €[] Vie - TE)F - [[ Vae =TE); ] Vae

acd acdfy a€®nq

Proof. Since Frat(P) C P, any element g € Frat(P) can be written is a
unique way as

with ¢t € T(K);r and u, € U, for any a € ®,q. It suffices to check that
Ug € Voo for any a € AU {—6}. Let a € AU {—60} and consider the
projection morphism mg, : P — P/Q,. By Proposition 3.2.2, we have the
inclusion Frat(P) C QqUzq,c when a is multipliable, the extension L,/Lo, is
unramified and fe¢(a) € T'; we have the inclusion Frat(P) C @, otherwise.

Thus TQa (g) = TQ, (ua) S VG,C/Ua,fc(a)+' Hence u, € Va,c- [

3.2.11 Proposition. We assume that ® is a reduced root system. The
group Q = T(K);r [l.ca Vac is the mazimal pro-p subgroup of the pointwise
stabilizer in G(K) of cl(B(c,1)).

Proof. Denote by cl(B(c, 1)) the simplicial closure of the combinatorial ball
of radius 1. Set Q = cl(B(c,1)) N A. Denote by ISB(CJ) (resp. ]39) the
pointwise stabilizer in G(K) of cl(B(c,1)) (resp. ©). By [Lan96, 9.3 and
8.10], we can write Po = T(K)p [[eq Un0-

By Lemma 3.2.5, we get that @ fixes cl(B(c,1)) pointwise so that @ C
]33((;71) C ]39 Because Uy o = Vo, we have that ]39/@ ~ T(K);,/T(K)b“L7
so that () is a maximal pro-p-subgroup of ]39, therefore of ]33(071).

It remains to show that it is the only one, in other words that () is normal
in ]33(“). But since T'(K);, normalises @, this gives the result. O

4 Computation in higher rank

As before, G is an absolutely simple quasi-split simply-connected K-
group and P is a maximal pro-p subgroup of G(K). By a geometrical analy-
sis, we provided, in Proposition 3.2.11, a description of the Frattini subgroup
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Frat(P) as a subgroup of the (unique) maximal pro-p subgroup @ of a well-
described stabilizer in G(K). We now want to provide a large enough subset
of Frat(P), so that this subset generates @), and thus Frat(P). We provide
unipotent elements of Frat(P) by finding some values [, € R with a € ®
such that the valued root groups U, , are subgroups of [P, P|] C Frat(P). In
the rank-1 case treated in Section 2, we have already found some values [,.
In higher rank, we can improve these values for most roots; more precisely,
for all roots which are not corresponding to panels of the (unique) alcove
stabilized by P. In Section 4.1, we invert most commutation relations pro-
viding bounds of valuations of root groups. In Section 4.2, we combine those
inversions in the whole root system.

4.1 Commutation relations between root groups of a quasi-
split group

We consider both the split semi-simple K -group G=G 7 and the quasi-
split K-group G. A Chevalley-Steinberg system of (G, K, K) is the

datum of morphisms: z, : Ga, & — Uqa parametrizing the various root groups

of G, and satisfying some axioms of compatibility, given in [BT84, 4.1.3],
taking in account the commutation relations of absolute root groups and
the Gal(K/K)-action on root groups. Note that despite the morphisms
parametrize root groups of é, a Chevalley-Steinberg system also depends
on the quasi-split group G because of the relations between the Z, where
o € . According to [BT84, 4.1.3|, a quasi-split group always admits a
Chevalley-Steinberg system.

According to [Bor91, 14.5], given an ordering on ®, there exist constants
(Cﬁs%aaﬁ)r,seN*;a,ﬁei in K for ra + sp € @, uniquely determined by the

Chevalley-Steinberg system (Z,) so that we have the following relations:

aeiw

[Ta(u), Zp(v)] = H Tra+s8(Cr,s0,8U V°)

r,s€N*
ra+sped

for any non-collinear roots «, 5 € ® and any parameters u,v € K. These
constants are called the structure constants. There is some flexibility in
the choice of a Chevalley-Steinberg system, so that we can choose ¢, 45.q,5 in
Z1z where 1z denotes the identity element of K*. More precisely, because
G is split, it comes from a base change of a Z-reductive group [DG, XXV
1.3]. In this case, one can determinate the ¢, 5. 3, Up to sign, to be some
coefficients of a Cartan matrix |[DG, XXIII 6.4]. More precisely, we have:

4.1.1 Lemma. Leta,f € ® be two (non-collinear) roots such that a+5 € P.
If ® is of type An, Dy, or Ey, then ci 1.0 € {£15}
If(f is of type By, Cy, or Fy, then c1 1,05 € {+15,£2- 15}
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If & is of type Go, then c11,05 € {£1z,£2 12, £3 -1~}

In the quasi-split case, given two non-collinear relative roots a,b € ®,
there exist commutation relations between the corresponding root groups in
terms of the parametrizations (z,).ce. These commutation relations can be
completely computed in the irreducible root system ®(a,b) = &N (Ra & Rb)
of rank 2. Hence ®(a,b) is of type Az, Ca, BCy or G, and we can assume
that a is shorter or has the same length as . The various commutation
relations are written down in |BT84, Annexe A| where Bruhat and Tits
consider the angles between roots. Here, we follow another description in
terms of length of roots, as in [PR84, §1].

We recall that, according to Section 2.1.2, the Galois group Gal(K/K)
acts on the absolute roots ® and that the relative roots ® can be seen as the
orbits for this action. We recall that d’ = [L'/K] has been defined in 2.1.3
to be the number of absolute roots in a short root seen as an orbit. We do
the following assumptions:

4.1.2 Hypothesis. We assume that:
e the residue characteristic p of K is such that p > d’;

e the above structure constants c¢; 1.4,3, where a, 8 € ZI;, are invertible in
Ok.

Equivalently, in terms of the relative root system, this is to assume that:

e p > 3 if the relative root system ® of the quasi-split absolutely simple
K-group G is of type By, C,, BC, or Fy;

e p>5if ®is of type Gs.

Proof. Let us prove that both assumptions are equivalent.

If d = 1, then ® = ®. We have that 2 does not divide the structure
constants c¢i 1.4.8 (seen in Z), where o, f € ® if and only if, case (2,1) or
case (2,2) of [DG, XXIII 6.4] do not arise. This is if, and only if, ® = ® is
of type A, Dy, E,. We have that 3 does not divide the structure constants
C1.1;0,8 (seen in Z), where o, f € ® if and only if, case (3,1) of [DG, XXIII
6.4] do not arise. This is if, and only if, ® =  is not of type Go. Hence, in
the case d = 1, we have that the structure constants C1,1;a,8 are invertible
in Ok if, and only if, p > 3 if the relative root system ® of the quasi-split
absolutely simple K-group G is of type B,, Cp, or Fy; and p > 5 if ® is of
type Gbs.

If d' = 2, then the Galois action on ® induces precisely an involution of
the Dynkin diagram. Thus & must be of type A, D, or Eg and & is of type
By, Cy, BCy, or Fy. In that case, the structure constants ¢y 1,4,38 € {£1} are
invertible in Ok and the condition p > d’ = 2 is equivalent to p > 3.
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If d’ = 3, then the Galois action on ® induces a symmetry of order 3 of
the Dynkin diagram. Thus d is of type Dy and @ is of type Ga. In that
case, the structure constants c¢y1,4,3 € {1} are invertible in Ok and the
condition p > d’ = 3 is equivalent to p > 5. ]

4.1.3 Proposition. Let a,b,c € ® be relative roots such that ¢ = a+b and,
at least, one of the two roots a,b is non-multipliable. Let I, € Ty, I € Ty
and l. € R be values such that l. =1, + .

Let w € Uy, . If Hypothesis 4.1.2 is satisfied, then there exist elements
v € Uyy,, v €Uy, and v" € H Uratsbria+s, Such that u= [v,v']v".

r,s€N*
r+s>2

Proof. If u is the identity element, the statement is clear. From now on, we
assume that w is not the identity element. We choose a € a and 8 € b. In this
proof, length of root is considered in the irreducible (possibly non-reduced)
root system ®(a,b) of rank 2.

In the below various cases, we always follow the same sketch of proof.
Firstly, we recall the splitting field of the roots a, b and ¢ = a+b computed in
Proposition 3.1.2. Secondly, we recall the commutation relation between U,
and Uy, provided by [BT84, A.6] and we draw the relative roots that appear
in the writing of this commutation relation. Thirdly, given a non-trivial
unipotent element v € U.;, , we use the parametrisation of root groups,
defined in Section 2.1.3, to provide suitable elements v € U, , and v' € Uy, .
Finally, we check that v” = [v,v']~!u is suitable.

Case d' =1 or the relative roots a,b,c are long:
By Proposition 3.1.2, we have L, = L, = L. = K.
By [BT84, A.6], we have the following commutation relation:

Vy S Lm S Lb7 [wa(y%xb(z)} = H xraJrsb(cr,s;oz,ﬁyrzs)
r,s€EN*

where the structure constant ¢, s, g is the integer Cmﬁﬁ of [BT84, A.6 a).

There exists a parameter € L. such that u = xc( ) and w(z) > I.. We
choose y € L, such that w(y) = l,. This is possible because [, € Ty, =T,
by Lemma 2.1.9. We set z = ciiaﬁxy*I € Ly. Then w(z) =w(z) —w(y) >
le — 1o = I satisfies © = ¢11,0,8y2. Then, we set v = z,(y), v' = x(2)
and (v")*1 = H Tra+sb(Cr 50,8y’ 2°). For any pair of non-negative

r,seEN* r4s5>2

integers (, s) such that r+s > 2 and ra+sb is a root, we get w(c; 5.0,8Y"2°) >
rw(y) + sw(z) > rly + slp. Hence v” € Hr,seN*;r-s-s>2 Uratsb,rla+sl,- Lhus
[v,v] = u(v") "L
Case d' = 2, the roots a,c are short, b is long and non-divisible:

By Proposition 3.1.2, we have Ly = Log.p = K and L, = L. = L'.

By [BT84, A.6.b|, there exist e1,e9 € {£1} such that we have the fol-
lowing commutation relation:
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a+b=c

Yy € Ly, Vz € Ly, b 2a + b
[l‘a(y),ﬂ?b(z)} = Tatb (611/2) M
T2a+b <6zy7y2) a

There exists a parameter x € L. such that u = z.(x) and w(x) > .. We
choose z € L such that w(z) = lp. This is possible because I, € I'y, = I'r,.
We set y = ey22~ L € L' = L,. Then w(y) = w(x) —w(z) > 1l. — Il = I, and
x = e1yz. The root 2a + b is non-divisible and we get w(yyz) = 2w(y) +
w(z) > 2l,+1p. Then, weset v = z4(y), v = zp(2) and v" = 29415(—e2y7y2).
Hence v" € Usqyp21,+1,- Thus u = [v,0']v".

Case d' = 2, the roots a,c are short, b is long and divisible:

By Proposition 3.1.2, we have L, = L. = L.

By BT84, A.6.c|, there exist £1,e2 € {£1} such that we have the follow-
ing commutation relation:

2a+b
Yy € Ly, Vz € L%,
2,

ra(9),23(0.2)] = zasn(c192) a atb=c

xa+2 (07 EQyTyZ)
2
b
There exists a parameter x € L. such that u = x.(x) and w(z) > ..

By Lemma 2.1.10, we have [, € T}, = w(L°™). Hence, we can choose z €
LY = L" such that w(z) = l. We set y = eyz2~! € L, = L'. Then

w(gy) =w(z) —w(z) >1l.— 1l =1, and x = e1yz. The root 2a + b is divisible
and we can check that w(eoy™yz) = 2w(y) + w(z) > 21, + . Then, we set
v =x4(y), v = 2p(2) and V" = ma+g(0, —e9y"yz). Thus u = [v,v']v".
Case d’' = 2, the roots a,b are short, c is long and non-divisible:

By Proposition 3.1.2, we have L, = L, = L' and L. = K.

By [BT84, A.6.b], there exists € € {£1} such that we have the following
commutation relation:

Yy € Ly, Vz € Ly, b at+b=c
[%(y)wb(z)} = Ta+b (€(yz =+ TyTz)) M

a

There exists a parameter x € L. such that u = z.(z) and w(x) > I.. We
choose z € Ly = L' such that w(z) = . This is possible because [, € T.
We set y = %mz_l € L, = L'. This makes sense because p does not divide
d = 2, hence 2 € O. Then w(y) = w(x) —w(z) > lc.— 1l = l, and
eTr(yz) = £ + % = 2 because x € K. Then, we set v = 24(y), v/ = z3(2)
and v” = 1. Thus u = [v,v'|v".

Case d' = 2, the roots a,b are short, c is long and divisible:
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By Proposition 3.1.2, we have Lq = L = L¢ = L.
By [BT84, A.6.c|, there exists ¢ € {41} such that we have the following
commutation relation:

a+b=c
Yy € Ly, Vz € Ly,
[xa(y), acb(z)} = Tatb (0, e(yz — Tgfz)) a b
2
There exists a parameter x € L2 = L' such that u = x%(O,m) and

w(z) > l.. We choose z € Ly = L' such that w(z) = lp. This is possible
because Il € I',. We set y = %wz_l € L, = L'. This is possible because p
does not divide d’ = 2, hence 2 € Oj. Then w(y) = w(z)—w(z) > le—1l =14
and ¢ (yz — y'z) = ’“"_2% = x because x + x = 0. Then, we set v = z,(y),
v/ = xp(z) and v” = 1. Thus u = [v,v']v".
Case d' = 2, the roots a,b, c are short, a,b are non-multipliable:

By Proposition 3.1.2, we have L, = L, = L. = L'.

By [BT84, A.6.b], there exists € € {£1} such that we have the following

commutation relation:

a+b=c
Yy € Ly, Vz € Ly, b
[l‘a(y)»xb(z)} = Tatb (€y2) \/
a

There exists a parameter x € L. such that u = z.(z) and w(xz) > l.. We
choose z € Ly, = L' such that w(z) =1,. We set y =exz~! € L, = L'. Then
w(y) = w(x) —w(z) > lc— 1y =1, and x = eyz. Then, we set v = x,(y),
v' = xp(2) and v” = 1. Thus u = [v,0']v".
Case d = 2, the roots a,b, c are short, b is non-multipliable and a is
multipliable:

By Proposition 3.1.2, we have L, = L, = L. = L'.

By [BT84, A.6.c|, there exist €1,e2 € {£1} such that we have the follow-
ing commutation relation:

2a 4 2b
V(y,y') € H(Lq, Lag), Vz € Ly,
[wa(y, Y, wb(Z)} = Tath (6192, Ty'ZTZ) b 3
(22

a

There exists a parameter (z,2') € H(L., Lo.) such that u = z.(z, 2’) and
w(z") > 2l.. We choose z € Ly, such that w(z) = l,. This is possible because
Iy €Ty Wesety =eiwz™! € L' and y = 2’27172~ Then 4y = ¢/ +7y/ and
w(y') = w(a@’) — 2w(z) > 2l — 2l = 2l,. This implies (y,y') € H(Lq, L24)1, -

Moreover (z,2') = (e1y2,'272). The root 2a + b is non-multipliable, non-
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divisible, and we can check that w(e2zy’) = w(y') +w(z) > 2l,+1p. Then, we
set v = 4(y, 1), v = 2p(2) and v" = xoq p(—22' 2 1). Thus u = [v,v']v".
Case d' = 2, the roots a,b, c are short and a,b are multipliable:

This case where a and b are both multipliable is the only one excluded
by the third assumption. It is considered in Remark 4.1.4.

From now on, we assume d’ = 3. This occurs only for the trialitarian Dy.
Case d' = 3, the roots a,c are short and b is long:

By Proposition 3.1.2, we have L, = L, = Log1p = L' and Ly = L3, yp =
L3ai2p = K.

We denote by 7 € ¥ an element representing an element of order 3 in the
Galois group. For any y € L', we denote ©(y) = TyT?y and N(y) = y©(y). By
[BT84, A.6.d], there exist an integer n € {1,2} and four signs e1,e9,€3,64 €
{—=1,1} such that we have the following commutation relation:

Yy € Ly, Vz € Ly,

[ra(w) 2(2)| = wars(e1y2) Ba+bx g,y #30+20

Toatb|£20(y)z a+tb=c

T30+ €3N (y)z A

T3a-+2b (6477N(y)22)

There exists a parameter © € L, = L' such that u = z.(x) and w(z) > I..
We choose z € L, = K such that w(z) = I. This is possible because I, € T'.
We set y = g1z27! € Ly = I'. Then w(y) = w(x) —w(z) > l.— 1l = I,
and x = e1yz. The root 2a + b is short and the parameter €20 (y)z € L’
satisfies w(e2yyz) = 2w(y) + w(z) > 20, + . The root 3a + b is long
and the parameter £5N(y)z € K satisfies w(esyyyz) = 3w(y) + w(z) >
3ly +1p. The root 3a + 2b is long and the parameter ne422N(y) € K satisfies
Wz 2yyY) = win) + 3w(y) + 20(z) = 3l + 2,

Then we set v = x4(y), v = x(z) and

V" = $3a+2b< - 77€4N(y)22)$3a+b< - 63N(y)2> $2a+b( - 52@(y)z)

Hence v" € Usqtb,21,+1, Usa+b,31a-+1, Usa-+2b,31a+21,- Thus u = [v,v']v"
Case d' = 3, the roots a,b are short and c is long:

By Proposition 3.1.2, we have L, = L, = L' and L. = K.

We denote by 7 € ¥ an element representing an element of order 3 in the
Galois group X. For any y € L', we denote Tr(y) =y + Ty + ™). By [BT84,
A.6.d], there exists a sign € € {—1, 1} such that:

at+b=c
Yy € Ly, Vz € Ly,

wa@)an(2)] = zars(<Try2)) b

There exists a parameter x € L. = K such that v = z.(x) and w(x) > ..
We choose z € L, = L' such that w(z) = lp. This is possible because
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Iy € Ty, We set y = %:nz_l € L, = L'. This is possible because p does
not divide 3 = d’, hence 3 € Of. Then w(y) = w(x) —w(z) > l.— 1l =14
and = = £Tr(yz). Then, we set v = z,(y), v/ = xp(z) and v” = 1. Thus
u = [v,vv"

Case d' = 3 and the roots a,b, c are short:

By Proposition 3.1.2, we have L, = Ly = L. = L' and Log1p = Loyop =
K.

We denote by 7 € ¥ an element representing an element of order 3 in
the Galois group ¥. For any y € L', we denote O(y) = Ty € L' and
Tr(y) = y—I—Ty—I—TQy € K and N(y) = yO(y) € K. For any y,z € L', we
denote (y % z) = Oy + z) — O(y) — O(z) = Yy 2 + Ty"z. By [BT84, A.6.d],
there exist three signs e1,e9,63 € {—1,1} such that we have the following

commutation relation:
Yy € Ly, Vz € Ly,

a@)a(2)] = warn(c1y+2)
Zoa+(e2Tr(O(y)2) g

Taron(e3Tr(yO(2))
There exists a parameter x € L. = K such that v = z.(z) and w(z) > l..
We choose z € L, = L' such that w(z) = I, this is possible because I, € T,
Because p does not divide 2, hence 2 € O, we can define:

2a +b a—+2b

e1 Tr(zz) —2z2 &
5 o0 = N () (2Tr(z2) — 2227)

/y:

so that (y * z) = e12. Indeed:

(yxz) = 21\81%2) (T2Tr(zz) — 272"2?) ™%+ ﬁ%z) (TQzTr(a:z) - 27?%'72,22) Tz
%((ZZ)) (Tr(xz) — 2727z + Tr(zz) — 2726722>
= £ (222)

Then we have:

w(Tr(zz) — 2z2) — w(O(2))
in (w(Tr(mz)),w(m) + w(z)) —2w(2)
w(z) + w(z)) — 2w(z)

w(y)

VIV v
8

In fact, we get w(y) = w(z) —w(z) because we deduce the inequality w(z) >
w(y) + w(z) from the formula = &1(y * z). The root 2a + b is long and we

can check that the parameter e2Tr(©(y)z) € K satisfies w(ngr(@(y)z)) >
2w(y) + w(z) = 21, + lp. The root a + 2b is long and we can check that the
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parameter e3Tr(yO(z)) € K satisfies w(ngr(y@(z))) > w(y) + 2w(z) =
la + 2lp. Then, we set v = z4(y), v = xp(2) and

v = :Ua+2b( - 53Tr(y@(z))):v2a+b( - ngr(G)(y)z))

Hence v" € Usgtp 21,41, Uat2b,1,+21,- Thus u = [v,v']v".
All the cases except the excluded one, where a,b both are multipliable,
have been treated. O

4.1.4 Remark. In the excluded case, by [BT84, A.6.c|, there exists a sign
e € {£1} such that we have the following commutation relation:

V(y,y') € H(La, L2a),
V(Z,Z’) GH(vaLQb)a b a+b:c

[wa(% '), (2, Z’)} = Zayb <8y2> a

There exists a parameter x € L. = L' such that v = x.(z) and w(z) > ..
The problem is that, for a multipliable root a € ®, the set of values I',
does not control completely the valuation of the first term y of a parameter
(y,vy') € H(Lg, Lag). One can show that, when I, & I, we get w(y) > l,.
Hence the inclusion [Uq,,Up,] C Ugtp 1,41, 18 DO, in general, an equality.

4.2 Generation of unipotent elements thanks to commuta-
tion relations between valued root groups

In Corollary 3.2.10, we obtained that Frat(P) is a subgroup of a pro-
p group () written in terms of valued root groups. We want to get an
equality when it is possible. It suffices to provide a generating system of the
biggest group consisting of p-powers and commutators of elements chosen in
P. In a general consideration of a compact open subgroup H of G(K), in
Section 4.2.1, we do an induction on the positive roots from the highest to the
simple roots to provide bounds of valued root groups contained in [H, H|; in
Section 4.2.2, we furthermore consider the length of roots to provide bounds
for the whole root system. In Section 4.2.3, we go back to the situation of
the Frattini subgroup Frat(P) = PP[P, P] D [P, P].

In order to do an induction on the set of relative roots, the following
lemma in Lie combinatorics explains how to get, step by step, all the roots
as a linear combination with integer coefficients of the lowest root and the
simple roots.

4.2.1 Lemma. Let ® be an irreducible root system of rank greater or equal
to 2 and A be a basis of simple roots in ®, associated to an order ®*. Let h
be the highest root for this order.

(1) Let f € @\ (AU2A) be a positive root which is not the multiple of a
simple root. Then, there exists a simple root o € A and a positive root
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B € ®F such that B = o+ 3, the roots o, 3 are not collinear and the
positive root B’ is non-multipliable.

(2) Let v € = \{—h}. There exists a positive root 3 € ®t and a negative
root v € ®~ such that v = B+~ and the roots 3,7 are not collinear.

(3) Let a« € AU2A. There exists a simple root B € A such that o+ 3 is
a positive root and the roots a + 3 € ®* and —B are not collinear.

Proof. (1) Let B € ®* \ (A U2A) be a positive non-simple root. Then, by
[Bou81, VI.1.6], there is a simple root o and a positive root 8’ € ®* such
that 8 = o+ B’. Moreover, 3 and « are not collinear because we assumed
that 8 is not the multiple of a simple root.

Assume that ® is non reduced of rank at least 2 and that 3’ is multipli-
able. We denote (using notations for vectors ¢; as in [Bou81, VI1.4.14]) by
a1 = €1 — €9, ..., q_1 = €11 — £, a; = €; a basis of & with a; the unique
multipliable simple root. Then, there exists some j such that o = a; There
exists some k < [ such that 8/ = ¢, = Zi:k a; since 3’ is multipliable. If
j#1, then B = a+ ' =¢; —ej41 +¢k is aroot, which means that k = j+1
and § = ;. Thus, one can replace o, 5 by o = a; = ¢; and ' = ¢; — ¢
which is positive, non-multipliable and non-collinear to «. Otherwise, we
have j = [ so that 8 = ¢ + ;. Hence k < [ since 8 # 2a; = 2¢;. Thus, one
can replace a, 8 by a = ap = € — g1 and ' = ex1 + & which is positive,
non-multipliable and non-collinear to a.

(2) According to notations of [Bou81, VI.1.3|, we denote by V the R-
vector space generated by A containing ® and by (:|-) a scalar product which
is invariant by the Weyl group.

Let v € ®~\{—h,—2}. If (~h|y) > 0, then the sum 3 = h+~v € ®* isa
positive root [Bou81, Corollary of Theorem 1]. Moreover, —h and /3 are not
collinear because we assumed that v and h are not collinear. Hence 8 and
v/ = —h satisfies assertion (2). Otherwise, we necessarily get the equality
(—h|y) = 0 according to [Bou81, VI.1.8 Proposition 25| and there exists a
simple root @ € A such that (a|y) > 0, because the roots a € A form a basis
of the Euclidean space V and —h # 0. The roots v and « are not collinear
because, if they were, we should have v € R i« according to assumption
(7|a)) > 0; and this contradicts v € ®~. Hence 4/ = vy—a € &~ is a negative
root. Thus, 7/ and 8 = « satisfies assertion (2).

Let v = —%. In particular, this happens only if ® is non-reduced. We
can apply the same method inside ®,4, because the root —% is a short root
of &4, hence it cannot be collinear to the highest root of ®,4.

(3) Let o« € AU2A. For any 8 # a connected to a (resp.  # §
connected to § when o € 2A) by an edge in Dyn(A), we have a + § € &
Thus f satisfies (3). Such a simple root § exists because we assumed that
the rank of ® is > 2. O
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4.2.2 Lemma. Let ® be an irreducible root system and A be a basis of
simple roots in ®, associated to an order ®T. Let h be the highest root for
this order. For any root vy € ®, there exist non-negative integers (na(7))aca
such that:

v=—h+ Z na (7)o

aEA
Proof. By [Bou81, VI.1.8 Proposition 25 (i)], there exist integers po, > gq for

a € A such that h = > paa and —y = > goa. Hence no(v) = pa — qo >
0. O

We recall the following definition from [BT72, 6.4.3 and 6.4.5]:

4.2.3 Definition. Let f : & — R be a map. We say that the map f is
concave if it satisfies the following axioms:

(CO) f(2a) < 2f(a) for any root a € ® such that 2a € P;
(C1) f(a+b) < f(a)+ f(b) for any roots a,b € ® such that a + b € P;
(C2) 0< f(a)+ f(—a) for any root a € ®.

Despite these axioms look like a convexity property, they correspond in
fact to a concavity property in terms of valued root groups.

4.2.4 Ezample. For any non-empty subset 2 C A, the map fq : a —
sup{—a(z), = € Q} is concave [BT84, 4.6.26]. Later, we will apply Proposi-
tions 4.2.6 and 4.2.9 to values [, = fc,,(a).

4.2.1 Lower bounds for positive root groups

Let (l4)aco be any values in R. We define the following values (I)pcq+
depending on the [,, to become bounds for the positive root groups.

4.2.5 Notation. For any positive root b € ®*, we can write uniquely b =
> aea Na(b)a where no(b) € N are non-negative integers (not all equal to
zero). We define a value Iy = >~ - A Na(D)la-

Thanks to Lemma 4.2.1, we do several inductions on various root systems
to provide bounds, thanks to Proposition 4.1.3, for the valuations of the
valued root groups contained in the Frattini subgroup Frat(P). The first
step, in terms of positive roots, is the following:

4.2.6 Proposition. Let (I,)qca be values in R. Assume that for every simple
root a € A, we have l, € T'y.

(1) Then I € Ty, for any non-divisible positive root b € Q):d.

(2) Assume, moreover, that the map a — l, is concave. Then we have
lj > 1y for any positive root b € ®+.
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(8) Furthermore, assume that Hypothesis 4.1.2 is satisfied and that the
rank of ® is at least 2. Let H be a (compact open) subgroup of G(K)
containing the valued root groups U,,, for a € ®. Then for any root b €
Ot \ (AU2A), the derived group [H, H| contains the valued root group Uiy -

Proof. (1) We apply Proposition 3.1.2 and Lemmas 2.1.10 and 2.1.9 in the
various cases.

First case: ® is a reduced root system and L'/K is unramified.
For any root b € &, the set of values I'y of b is I';; = I'x. Hence, the sum
Iy = > aea Na(b)lq is an element of T'g = T,

Second case: ® is a reduced root system and L'/K is ramified.
For any long root of @, its set of values is the group d'T';; = I'. For any
short root of @, its set of values is the group I'z,. Hence, for any short root
be @, the sum l) = ca na(b)lq is an element of 'y =Ty,

Let b € @ be a long relative root arising from an absolute root 8 € .
Write 8 = 3"~ x ng(8)a. Hence na(b) = Y 5., n5(8). Moreover, ng () is
constant along the class a because § is Y-invariant and o = Y- @ is an orbit.
Hence, for any short simple root « arising from &, we obtain n4(b) = d'n%(6).
As a consequence, nq(b)lo = n5(8)d'l, € dT'1 = I'k. For any long simple
root o, we have I, € I'r. Hence, the sum [j = Y~ A na(b)ly is an element
of FK = Pb.

Third case: ® is a non-reduced root system. The set of values of
any multipliable root is %F 1. The set of values of any non-multipliable, non-
divisible root is I'z/. Indeed, the splitting field of a non-multipliable, non-
divisible root is L’ by Proposition 3.1.2 (3). For any multipliable root b € &,
the sum [} is an element of %F v = I'y. Up to isomorphism, there is a unique
non-reduced root system of rank [ described in [Bou81, VI.4.14]. We number
by ai,...,a;_1 the non-multipliable simple roots and by a; the multipliable
simple root. Any non-multipliable non-divisible root b € ®* can be written
as b =Y '_; nj(baj with ny(b) € {0,2}. We have n;(b)lo, € I'a, = I'p for
any j < [ and ny(b)ly, € 2Ty, = I';;. Hence the sum [; is an element of
I =T%.

(2) For any positive root b € &, we apply recursively Lemma 4.2.1(1)
to ®T in order to write b = Z;Vﬂ aj where a; € A are simple roots (possibly
with repetitions) and N € N* such that b, = > "_, a; is a (positive) root
for any n € [1,N]. By induction, we get that l{)n > Iy, . Indeed, for any
0<n<N-1 wehavely =~ =10 +lo = b, + s, by induction
hypothesis; and from the concavity relation (C1), we end the inequality by
oy + lapsr = lbutansy = lb,y,- Hence, we obtain the inequality Iy < 1j.

(3) Consequently, we have the inclusion Upyy C Usy,. We proceed by
decreasing strong induction on height in the root system @ relatively to the
basis A.

Basis: Let h be the highest root of ®. For the root group Uh’l%, we know
by Lemma 4.2.1(1) that there exists a simple root a € A and a positive root
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b € ®* non-collinear to a, and non-multipliable, such that h = a + b. Recall
that I = I, + [} by definition since a is a simple root. Let u € Upyy . We
have the group inclusion Ub,l;} C Uy,

Since b is non-multipliable, we get I; € T, by (1) and we can apply
Proposition 4.1.3, to a and b, so that there exist elements v € U, ,, v’ € Ub%
and v" € [, seneipssa Urarysb,ri,+s;, such that u = [v,v']v". But, for any
pair of positive integers (r, s) such that r + s > 2, the character ra + sb is
not a root because this would contradict maximality of height of h. Hence
v" = 1. Thus, we get Uy, C [H, H].

Inductive step: Let c € &7\ (AU2A). By Lemma 4.2.1(1), we write
c=a+bwhereac Aand b€ @:d. Let u € Uy Since l, € 'y and lg el
by (1), we know by Proposition 4.1.3, that there exist elements v € Uy, ,,
Ve Uy and V" € T, senvirsn2 Urartsbrig+st, Such that u = [v,v']v". For
any pair of positive integers (7, s) such that r+s > 2, if the character ra+ sb
is a root, then we have rl, + sl = 1., ,, by definition of I’. Moreover, the
height of ra + sb is greater than that of ¢. By induction hypothesis, the
valued root group Uyqispy  , is a subgroup of [H, H|, hence v" € [H, H].

As a consequence, we get U, C [H, H]. O

4.2.2 Lower bounds for negative root groups

In order to get an analogous result for negative roots, doing an induction
on height no longer works. In fact, we have to consider length of roots instead
of height. We recall that, in Notation 3.1.4, we defined a pure Lie theoretic
dual root system ®P.

4.2.7 Lemma. Let ® be a reduced irreducible non-simply laced root system
of rank | > 2. Let ® be an ordering on ® and 0 € ® be the short root
such that 6P is the highest root of ®P in the corresponding ordering. Then,
any short root ¢ € ® \ {—0} can be written ¢ = a + b where a,b € ® are
non-collinear roots such that a € ® is short and b € ®*. In particular, every
short root is higher than —0.

Proof. We provide these roots case by case thanks to an explicit realization
of the root system in R (see [Bou81, VI.4]). Let (e;)1<;<; be the canonical
basis of the Euclidean space R!.

P is of type B; with [ > 2:
Basis: a; = e; — e;41 where 1 <i <l and a; = ¢
Short roots: de; for 1 <i<land 0 =¢;
For any short root c € &\ {6},

eifced wewritec=¢; =a+bwith1<i<l a=—ej,b=¢ +e¢;
and j # i;

e if ce &7, we write c = —¢; = a+bwith 1 <7 <[, a=—e and
b:el—ei.
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® is of type C; with [ > 3:
Basis: a; = e; — ;41 where 1 < i <!l and a; = 2¢
Short roots: fe; £e; where 1 <i<j<land 0 =-e1 +e3
For any short root ¢ € &\ {6},

o ifc=e;fej wherel <7 < j <[, we write ¢ = a+0b where a = —e; Le;
and b = 2e;;

e if c = —e; £e; where 1 < i < j < [, we write ¢ = a + b where
a=—e; —e¢; and b= e L ej;

e if c= —ej £e; where 2 < j <[, we write c = a+ b where a = —e; —e3

and b = eg *ej;
e if c = —e1+eo, we write c = a+b where a = —e; —e3 and b = eg +e3.

® is of type Fj:
Basis: a1 = ey —e3, ap = €3 — €4, a3 = €4 and a4 = %(61 —eg —e3—ey)
Highest root: h =e; + es = 2a1 + 3as + 4as + 2a4
Short roots: +e; where 1 < ¢ < 4 and %(:I:el terstegtey) and 0 = e
For any short root c € &\ {—6},

e if ¢ = e1, we write ¢ = a + b where a = %(61—62—63—64) and
b:%(61+€2+63+€4);

e if ¢ = £e; where 1 < i < 4, we write ¢ = a + b where a = %(—61—{—
+e;—ej—ep) and b= %(61 + +e; +ej +e) where {i,j, k} = {2,3,4};

° ifc:%(elj:egj:egztez;),Wewritec:a+bwherea:%(—61$62:|:
ez teyq) et b=e; £ ey;

e if c = %(—el + ey +e3 +ey), we write ¢ = a + b where a = —e; and
b= %(61ﬂ:62:|:63:t64).

® is of type Go:
Basis: «, § where « is short and 3 is long
Highest root: h = 3a + 20
We have 6 = 2a + 3. We summarize the choices for the short roots, except
—0, case by case, in the following table:

cl20+B| a+p o -« —a—pf
a Q —« —a—fF| 2a—pF| 2a—-p
b| a+p8 |2a+8|20+8 | a+p o

O

We let (d¢)cea, (I)gdv 6 and h be defined as in Notation 3.1.6. Let (I3)qca
be any values in R. We define the following values (I7).co depending on the
lq, to become bounds for all the root groups.
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4.2.8 Notation. For any non-divisible root ¢ € ®,4, thanks to Lemma 4.2.2
applied in the root system @fld, we write:

A =0+ Z nl(c)a’ € ®°
acA

with n,(c) € N. We define I/ € R by:

Seltl = 6_gl_g+ Y _ daniy()la
acA

Furthermore, for any multipliable root ¢ € ®, we define I, = 21”. Note that
for any root ¢ € ®, there exist integers ny(c) for « € A, uniquely determined

by:
c= Z na(c)a

aEA
This extends Notation 4.2.5.

These values overestimate the values of valued root groups contained in
the derived group [H, H]. In particular, this proposition provides values
even for simple roots, which were not treated in Proposition 4.2.6. We can
remark on an example that, in general, these values are not optimal for
positive non-simple roots.

4.2.9 Proposition. Let (Iy)qca be values in R. Assume that for any simple
roota € A, we have l, € Ty and that l_g € T _gy. If ® is non-reduced, assume
furthermore that [_g € %FQQ.

(1) We have I € T for any root c € ®.

(2) We assume, moreover, that the map a — l, is concave. For any root
c € ®, we have Il > l.; for any positive root b € ®F, we have I > 1 > 1.

(8) We assume, moreover, that the irreducible root system ® is not of
rank 1 and that Hypothesis 4.1.2 is satisfied. Let H be a (compact open)
subgroup of G(K) containing the valued root groups Ug, for a € ®. If G
is a trialitarian Dy (i.e. ® of type Go and 69 = 3), we assume furthermore
that Iy +1_g < w(wyr). Then the derived group [H,H] contains the valued
root groups Ue v for any root ¢ € @\ {—6, —20}.

Proof. (1) If ® is a reduced root system, then ® = & if the extension
L'/K is unramified; and ®° = ®P if the extension L'/K is ramified. By
Definition 3.1.5, for any root ¢ € ®, the integer J. is the order of the quotient
group I'c/Tk, so that 6.I'. = T'x. Hence, each term n/ (¢)dala and 6_gl_g
of the sum belongs to the group I'. Thus 6.7 € T = 6.I¢, and we obtain
I € T, for any root ¢ € ®.

If ® is a non-reduced root system, then the set of values of multipliable
roots is %I‘L/ by Lemma 2.1.10 and the set of values of non-multipliable and
non-divisible roots is I';s by Lemma 2.1.9 and Proposition 3.1.2(3). For any
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non-divisible root ¢ € ®, the value d.l. is an element of I';, by definition
of d.. Indeed, if ¢ is multipliable, then §. = 2 by definition (see 3.1.5) and
le el = %FL/, and if ¢ is non-multipliable and non-divisible, then 6, = 1
and l. € T. =T'p/. Hence, as a sum of elements in I'z/, we get 6.0 € T'pr. If
¢ is non-multipliable and non-divisible, then §. = 1, hence [ € T', = T,. If
¢ is multipliable, then 6. = 2 hence I/ € 3T/ = L.

Finally, suppose that c is a divisible root and denote by aq,...,a; the
simple roots with a; the multipliable simple root. Write 6 = Zi’:l a;. Let
b € ®, be the multipliable root such that ¢ = +2b and write b = Y\_, a;
for some 1 < k <. Since §, = dg = 2, we get

!
c=+0,b=—-20+ Z n;a;
i=1
with n; € {0,2,4} for every 1 <i <1 —1 and n; € {0,4}. Thus

l
=210, = 0uplly = —2_9g+ > nila,.
=1

For i < [, the simple root a; is non-multipliable so that {,, = I'q, = I'z.
Thus n;l,, € 2I',. TFor ¢ = [, the simple root @; is multipliable so that
loy = Lo = %FL/. Thus ml,, € 4Ty, = 2T',. Hence we get that [ €
T'99 + 2I';, by assumption on [_g in the non-reduced case. But, according
to Lemma 2.1.10, the set I'og + 2I';/ is the set of value of any divisible root.
Hence I/ € Ty9 =T...

(2) It is more convenient to treat separately the case of divisible roots
so that h does not denote here the highest root of ® but the highest root of
®, 4 in this proof.

In the following, for any root ¢ € ®,q4, we denote by nq(c) and n/ (c)
the integers defined in Notation 4.2.8. We furthermore denote by 7S (c) the
integers uniquely determined by the following writing in basis A% ¢ =
> aea nd(c)a’. From uniqueness, for any a € A, we deduce that §and(c) =
Sena(c) and that n! (c) = nd(0) +nd(c) > 0 (it is a non-negative integer).

Let b € ", be a non-divisible positive root. In V* = Vect(®) we have:

W= —0"+0+ ) nd(b)a’

aEA

- 0+ (ng(e) + ng(b)) o

aEA
By definition of I}/, 1}, 1), we get:

Sl = olg+ > (ng(b) + ng(e)) Sala

aEA
= gl_g+ <Z 6bna(b)la> + (Z 59na(9)la>
aEA aEA

= Opl_g+ (5bl{, + (591/9
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Hence 0,(l] — 1)) = 0g(lj + 1_p). According to Proposition 4.2.6(2), we have
l; > Iy for all positive roots and, in particular, Ij > ly. Hence, by axiom
(C2), we get Iy +1_9g >1lg+1_9 > 0. As a consequence, we get Iy > 1} > Ij.

Let b € ®* be a multipliable root. Then I, = 2l > I}, = 2l; > 2[;,. By
axiom (CO0), we have 20, > lg, hence 15, > 15, > Iy,

Let ¢ € ®_; be a non-divisible negative root. We want to prove that
I/ > 1.. We proceed by induction on height in ®.4.

e First case: CIJfld = ®,q. Then §p =1, h = 6 and 6. = 1 for any root
¢ € ®pq. By definition, I, =1",=1_g =1_,.

If ¢ # —0, by Lemma 4.2.1(2), there exist a € ®,q and b € &', such that
c=a+b. From

c=—-0+ Zn;(c)a = (—0 + Zn&(a)a) + Zna(b)a =a+b,
we deduce n!,(c) = nl (a) + ny(b). Since 6. = 0_p = do = I = 1, we have

W=l_g+ > ni(o)la

aEA
= (l_e +) n/a(a)la> + (Z na(b)lb)
a€A acA
=l + 1

Hence I =1/ +1; > l, + [} by induction hypothesis. By axiom (C1) and
because lj > Iy, we get I > 1o + 1 > loyp = L.

e Second case: @fld = (I>nDd # ®,q. Then 6y = d'.

We proceed by induction on the height of roots. In a first step, we prove
the result for all shorts roots of ®,4, in a second step, for all roots of ®,4. In
the following, h will denote the highest root of ®,4, so that h is long. The
root 6 € ®,q will always denote the root such that #” is the highest root
of <I>fld = @fd, so that 6 is short. Note that in the case of a non-reduced
root system, short roots of ®,q also are short roots of ®. Recall that, by
Lemma 4.2.7, the root —0 has the smallest height among short roots.

We firstly do the induction, initialized by 1", = I_p, on height among
short roots of ®,4. Assume that ¢ # —6 is a short root in ®,4. By
Lemma 4.2.7, there exist a short root a € ®,4 and a positive root b € @:d
such that ¢ = a 4 b so that the height of a is smaller than that of ¢. Hence
0o = 0. = 0g. We have

dgb = dg(c —a) = ¢’ —a’
= <—95 + Z 5an'a(c)a> — (—96 + Z 501”;(@)0‘)
= Z 0o (n’a(c) - n&(a))a.
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Hence dgna (b) = a(nj(c) — niy(a)) for any o € A. Hence, we get:

Sell =0gl_g + > _ 6amfy(c)la

= (59l_9 + Z 5an'a(a)la) + Z Oa (ng(c) - n’a(a)) la
o (03
=3,1 + Sl
Hence I = 1) + 1, > l, + I} by induction hypothesis. By axiom (C1) and
because Iy > Iy, we get 1] > 1o + lp > loyp = L.
Now we do an induction on height for all roots of ®q.
Basis: consider the lowest root —h. Because ®,4 is non-simply laced,

there exist two short roots a,b € ®yq such that —h = a + b. In particular,
0q = 0p = 0y. Then:

—h=—20800+ > danj(h)o
O
a= —9—1—25—?1&(@)04

b:—9+z%n;(b)a
o b

(09 -20=3" <5an;(h) - ‘;zn;(a) L (b))a

= 2(59 — 2)nq(0)a
Hence, we obtain:
)
nmo_ g _ g _ r . Oa
[ (59z_9 + za:na( h)éala> (z_g + za: > na(a)la>
da
_ (1_9 + Za: Kbna(b)la>
da
— (8 — 2)l_g + Za: ((5an’a(—h) ~ $ma(a) - Ena(b))za
=(do — 2)(l—¢ + Ip)
Because g =d' > 2 and l_g+1j > 1_g+1p > 0, we have I, > 1/ + 1. By
the case of short roots, we know that ] > I, and [j > [,. Hence, by axiom
(C1), we have I"” , > 1o+ 1y > lop = l_p.
Induction step: we consider the length of a root ¢ # —h. The case

of short roots has been treated. Let ¢ # —h € ®,4 be a long root and we
assume that I/ > [, for any root a lower than ¢ in ®,4. We have 6. = 1
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because c is long, thus ¢ = ¢® = —&0 + Y. nl(c)dac. By Lemma 4.2.1
applied in ®,4, there exist a € ®,q and b € @;fd such that ¢ =a + 0.

If a is long, we have a = a® = —8p0 + >, nl(a)daa. Hence, donly(c) =
daniy(a) + na(b). As a consequence, I =17 +1;. By induction hypothesis,
I > 1, because c is strictly higher than a. Hence ] > I, + 1 > lo + 1 >
la+b = lc by axiom (C1).

Othervvlse a is a short root, so that §, = dp = d’. Hence we have

:—94—2 a)a. We have:

0—a+b—c—(59—19+2( )+na(b)—n’a(c)5a)oz.
By uniqueness of coefficients, for any o € A, we have

~(00 = 1na(6) = 30 (0) + 1al) = ().

Hence

W1 —ly= (6 — D)ig+ > (8 — Dna(0)la = (69 — 1)(I_g +1p).

Because [_g +1j > 1_g+ lg > 0 by axiom (C2), we obtain I/ > I/ +1;. B
induction hypothesis, I/ > 1,. Hence I/ > 1, + 1y > l41p = I by axiom (C1).
This finishes the induction.

Finally if ¢ is a multipliable root, then I, = 2I/ > 2I, > ls. by axiom
(C0). This finishes the proof of (2).

(3) We now establish inclusions Uj» C [H, H] of valued root groups, in
the order from the longest roots to the shortest roots. According to ® is a
reduced root system or not, there are one, two or three distinct lengths of
roots.

Let ¢ ¢ {—0,—20} be a root. Write it as a sum of two non-collinear
roots ¢ = a +b. We want to apply Proposition 4.1.3, with suitable values
I/ € Ty, lj € Ty and l. € R such that > I, l” + 1}, to prove that
Ueyn C Uc,fc C [H, H]. Because in 4.1.3, there remains a term v”, we have
to be careful in the order of the steps of this proof. We proceed step by step
from the longest length to the shortest length of the roots, we treat the case,
when it happens, of ¢ = —h # —0 separately, at the end of the study for long
roots, where h denotes the highest root of ®, and the case, when it happeuns,
of a short root ¢ # —f = —h such that the dual root —c” is the highest
root of ®. Note that when ® is non-reduced, then we have ¢ # —20 = —h
where h denotes the highest root of ®.

We denote by (a,b) = {ra + sb, r,s € N} N ® and by ®(a,b) = (Za +
Zb) N ®. Be careful that in general, ®(a,b) # (Ra + Rb) N P.

62



e Case of a divisible root: Suppose that ¢ # —20 = —h is a divisible
root. Hence ® is non-reduced and 5§ =y = d = 2. By Lemma 4.2.1 applied
to ®nm, there exist non-collinear roots a,b € @y, such that b € & and
¢ = a + b. Moreover, a,b have to be non-divisible and we have §, = d, = 1.

We have c 5 o\ g
c=0c— =—0°+ n,(=)a’=a+0b
=)
Hence
(—599+ 3 bant, (f) a> = (—590+ > Gany, (a) a) + (Z N () a)
a€A 2 aEA aEA

so that for any a € A, we have ,n), (5) = danly(a) + nq(b). Hence

I =21t = 0:lL = b5l + Y anl (9) I

acA 2
=0plg+ Y danty (@) la+ Y na(b)la
aEA acEA

=8l + 1, =10+ 1,

We have []] € Ty by (1) since a is non-divisible and we have [} € T’y by
Proposition 4.2.6(1) since b € ®*. Thus, by Proposition 4.1.3, for any
u € Ugy, there exist elements v € U, v and v € Ub% such that u = [v,v'].
Hence Uy» C [H, H].

e Case of a non-divisible long root when & is non-reduced: As-
sume that @ is irreducible non-reduced and that ¢\ {—6} is a long root in
®,4. Then c is a short root in @, and, by Lemma 4.2.7 applied in @y,
there is a positive short root b € @7 and a root a € Py, such that ¢ = a+b.
Then b is a long root in @, so that §, = 1. Thus I, € T, by (1) and I} € T,
by Proposition 4.2.6(1). Note that ®(a,b) is a rank 2 root system contained
in @, therefore of type Ay or Bs.

First subcase: ®(a,b) is of type Ay. We have (a,b) = {a,b,a+b} and we
have shown in (2) that I = I} + ;. By Proposition 4.1.3, for any u € U,
there exist elements v € U, y» and v € Uy such that u = [v,v']. Hence
Uear C [H, H] because l; > I, and I > Iy,

Second subcase: ®(a,b) is of type By. Then a is divisible in ® since a
has to be long in @y, and we have (a,b) = {a,b,a +b,a +2b}. Let a’ = ia
so that [}, = 2{”, and ¢, = 2 by definition. We have

a+b=68pd +b= (—599 + Z n'oé(a')éaa) + (Z na(b)oz) .

acA acA

Moreover, since §. = 1, we have

c= —0g0 + Z n,,(c)dac

aEA
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and, since d,/4 = 2, we have

a+2b =0y p(a +b) =60 + Y n(d +b)d

aEA
= 6pa +2b= <—590 + Z n'a(a')éaa> +2 <Z na(b)a> .
aEA a€A

Thus we have d,n) (c) = dan,(a') + nq(b) and donl,(a’ +b) = danl,(a') +
2n4/(b) so that I = I, + 1 and I o, = 20), = Saryplly g = Sarlly + 20 =
I, 4-21;. By Proposition 4.1.3, for any u € U, there exist elements v € Ug g
and v’ € Uy, and v e Uayab,i+2u such that u = [v,v']v". Moreover, the
divisible root satisfies a + 2b # —26 since b is a positive root and 26 is the
highest root of ®. We have already shown, because a42b # —20 is a divisible
root, that the group Uy op 171211 = Uayavir,,, 182 subgroup of [H, H|. Hence
UCJ/C/ - [H, H}

e Case of a long root when ¢ is reduced: Let ¢ be a long root of
®,q. Then 6. = 1 by definition. Suppose that ¢ = ¢ ¢ {—6, —h}, where h
denotes the highest root of ®,4. By Lemma 4.2.1 applied to ®,q, there exist
non-collinear roots a,b € ®,4 such that b € fl?id and c=a+b. Thusl/ €T,
by (1) and [ € I'y, by Proposition 4.2.6(1).

First subcase: ®(a,b) is of type As. We have (a,b) = {a,b,a+b} and we
have shown in (2) that I/ = I} + ;. By Proposition 4.1.3, for any u € U,
there exist elements v € U, y» and v € Upy such that u = [v,v']. Hence
Ueyr C [H, H] because I, > lq and I > I,

Second subcase: ®(a,b) is of type By or Gi. In this case, necessarily,
the long root c is the sum of two short roots. Indeed, ¢ has to be the
sum of root of same length, and if a, b were long in the case G, then
®(a,b) = (Za+2Zb)N® would only contain long roots which would contradict
the condition on the type of ®(a,b). Thus, we have (a,b) = {a,b,a+ b} and

4
da = O0p = 0g because a, b are short. Hence we have a = —6 + E Kan'a(a)a
0
o

and ¢ = —dgf + Z danl,(c)a. We have:
acA

0-a+b—c-@h—10+§:( (@) + na(B) = (€)oo
By uniqueness of coefficients, for any a € A, we have
— (09 — 1) (0) = =nl (a) + na(b) — nl,(c)dq.
Hence

W1 —ly=0—1la+ Y (69 — Dna(0)la = (3 — 1)(I_s + Iy).
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Because [_g + 1 > l_g + lyg > 0 by axiom (C2), we obtain ] > I/ +1;. By
Proposition 4.1.3, for any u € Ug v C Uc,lg+l;7a there exist elements v € Uy i
and v' € Uy such that u = [v,v']. Hence Uy C [H, H].

e The lowest root when it is not —0 and ® is reduced: We treat the
case, when it appears, of the non-divisible root ¢ = —h # —6 where h is the
highest root of ®,4. In that case we necessarily have that q)fld = <I>nDd % Opq
(this appears only for G of type 24y 1, 2Dy 1, 2Es, 2Dy or 5Dy with a
ramified extension L'/K). In this case, we have dp > 1 and h is a long
root. In particular, the integer (dp —2) is non-negative. We write ¢ as a sum
h =c=a+ b of two short roots a and b, so that §, = §, = dp and 6. = 1.
Moreover (a,b) = {a,b,a + b}. We have:

c:a+b:(—0+z(;zn’a(a)a>+<—9+Z?Zn;(b)a>

=20+ Z (g{;n’a(a) + (;: n’a(b)>o¢

=— 00+ Y (‘;‘;n’a(a) - g‘;n’a(b) + (Jp — Z)na(H))a

Hence we obtain:

l’cl =dgl_g + (519((5(1[;/ — 59179) + 510((5ng — (59l,9) + (59 — 2)l/9

=10+ 1y + (09 — 2)(I_g + 1)
>IN+ 1y

By (1), we know that [;; € I', and [j € T'y. Hence, by Proposition 4.1.3, for
any u € Ugyn C Uc,lgHga there exist elements v € U, v and v’ € Ub,lg such
that u = [v,0].

e Case of a short root: Let ¢ € ®,q be a short root. Then §, = g
by definition. Suppose that ¢ # —@ and that —c” is not the highest root of
@fd. Denote by h the highest root of ®,4. By Lemma 4.2.7 applied to ®,q,
there exist non-collinear roots a,b € ®,4 such that b € q):d, the root a is
short and ¢ =a + .

First subcase: case of two short roots ¢ and b. We have §, = 0, = 6, =
09 and we have shown in (2) that I/ = [/, + ;. The rank 2 root subsystem
®(a,b) is of type Az or Ga.

If ®(a,b) is of type Az, (a,b) = {a,b,a+b}. By Proposition 4.1.3, for any
u € Ugyr, there exist elements v € U, v and v’ € Uy such that u = [v,v'].

If ®(a,b) is of type G2, we have (a,b) = {a,b,a + b,2a + b,a + 2b}.
Because b is a positive root, we have that a 4+ 2b # —h since it is higher that
a—+b.

» Suppose that d9 > 1 or that 2a +b # —h. If 9 = 1, then § = h is a
long root and by assumption 2a 4+ b,a +2b € &g \ {—h} = ®pq \ {—0}. If
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dg > 1, then 6 is a short root. In both cases, the roots 2a 4 b, a + 2b are long
and different from —6.
We have:

2a+b :2( -0+ Z %n&(a)oz) + Zna(b)a
— G0+ Z ( ) +1a(b) + (05 — 2)ma(0) ),
Because 2a + b is long, we have d9,4+p = 1, so that:
" 60‘ /
vy =00l_g + Z (257%(@) + 1 (b) + (3 = 2)na(0) ) Lo

=0pl_g + — 5 ((5 l” (59179) + l;, + (59 — 2)l/9

=20+ 1y + (09 — 2)(I_g + 1)

In the same way, one can show that I ,, = I + 2l; + (09 — 1)(l; + ).

If 0g = 1, because _g+1; > 0, we get I3, < 2l”+l’ and I, o, = I +21;.
Hence, we get Usaipy ., D Usatoouy+iy, and Ungoppr = Uaion o1

Otherwise, dp = 3 and G is a trialitarian D4 with a ramified extension
L'/K. In that case, we assumed that [_g+1) < w(wy/) = 0" € '/, Because
I op l5gsp € T = 30/, we obtain that 0 < (09 — 1)(ly + 1) < 3w(wp) =
0" € k. The same is true for (6p—2)(Ij,+1_g). Hence, we have the equalities
of root groups: Ugponvary, = Uasabir,,, —(69—1)1y+1_9) = Uasapyr,,, and
Usarv21y+1, = Usatniy,, ,—(69—2)(Uy+_o) = V2atb, -

Since léf = 1) + 1} has been proven in (2) (case where 6, = &, = d. = dy),
I €Ty and [} € Fb, then by Proposition 4.1.3, for any u € Uy, there
exist elements v € Uqr and v’ € Up,y and V" e Usatv207+1; Uayan 1 vor;, such
that u = [v,v']v”. In both cases, because 2a + b and a + 2b are long and
different from —60, we have shown in a previous case that the root groups
Usatby, ., and Ugyop - are contained in [H,H]. Thus, v" € [H, H]. Hence
Uc,l/c’ C [H, H]

» Suppose that §p = 1 and that 2a +b = —h = —0. Then a is a
negative root since b is a positive root and 2a + b is a negative root. Set
a =2a+b=—fand b = —a € ®},. Then c = a+b = (2a+b)+(—a) = a'+V
and (a/,b') = {a',b/,d" +V,d" + 2V ,a’ + 3b',2a’ + 3b'}. Because §y = 1, we
have ¢, = 1 for any root v € ®. We have ' = —0 and V' = ) no(V)a.
Hence the equality ¢ = o/ + ' gives n/, (c) = nq (V') for any o € A, so that
I =1_g+1, =17, + 1. By the same way, we have I/, ,,, = I, + 2[;, and
lg sy = L +3l'/ Moreover,

20 3V = 20430 =6+ <3na(b’) - na(9)>o¢
a€cA
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so that

b =L+ Y (3na(b) = na(0) ) ln

aEA

=21_g+3 (Z na(b’)la> - (l_g + ) na(H)la>

a€cA aEA
<21, + 31},

By Proposition 4.1.3, for any u € U, there exist elements v € Uy
a

/ "
and v’ € Ub’,l;, and v" € Ua’+2b’,lg,+2l;, U‘l,+3b/:lg/+3l;/ UQa’+3b’,2ll’l’,+3l;, such
that u = [v,v']v". Because a’42b" = (a’+b")+ (V') is a sum of two short roots
with b’ a positive root and 2a’ + 3V’ # —h = d’, it is not the lowest dual root
and, we have seen in the previous case that Ua/+2b/7lg/+2%/ = Uy 1o 17

a’ +2b/
[H,H]. Because a’ + 3V # —0 = d' is a long root, we have seen that
— !/ / _ !z
Ual+3b/7lg/+3l;7/ = a’+3b’,l;’,+3b, C [H, H} Because 2CL + 3b 7é —0 = a 15
a long root, we have seen that Usy/ 3y 2,431, C Vg, C [H, H].
a "2a’+3

Thus, v" € [H, H]. Hence Uy C [H, H].

Second subcase: a is short and b is long. If ®(a,b) is of type G, then
c also can be written as a sum of two short roots a’,b with o a positive
root and this case has been treated, so that we can assume that ®(a,b) is
not of type Go. Because a,b do not have the same length, the rank 2 root
subsystem ®(a,b) is of type By or BCy. We have §, = §. = dp and &, = 1.
Precisely, we have (a,b) = {a,b,a + b,2a + b} if ® is a reduced root system
and (a,b) = {a,b,a+b,2a,2a + b,2a + 2b} otherwise. Then 2a + b is a long
root of ®,4 and we have doq4p = 1.

» Suppose that 2a + b # —h or that dy > 1. We have

dec = 59(—9—}—2 (gjbén;(a)—i-na(b))a) = —599—1—2 (damiy(a) +dona(b))a.

Hence 6.1 = 64l + 0pl;. Thus I = 1) + ;. By Proposition 4.1.3, for any
u € Uy, there exist elements v € Ugyr and o' € Uy and v" € Usatb217+1;
such that u = [v,v']v”. It remains to check that v" € [H, H]. We have:

d2a+6(2a +b) =2a+b :2( -0+ Z %n&(a)a) + Zna(b)a

S (5a52an;(a) +a(b) + (5 — 2na(6) )
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Hence:

2
,2,a+b =dpl_p + K(éalg — 59l_9) + l;) + (59 — 2)l’9

=8gl_g + 2l — 2l_g + I + (0p — 2)1

=200 + 1y + (09 — 2)(I_g + 1)
Because g € {1,2} and I_g+1j, > 0, we obtain the inequality l’2’a+b < 20041,
Moreover, if dg # 1 so that 6 # h, then —@ is short whereas 2a + b is long.
Otherwise —0 = —h # 2a + b by assumption. Hence 2a + b is a long root
in ®,4 \ {—0}, and we have already shown that UZHb,Ql&/Hg - Uzﬁb’lgﬁb C
[H,H|. Finally, if ® is non-reduced and 2a + 2b is a root, we get that
Iy, = Uyq op = 20y = 21 = 21y +2l;. Since ¢ # —0, we have 2a+2b = 2¢ #

—260 and we know that Usa-on,217 421, = U2a+2b7l/2,a+2b C [H, H] since we have

already treated the case of such a divisible root. Hence v" € [H, H] and it
follows that U.;» C [H, H].

» Suppose that 2a + b = —h and that dp = 1, so that & is reduced
and h = 6. Then a is a negative root since b is a positive root and 2a + b

is a negative root. Set ¢’ = 2a +b = —0 and ¥/ = —a € ®*. Then
c=a+b=(2a+b)+ (—a)=d 4+ and (/,V) = {d,V/,d' +V',a" +2V'}.
Because dg = 1, we have 6, = 1 for any root v € ®. We have o’ = —6

and ' = )" nq(b')a. Hence the equality ¢ = o’ + b gives n/,(c) = nq (') for
any a € A, so that I =1_9 +1;, =1, +1;,. Moreover,

A +2 =-0+2=-0+> 2n4()a
aEA

so that
lg’+2b’ = l_g + 2[;)/ == lg/ + 2lé/

By Proposition 4.1.3, for any u € U, r, there exist elements v € Uy

/ " _ 1,
and v € Ub/%/ and v" € Ua’+2b’,l’a’,+2l;, such that u = [v,0]v".

Because
a + 20 # —0 = d' is a long root, we have seen that Usar+y 20,411, =
Ua’+2b”l;’/+2b/ C [H, H]. Thus, v" € [H, H]. Hence U.;» C [H, H].

Now, it only remain the case of a short negative root ¢ such that —c? is
the highest root of ®” when h = 6.

e The lowest dual root: Assume that c is the negative root of ®,4 such
that —c? is the highest root of @nDd and h = 0 # —cso that @fd =+ (I)id =d4.
This case appears only if L' /K is unramified and ® is a reduced non simply
laced root system: indeed, if ® were non-reduced, then h would be a long
root in ®,4 and since 0 is multipliable, it is a short root in ®,4; if ® were
reduced and simply-laced, then all roots would have same length. In this
case, we have 0, = 1 for any root v € ® and the rank 2 root subsystem
®(a,b) is reduced for any a,b € ®. By Lemma 4.2.1(2), there exists a € ®_,

68



and b € <I>Id such that ¢ = a + b. If a is short, we can proceed as before.
Hence we assume that a is a long root, b and c¢ are short roots.

» If ®(a,b) is of type By, then (a,b) = {a,b,a + b,a + 2b} and we have
the equalities I, , = Iy +1j and I]] o, = lg +2[;. By Proposition 4.1.3, for any
u € Ue,y, there exist elements v € Uy yy and o' € Upyr and v € Ugyop 1121
such that u = [v,v']v”. Since b is a positive root, we have a + 2b # —h =
—0. Since a + 2b is a long root of ®,q = ®, we have already shown that
Ua+2b,lg+2lg = Ua+2b,l’a’+2b C [H, H]. Hence Uy C [H, HJ.

» If &(a,b) is of type G2, then (a,b) = {a,b,a+b,a+2b,a+ 3b,2a+ 3b}
If 2a + 3b = —h = —0, then, up to replace a by —2a — 3b = —0 = —h which
is a long root and b by —a — 2b = h — ¢ which is a positive short root, we
can assume that 2a + 3b # —h = —6. Since b is a positive root, we have
a+3b# —h=—60and a+2b# —h = —0.

We have the equalities I}, = I + Iy, I} o, = lg + 2l and ] 5 =
Iy + 3l Moreover, we have Iy, o = 2y + 3l — (I_g + 1) < 2 + 3l;. By
Proposition 4.1.3, for any u € U, there exist elements v € U,z and DS
Upyy and v" € Uyyop 121 Unav i+ Usatav2iy -+, such that u = [, v]v”.
Since a+3b and 2a+3b are long roots of ®,4 = @, we have already shown that
Uatsvay+3y, = Uayspr,,, C [H, H] and that Useygp2m13 C Usavsniy,,,, C
[H, H]. Since a + 2b # —6 can be written as the sum of the two short roots
b and a + b, we have shown that Uy yop 1o = Ua+2b,lg+2b C [H, H]. Hence

Uegr C [H, H]. This finishes the proof. O

4.2.10 Remark. Proposition 4.2.6 and Proposition 4.2.9 do not restrict the
choice of the basis A but only the choice of values [,. In fact, the conditions

lg € Ty for any a € A and [_g € I'_y limit the available choices for the basis
A.

4.2.11 Lemma. Let ® be an irreducible non-reduced root system and A be
a basis of . Let a € A be the multipliable simple root. Let 6 be the half
highest root of ® relatively to the basis A. Then A" = (AU{-0})\ {a} is
another basis of ©; and —a is the half highest root of ® relatively to the basis
A

Proof. We consider the following Euclidean geometric realisation of the root
system ® = {+e;, 1 <i<I}U{xe;*ej, 1 <i<j<I}U{£2e;, 1 <i<I}
where (e;) denotes the canonical basis of the Euclidean space R!. We denote
by a; = ej—e;41 forany 1 < i <l—1and by a; = ¢;. Theset A ={ay,...,q;}
is a basis of ® and 8 = e; = a1 + - - - + a; is the half highest root of ®.

Let w € GLi(R) be the element of the Weyl group W (®) defined by
w(e;) = —ej—iy1. We observe that w stabilises A\ {a;}, that w(—0) = a
and that w(a;) = —6.

If D is a half-space of R! defining the basis A, then w(D) is also a half-
space of R! and it defines the basis A’ = (A \ {a;}) U{—0}. The half highest
root of @ relatively to A’ is then —a;. O
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4.2.3 Lower bounds for valued root groups of the Frattini sub-
group

We want to apply Propositions 4.2.6 and 4.2.9 to the maximal pro-p
subgroup P corresponding to the fundamental alcove c,p described in Sec-
tion 3.1.

4.2.12 Theorem. Assume that the irreducible relative root system ® is of
rank | > 2 and that the residue characteristic p of K satisfies Hypothesis 4.1.2
and p # 2. Let P be a mazimal pro-p subgroup of G(K) and let c be the
(unique) alcove fized by P. Assume that ¢ C A. For any non-divisible root
a € ®uq, if the wall Hy g1(q) (this notation has been defined in Section 3.1.1
and Notation 3.1.1) contains a panel of c, then we have [P, P] D U, f1(q)+
and, if 2a € ®, [P, P] D Uy, f1(2a)+; otherwise, we have [P, P] D U, 1 (a)
and, if 2a € ®, [P, P] D Usq,f1(2q)-

Proof. We normalize I'try = Z. Up to conjugation, we can assume that
Cc = c,¢ is the fundamental alcove, defined in Section 3.1.2, and bounded by
the following walls:

o M, for all simple roots a € A;
o H_gy; if @ is reduced;
o H_, 1 if ® is non-reduced.

2

If the root system @ is reduced, according to section 3.1.2, the alcove c
is the intersection of half-apartments D(a,0) for a € ®* and D(b,0") for
b € ® . This provides f.(a) = 0 for a € @}, and fi(b) = 07 € T}, for
bed 4. But'y =11, = %FK = %bdgFL/ so that 07 = ‘;—2 in the group I'p.

If the root system @ is non-reduced, according to section 3.1.2, the alcove
c is the intersection of half-apartments D(a,0) for a € ®, and D(b,1) for
b € ®_; non-multipliable and D(c,1) for ¢ € ®_, multipliable. But for
any non-divisible root, 6, = 2 if a is multipliable and J, = 1 if a is non-
multipliable (Proposition 3.1.2) so that f.(a) = 4 for any a € ®,,.

Thus, we have the following values: ’

o fl(a)=0ifa € dT;
e fl(a)= g—z e {1,d'} if a € & and P is reduced;
o fl(a)= i € {1 1} if a € ®_; and @ is non-reduced.

We set [, = fe(a) € R for any a € . We know, by [BT84, 4.6.26], that
the maps a — [, is concave. The wall bounding the alcove c are directed
by the relative roots A U {—6#}. Hence, for any a € A U {—0}, we get
fela) = fi(a) = l, € Tq. Moreover, fo(—0) € {1,3} and Ij = 0 so that the
sum satisfies fo(—6) + 1) <1 = w(wy). Finally, if ® is non-reduced so that
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6 is multipliable, we have that 2]_g = 2f.(—0) = % =1 € I'yg according to
Lemma 2.1.10. As a consequence, we can apply Propositions 4.2.6 and 4.2.9
to the group P and the values [, = fc(a) where a € ®.

For any non-divisible non-simple positive root b € @r'fd \ A, by Proposi-
tion 4.2.6, because [, = 0, we have [P, P] D Uy = Uy 51 (1)-

For any non-divisible root ¢ € ®_, \ {0}, by definition, we have .l =

d9fL(—0). If ® is reduced, then we have [/ = g—f = fl(c). If ® is non-reduced,
then we have [ = i = fl(c) because §_yl_y = 1. Hence, for any non-
divisible root ¢ € @\ {—0}, by Proposition 4.2.9, we have [P, P] D U, f/(c)-

We suppose that @ is reduced. Let a € AU {—0}. Then, by Proposi-
tion 2.2.3, we know that [P, P] D Ua,l,’{' = Ua,fé(a)""

We suppose that ® is non-reduced. Let a € A. By definition, we get
Saly = S9fe(—0) = 1. We have Ij = &~ = 0" = fi(a)". Indeed, if a is
multipliable, [/ = %; otherwise I/ = 1 is the smallest positive value of T',.
By Proposition 4.2.9, we have [P, P] D Ug f1(q)+-

For any divisible root ¢ € ®, according to remarks below Notation 3.1.1,

we have that Uc,fé(c) = Uc,fc(c) C U%,%fc(c) = Uafc( y = U%,fé( )- Thus we

2 2
have, Ue f1(e)+ C U pr(e)+ C [P, P]. If the wall He y (<) does not contains a
panel of c, then we have U f;(¢) C Us f1() C [P, P] in that case.

Finally, when ® is non-reduced, we can apply Lemma 4.2.11 to exchange
the roles of the multipliable simple root a € A and the opposite of the half
highest root —6. We write § = ), _\ npb where n, € N*. In fact, we have
ny = 1 for any b € A (one can use description of roots given in [Bou8l,
VI1.4.14]) so that —0 = 0 + (—20) = a + Z b+ 2(—0). With respect to

beA\{a}
the basis A, we get 6_gl” j = dala+ » _ Splo+26_gl_g. Thus1”, =2l_g =
beA\{a}
1 = 1. By applying Proposition 4.2.9 to the basis A’ = (A \ {a}) U {6},
we obtain [P, P] D U_g p1(_g)+- O

4.2.13 Remark. As an immediate consequence, the derived group [P, P] con-
tains UQJ%(C’UHA(C) for any root ¢ € ®.

In the rank 1 case, we have a lack of rigidity that could make [P, P]
smaller than expected. Typically, Propositions 4.2.6 and 4.2.9 cannot be
applied.

In Proposition 3.1.7, given a basis A¢ corresponding to the choice of a
positive set of roots @1, we defined a fundamental alcove cu¢ of A. Let ¢ be
any alcove of A and n € Ng(S)(K) be such that ¢ = n - cye. We say that
the basis A = n - A corresponds to ¢. Note that A does not depend on the
choice of n: by simply-connectedness assumption, the setwise stabilizer of
Caf fixes it pointwise [BT84, 4.6.32| (i.e. the action is type-preserving) and
therefore any two such n differ from an element of ker v C T'(K), which fixes
Af |[BT72, 6.1.11(i1)].
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4.2.14 Corollary. We assume that p satisfies assumption 4.1.2 and that ®
is of rank at least 2. Let P = P} be a mazimal pro-p subgroup of G(K)
fizring an alcove ¢ C A. Let A be a basis of ® corresponding to c. For any
non-divisible root a € ®yq, we write P N Uy(K) = Uy, where l, € T'y. Let
a€ AU{-0},

e if a is multipliable, if the extension L, /Lo, is unramified, and if l, €
I, then we have the inclusions U, ;+ C [P, PINUq(K) C U, 1+Uzq 21,5
e otherwise, we have the equality [P, PN UL (K) =U I

a

Ifae ®\ (AU{—-0}), then we have the equality [P, P]NUy(K) = U,

’la :

Proof. This results immediately from Theorem 4.2.12 and Proposition 3.2.2.
O

5 Generating set of a maximal pro-p subgroup

As before, G is an absolutely simple quasi-split simply-connected K-
group and P is a maximal pro-p subgroup of G(K). In Corollary 5.2.2, we
obtain the minimal number of topological generators of the pro-p Sylow P
in the various cases.

5.1 The Frattini subgroup

In order to compute a minimal generating set of the maximal pro-p
subgroup P = PJ for some ¢ C A, we know by [DASMS99, 1.9] that it
suffices to compute a minimal generating set of the p-elementary commu-
tative group P/Frat(P), where Frat(P) denotes the Frattini subgroup of
P. Up to conjugation, we can assume that ¢ = c,¢ is the fundamental
alcove of A defined in Proposition 3.1.7. Let A be a basis correspond-
ing to ¢ and ®* the positive roots in ® with respect to this basis. Ac-
cording to |Loil6, 3.2.9], we know that P can be written as a product

P = (Maca-, Uae) T (Macor, Une)-

We want to describe the Frattini subgroup Frat(P), in the same way,
in terms of valued root groups Ua,l;’ with suitable values l; € R, and a
subgroup of T(K); that we have to determinate. Since P is a pro-p group,

by [DASMS99, 1.13], we have Frat(P) = PP[P, P]. Hence P/Frat(P) is a
7./ pZ vector space of dimension d(P) that we want to compute explicitly.

5.1.1 Theorem (Descriptions of the Frattini subgroup of a maximal pro-p
subgroup: the reduced case). We suppose that the relative root system ® is
reduced and that p # 2. If ® is of type Go, we require that p > 5. Then:

Profinite description: The pro-p group P is topologically of finite type
and Frat(P) = [P, P].
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Description by the valued root groups datum: For any a € @, we

set:
vVoo— { Usg fe(ay+ ta€AU {-06}

a,c — .
’ Usc otherwise

where 0 is the root defined in Notation 5.1.6. This group depends only on
the root a € ® and the alcove ¢ C A, not on the chosen basis A.
We have the following writing, as product:

Frat(P) = H Viae | T(K) H Vae

acdt acdt

Geometrical description: The Frattini subgroup Frat(P) is the mazi-
mal pro-p subgroup of the pointwise stabilizer in G(K) of the combinatorial
ball centered at ¢ of radius 1.

Proof. For any a € ®, we let [, = fc(a), so that [, € T, for any a € AU{—60}
IF ifae AUu{-6}
l, otherwise '
We define Q = [],co- U.i T(K)F - Tlaco+ U, ;- We prove the chain of
inclusions @ C [P, P] C Frat(P) C Q.

The inclusion [P, P] C PP[P, P] = Frat(P) is immediate.

By Corollary 3.2.10, we have Frat(P) C Q.

If the reduced irreducible root system ® is of rank [ > 2, by Theo-
rem 4.2.12, we have Va € &, [P, P] D Ui If @ is of rank 1, by Proposi-
tion 2.2.3, we have Va € ®, [P, P] D Ua,f,,,' Moreover, by Proposition 2.2.3,

we also have T%(K), C [P, P] for any a € ®. Because G is a simply-
connected semi-simple group, T(K ): is generated by the groups T%(K );,
hence T(K);" C [P, P]. As a consequence, @ C [P, P].

Hence, we obtain that @) = Frat(P) = [P, P].

By Proposition 3.2.11, we know that Frat(P) = @ is the maximal pro-
p subgroup of the pointwise stabilizer of the combinatorial closure of the
combinatorial unit ball centered in c. O

and the map a — [, is concave. We define ZZ = {

In the case of a non-reduced root system ®, we have seen that computa-
tion of [P, P] is different from the reduced case because of non-commutativity
of root groups. We have to study this case separately.

5.1.2 Theorem (Descriptions of the Frattini subgroup of a maximal pro-p
subgroup: the non-reduced case). We suppose that ® is a non-reduced root
system of rank | > 2, and that p > 5. Then:

Profinite description: The pro-p group P is topologically of finite type
and Frat(P) = [P, P].

Description by the valued root groups datum: Let a € ®yq be a
non-divisible root. If a ¢ AU{—0}, we set V, o = Ugc.
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If a € AU{—-0}, we set:

Voo Ua,f1(a)+ U2a21(a)  if @ is multipliable, L' /K is unramified and f¢(a) € T,
e Ua,fo(a)t otherwise.

Then Frat(P) = | [] Vae | TE)S | [] Vae

acd acdfy

Proof. Let @ = | [] Vae | T(K); | J] Vae |- By Corollary 3.2.10, we
acd acd’,
have Frat(P) C Q.

Let a € ®pq. If a ¢ AU{—-0}, we have Uy = V,c C [P, P] by Theo-
rem 4.2.12.

If a € AU{—0}, we have U, f:(q)+ C [P, P] by Theorem 4.2.12. Assume
that @ is multipliable and that L'/K is unramified. Normalize the valu-
ation so that I'yy = Z. If fl(a) € T, since I, = Z by Lemma 2.1.10,
we have Usqapra) = [Ua,f(a)s Ua,fi(a)] by Lemma 2.3.12 so that Ve =
Ua,f1(a)+ U2a2s2(a) C [P P] in this case. In other cases, we have Vy. =
Ua,f1(a)+ C [P, P].

As before, we normalize the valuation by I'ys = Z. For the multipliable
simple root a, if [, = — fi(—a) = —3+4f.(a), then we have Uy j, 41, Ufa,lﬁ% C
[P, P]. Thus, we can apply Proposition 2.3.1 and Proposition 2.3.11. For a
positive multipliable root a € ®*, because fc(a) = 0, we have € = 0, and so
e (K)b+ C [P, P]. For any non-multipliable root a € ®, by Proposition 2.2.3,
we have T%(K);” C [P, P]. Hence, T(K); is a subgroup of Frat(P). As a
consequence, we have @ C Frat(P).

Moreover, because @ is an open subgroup of P (of finite index), the
Frattini subgroup Frat(P) = @ is open in P. By [DdSMS99, 1.14], we
know that P is topologically of finite type. By [DdSMS99, 1.20], we deduce
Frat(P) = [P, P). 0

5.2 Minimal number of generators

5.2.1 Corollary (of Theorems 5.1.1 and 5.1.2). We assume p # 2.

If the root system ® is reduced, we assume that p # 3 or @ is not of type
Go. If the root system ® is non-reduced, we assume that p > 5 and that ®
is not of rank 1.

Then P/Frat(P) is isomorphic to the following direct product of p-elementary
commutative groups: Hae<1>nd Ua,c/Vac, where the groups Voo for a € ®pq
are defined in Theorems 5.1.1 and 5.1.2.

Proof. Let A =[] cq_,
tient groups. Let B = <Ha€¢;d Ua,c) x T(K)f x (Haecbjd Ua@) be the

Ua,c/Va,c be the considered direct product of quo-
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direct product of the valued root groups with respect to ¢ = c,¢, and of the

maximal pro-p subgroup of the bounded torus. Let C' = (Haedfd Va@) X

T(K); x (Hae':bid Va,c> be the direct product of the valued root groups

provided by Theorems 5.1.1 and 5.1.2.

We want to define a surjective group homomorphism B — P/Frat(P).
Let m : P — P/Frat(P) be the quotient homomorphism. For any inclusion
Ja : Uge = P (resp. jo : T(K);r — P), we define a group homomorphism
¢a = m0 jg : Uye — P/Frat(P) (resp. ¢o = mo jg). Since P/Frat(P)
is commutative, the multiplication map induces a group homomorphism
w: B — P/Frat(P). Applying [Loil6, 3.2.9] to P, we deduce that the
homomorphism p is surjective.

By Theorems 5.1.1(2) and 5.1.2(2), we get keru = C. Passing to the
quotient, we deduce a group isomorphism B/C ~ P/Frat(P). Furthermore,
there is a canonical group isomorphism A ~ B/C. Hence P/Frat(P) is
isomorphic to A. O

Since P/Frat(P) is a p-elementary commutative group, we deduce that
so are the quotient groups U, c/Vyc. Hence, we can compute their dimen-
sion as F)-vector space. According to [DdSMS99, 1.9], we know that the
minimal number of elements in a generating set of a pro-p group is d(P) =
dimg, (P/Frat(P)). It can also be computed by d(P) = dimy,,7 (H* (P, Z/pZ))
according to [Ser94, 4.2 Corollaire 5]. We apply this to our maximal pro-p
subgroup P of G(K).

In order to give explicit formulas for these numbers, we introduce the
following integers. We denote by €’ the ramification index of L'/K and by
f" its residue degree; we let m = log,(Card(rx)) so that kg ~ Fym.

5.2.2 Corollary. As above we assume that K is a non-Archimedean local
field of residue characteristic p and residue field k ~ Fym. We assume that G
is an absolutely simple simply-connected quasi-split K-group and that p # 2.
We keep notations of 2.1.3. Let n be the rank of the irreducible absolute root
system &)(Gf{,f() and l be the rank of the irreducible relative root system
(G, K).

(1) If ® is of type Gy or if ® is non-reduced of rank | > 2, suppose that
p > 5. If L'/K is ramified, then d(P) = m(l + 1); if L'/ K is unramified,
then d(P) =m(n+1).

(2) Suppose that ® is of type BCy and that p > 5. If L' /K is ramified,
then 2m < d(P) < 6m; if L'/ K is unramified, then 3m < d(P) < 9m.

5.2.8 Remark (Summary in terms of quasi-split groups classification). We
recall that f' denotes the residue degree of L'/K and that there are, case by
case, identities between d, [ and n. In Corollary 5.2.2, if the quasi-split group
is of type 4X,,; (with notations of [Tit66]; Tits indices are not necessary in
this study because of quasi-splitness assumption), we have d(P) = m& where:
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Type (in)equality Assumption
X, 1>1, X#G [€=1+1 p>3
Gy §=3 p=>5
Ag_q, 1>2 E=f—-1)+2 »>3
Diy1, 1 >3 E=1+f p>3
’E E=3+2f p>3
3Dy and °Dy E=24f p>5
2Agp, 1>2 E=fl1+1 p>5
Ay ffH1<E<3f +3 p=>5

Proof. (1) Suppose that ® is reduced. By definition of the groups
Xa,fc(a) ifae AU{—H}

Ve 5.1.1(2), we have Uge/Vye =~ 0 otherwise

the quotient groups X, s (q) are defined as in Proposition 3.1.12. Apply-

ing Corollary 5.2.1, we write P/Frat(P) ~ HaEAU{fO} Xa,fe(a)- We know by

Proposition 3.1.12 that the group X, (4 is a rr,-vector space of dimension

, where

1. The finite field xr,, is of order p"fe where f, denotes the residue degree of
the extension Lo /K. Thus, we obtain dimp, (P/Frat(P)) = >_,caui—g) Mfa-
It remains to compute § = 3" cAyq_gy fa- Let a € AU{—0}. If ais a long
root, then L, = K and f, = 1. Otherwise L, = L' and f, = f’.

Suppose that L'/K is ramified. Then f, = f’ = 1 for any root so that
¢=Card(AU{-0})=1+1.

Suppose that L'/K is unramified. We know that 6 is the highest root of
® with respect to A. Hence, —6 is a long root and L_y = K, so that f_ g = 1.
We have f, = Card(a) where any simple root a € A is seen as an orbit of
absolute simple roots a € A. Thus & = fog+D pen fo = 1+Card(£) = 1+n.

(2) Suppose that ¢ is non-reduced of rank [ > 2.

Denote by a € A the multipliable simple root. We have a group isomor-
phism P/Frat(P) ~ HbeAu{—e} Ub1,/Vb,c. We can express each Uy, /Vi e in
terms of Xp; (and of Xop o if b € {a, —6} is a multipliable root).

First case: b is non-multipliable. In this case, we have V,. =
Up,fo(v)+- By 3.1.12, we know that Uy, 1, 1)/Up, f.(5)+ = Xb, fo(v) 1S @ KL,-vector
space of dimension 1, hence a Fp-vector space of dimension f'm.

Second case: b is multipliable and L;/Ly, is ramified. By Lem-
mas 3.1.14 and 2.1.10, we know that U, s.4)/Voe = U to(v)/Ub sty =
X, fo(b) 18 @ kL, ~ Ki-vector space of dimension 1, hence a F)-vector space
of dimension m = f'm.

Third case: b is multipliable, L;/Lo, is unramified and f.(b) ¢
I'Y.. By Proposition 3.1.12 and Lemma 3.1.14, we know that Us,fo0)/ Voe =
Us, o)/ Us, o)+ = Xab2f.(b) 18 @ KLy,-vector space of dimension 1, hence a
F,-vector space of dimension m.

Fourth case: b is multipliable, L;/Lo, is unramified and f.(b) €
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Tl =TV,. By Proposition 3.1.12, we know that Uy 1.4/ Vh.e = Up. 1. (5)/ (U@ P fc(b)) -
Xb,fc(b)/X%’ch(b) is a kr,-vector space of dimension 1, hence a F,-vector
space of dimension 2m = f'm

We know that in the unramified situation, with the normalization of
the valuation 'y = Z, we have I'. = $Z and I, = Z for any multipliable
root ¢ € ® according to Lemma 2.1.10. Since a,—60 are multipliable and
fe(—0) + fe(a) = 07 = 1, we note that we have the alternative: either
fe(a) €T}, and fe(—0) € T7 ), or fe(a) €T, and fo(—0) € IV,

Hence, the sum of dimensions over F}, of U, 7.(a)/Va,c and U_g 5.(—g)/V -0
is always equal to (f' + 1)m

Since there are [ — 1 non-multipliable simple roots, we get

dP)=mf'(l-1)+ 1+ fym=m(lf' +1).

Let & be such that d(P) = m¢. If L'/K is unramified, then f' = 2 and
E=n+1. If I'/K is ramified, then f'=1and £ =1+ 1.

(3) Suppose that ® is non-reduced of rank 1. In this case, we
cannot apply Theorem 5.1.2 and its corollary. Let H = U_a’%T(K)ZrU&o
be a maximal pro-p subgroup of G(K) ~ SU(h)(K), so that ¢ = 0. Let
I = max(1,3) = 3.

Suppose that L/K is unramified. By Lemma 2.3.12, by Lemma 2.3.4 and
by Proposition 2.3.1, we have:

U-s02U_ sT(K)y UaaUsa C [H, HIH? C U0 pU-0pnT(K); U, 1 Uza0
On the one hand, thanks to computation with the quotient groups X, ;, we
get the k-vector spaces U, /U, ,1U2a0 ~ X,0/X2q,0 of dimension d(a,0) =

2and U_, 1/U 20,2:U—qn = X 1 of dimension d( ) + d(—2a,1) =

0+ 1 = 1. Hence d(H) > 3m. On the other hand, Ua 0/Ua1U2q0 have
to be isomorphic to a subgroup of X, /X240 ® X, 1/X24,1, of dimension
12

1/U_242U _ 3is
2 2

d(a,0)+d(a, %) = 2 as k-vector space. In the same way, U a

—a,
isomorphic to a subgroup of X_ 1 DX _q1/X_24,—2, of dimension d(—a l)—1—
2
d(—2a,1)+d(—a,1) = 0+1+2 = 3. Finally, T(K); /T(K )i is of dimension
21" —1) = 4. Thus d(H) < m(5+4) = 9m.
Suppose that L/K is ramified. By Lemma 2.3.12, by Lemma 2.3.4 and
by Proposition 2.3.1, we have:

U-03U-a2T(K)y Uy 3Uza C [H, HIH? C U—24,3,U-a1T(K); Uy 1 Usa

a,

On the one hand, thanks to computation with the quotient groups X,
we get the s-vector spaces Uy /U, 1U2a1 ~ X, of dimension d(a,0) +

d(2a,0) =140 and U a, 1/U Qag,U,al ~ X, 1 of dimension d(— ,% +
d(—2a,1) =0+1 = 1. Hence d(H) > 2m. On the other hand, U, 0/U, 3U2a1
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have to be isomorphic to a subgroup of Xq0® X, 1/X241 ® Xo,1/ X242, of
)
dimension d(a,0) +d(2a,0) +d(a, 3)+d(a,1) = 1+0+0+1 = 2 as k-vector
space. In the same way, U__ 1 /U_2,3U_g 2 is isomorphic to a subgroup of
2
X 10X 410X
2

—a

a

a%/Xga’g, of dimension d(—a, 3)+d(—2a,1)+d(—a,1)+

d(—2a,2) +d (=a,3) =0+ 1+1+0+0=2. Finally, T(K), /T(K)} is of
dimension (I” — 1) = 2. Thus d(H) < m(4 4 2) = 6m. O

5.2.4 Remark (Generating set in terms of root groups). A generating set of
P/Frat(P) always come from a topologically generating set of P. Hence, for
instance, when the relative root system @ is reduced and L'/K is ramified,
a system of generators of P is given by:

{xa()\i), 1<i<mandac€ A} U {{x_g()\iwL/), 1<i< m}

where (A;)1<i<m is a family of elements of Ok such that (MO /mk)i<i<m
is a basis of k; the root 6 is chosen as in Section 3.1; and wy, € O/ is a
uniformizer.

References

[Bor91] A. BOREL — Linear algebraic groups, second éd., Graduate Texts
in Mathematics, vol. 126, Springer-Verlag, New York, 1991.

[Bou81] N. BOURBAKI — Eléments de mathématique, Masson, Paris,
1981, Groupes et algébres de Lie. Chapitres 4, 5 et 6.

[BT65] A. BOREL & J. T1Ts — “Groupes réductifs”, Inst. Hautes Etudes
Sci. Publ. Math. (1965), no. 27, p. 55-150.

[BT72] F. BRUHAT & J. T1TS — “Groupes réductifs sur un corps local”,
Inst. Hautes Etudes Sci. Publ. Math. (1972), no. 41, p. 5-251.

[BT84| — , “Groupes réductifs sur un corps local. II. Schémas en
groupes. Existence d'une donnée radicielle valuée”, Inst. Hautes
Etudes Sci. Publ. Math. (1984), no. 60, p. 197-376.

[CR14] [. CappEBOSCQ & B. REMY - “On some pro-p groups from
infinite-dimensional lie theory”, Mathematische Zeitschrift 278
(2014), no. 1, p. 39-54.

[DASMS99] J. D. Dixon, M. P. F. pu Sautoy, A. MANN & D. SE-
GAL — Analytic pro-p groups, second éd., Cambridge Studies in
Advanced Mathematics, vol. 61, Cambridge University Press,
Cambridge, 1999.

78



[DG

[DG70]

[Lan96|

[Loil6]

[LS94]

[Lub01]

[PRS84|

[Ser94|

[Tit66]

[Tit79]

[Wil99]

M. DEMAZURE & A. GROTHENDIECK — Schémas en groupes.
séminaire de géométrie algébrique du bois marie 1962-64 (sga 3),
augmented and corrected 2008-2011 re-edition of the original by
Philippe Gille and Patrick Polo. Available at http://www.math.
jussieu.fr/ “polo/SGA3.

M. DEMAZURE & P. GABRIEL — Groupes algébriques. Tome I:
Géométrie algébrique, généralités, groupes commutatifs, Masson
& Cie, Editeur, Paris; North-Holland Publishing Co., Amster-
dam, 1970, Avec un appendice Corps de classes local par Michiel
Hazewinkel.

E. LANDVOGT — A compactification of the Bruhat-Tits build-
ing, Lecture Notes in Mathematics, vol. 1619, Springer-Verlag,
Berlin, 1996.

B. LoISEL — “On profinite subgroups of an algebraic group over a
local field”, (2016), Available at https://arxiv.org/abs/1607.
05550.

A. LuBorzKY & A. SHALEV — “On some A-analytic pro-p
groups”, Israel Journal of Mathematics 85 (1994), no. 1, p. 307—
337.

A. LuUBOTZKY — “Pro-finite presentations”, J. Algebra 242
(2001), no. 2, p. 672-690.

G. PrasaD & M. S. RAGHUNATHAN — “Topological central
extensions of semisimple groups over local fields”, Ann. of Math.
(2) 119 (1984), no. 1, p. 143-201.

J.-P. SERRE — Cohomologie galoisienne, fifth éd., Lecture Notes
in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994.

J. Tirs — “Classification of algebraic semisimple groups”, in
Algebraic Groups and Discontinuous Subgroups (Proc. Sympos.
Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Provi-
dence, R.I., 1966, p. 33-62.

— , “Reductive groups over local fields”, in Automorphic forms,
representations and L-functions (Proc. Sympos. Pure Math.,
Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sym-
pos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.,
1979, p. 29-69.

J. S. WILSON — Profinite groups, London Mathematical Society
Monographs New Series, Oxford University Press, USA, 1999.

79


http://www.math.jussieu.fr/~polo/SGA3
http://www.math.jussieu.fr/~polo/SGA3
https://arxiv.org/abs/1607.05550
https://arxiv.org/abs/1607.05550

	Introduction
	Minimal number of generators
	Pro-p Sylows and their Frattini subgroups
	Structure of the paper

	Rank 1 subgroups inside a valued root group datum
	Valued root groups datum
	Root groups datum
	The Galois action on the absolute root system and splitting extension fields of root groups
	Parametrization of root groups
	Valuation of a root groups datum
	Set of values

	The reduced case
	The non-reduced case

	Bruhat-Tits theory for quasi-split semi-simple groups
	Numerical description of walls and alcoves
	Walls of an apartment of the Bruhat-Tits building
	Description of an alcove by its panels
	Counting alcoves of a panel residue

	Action on a combinatorial unit ball

	Computation in higher rank
	Commutation relations between root groups of a quasi-split group
	Generation of unipotent elements thanks to commutation relations between valued root groups
	Lower bounds for positive root groups
	Lower bounds for negative root groups
	Lower bounds for valued root groups of the Frattini subgroup


	Generating set of a maximal pro-p subgroup
	The Frattini subgroup
	Minimal number of generators


