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GIANT HALL EFFECT IN COMPOSITES ∗

MARC BRIANE† AND GRAEME W. MILTON‡

Abstract. This paper deals with the homogenization of the Hall effect in three-dimensional
composites. We prove that the homogenized Hall coefficients are bounded from above by means of
prescribed bounds on the local conductivity and the local Hall coefficient. Then, three microstruc-
tures of different nature are presented in order to show that arbitrarily large effective Hall coefficients
may be obtained in dimension three if the previous prescribed bounds do not hold.
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1. Introduction. In electrodynamics a low magnetic field h modifies the con-
ductivity of a conductor. The leading, first-order in h, effect is called the Hall effect
(see e.g. [11] and [14]), and the second-order in h effect is called the magnetoresis-
tance. Due to quantum effects, multilayer metal composites can have giant magne-
toresistances and thus have a conductivity which is very sensitive to small magnetic
fields. Using them has enabled the miniaturization of read-heads on magnetic record-
ing devices. The importance of the discovery of such materials was recognized by
the award of the 2007 Physics Nobel Prize (see e.g. [1]). This paper addresses the
question of whether, within the framework of classical electrodynamics, composites
can exhibit giant Hall effects, when the constituent materials do not.

At first-order in h the resistivity matrix is equal to the unperturbed resistivity in
the absence of magnetic field plus an antisymmetric first-order term. In dimension
two one coefficient arises in the first-order term, it is called the Hall coefficient. In
dimension three the first-order term involves a whole 3× 3 matrix which is called the
Hall matrix. In the three-dimensional isotropic case the Hall matrix is proportional
to the identity matrix and the coefficient of proportionality is again called the Hall
coefficient.

Following the seminal work of Bergman [3] it is interesting to study the homog-
enized (or effective) Hall effect in composites. The situation is radically different in
dimension two and in dimension three. Indeed, we proved in [9] that in dimension two
the effective Hall coefficient satisfies the same bounds as the local Hall coefficient (i.e.
the Hall coefficient in the original microstructure before homogenization). This result
is similar to that of the homogenized conductivity which preserves the bounds of the
local conductivity by virtue of the arithmetic-harmonic mean bounds. Curiously the
bounds are not preserved for three-dimensional Hall coefficients. In particular, we
built in [8] a cubic chain mail (of the Middle Age armor type) with perfectly conduc-
tive rings, and a suitable positive local Hall coefficient in such a way that the effective
Hall matrix is isotropic but negative. Hence, the bound from below is not preserved
by the homogenization process.
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2 M. BRIANE AND G.W. MILTON

It is then natural to see the influence of homogenization on the bound from above
on the Hall coefficient. So, is it possible to obtain arbitrarily large effective Hall
coefficients from composites with local Hall coefficients satisfying given bounds? In
this paper we show that the answer is positive. Previously Bergman, Kantor, Stroud,
and Webman [5] had shown numerically that discrete random resistor networks could
exhibit enormous Hall coefficients near percolation, and Rohde and Micklitz [15] had
obtained experimental evidence of huge Hall coefficient near percolation in granular
mixtures. We mention, in passing, that there are also a number of interesting mag-
netotransport effects associated with composites in strong magnetic fields (see e.g. [6]
and [4], and references therein).

We first prove (see Theorem 2.9) a sufficient condition of boundedness which
claims that the homogenized Hall matrix is bounded by a constant times the upper
bound on the local Hall coefficient provided that the local conductivity is bounded
from above (at least in the region where the Hall coefficient is nonzero) and the ho-
mogenized conductivity matrix is bounded from below by prescribed constants. If one
of the two previous assumptions is not satisfied we can obtain arbitrarily large homog-
enized Hall coefficients. Specifically, we present three microstructures, each of quite
different nature, but which all can have arbitrarily large effective Hall coefficients:

• The first microstructure (see subsection 3.1) acts like n batteries in series.
We find that one of the effective Hall coefficients is of order n � 1, while the
local Hall coefficient is bounded above by 1.

• The second microstructure (see subsection 3.2) is an isotropic, two-phase,
rank-three laminate (with 8 elementary layers) based on the Schulgasser con-
struction [16]. One of the phases has a low conductivity t � 1 and occupies a
high volume fraction 1−t, and the other one has conductivity 1. We find that
the effective conductivity is of order t, and that the effective Hall matrix is
isotropic and of order t−1 � 1, while the local Hall coefficient is still bounded
by 1.

• The third microstructure (see subsection 3.3) is an isotropic two-phase rank-
five laminate (with 16 elementary layers) still based on the Schulgasser con-
struction. But this time one of the two phases has a high conductivity t−1

occupying a small volume fraction t, and the other one has conductivity 1.
We find that the effective conductivity is of order 1, while the effective Hall
matrix is asymptotically isotropic and of order t−1 � 1. Surprisingly we
obtain a composite with an effective conductivity of order 1 but inducing a
giant Hall effect.

The paper is divided in two sections. In Section 2 we recall the Hall effect prin-
ciple, a few results of the Murat-Tartar H-convergence and of the homogenization of
the Hall effect, and we give a sufficient condition for preserving the bound from above
of the three-dimensional homogenized Hall matrix. Section 3 is devoted to the study
of the three composites which have unboundedly high effective Hall coefficients.

Notations.
• Yd denotes the cube (0, 1)d;
• for any measurable set of Rd, |E| denotes the Lebesgue measure of E;
• Id denotes the unit matrix of Rd×d;
• for any A ∈ Rd×d, AT denotes the transpose of A, det(A) its determinant,

tr(A) its trace, and Cof(A) its Cofactor matrix;
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• | · | denotes the Euclidian norm in Rd; for any A ∈ Rd×d,

|A| := sup
{
|Ax| : x ∈ Rd with |x| = 1

}
;

• for α, β > 0, M(α, β; Ω) denotes the set of the matrix-valued functions A :
Ω −→ Rd×d such that

∀ ξ ∈ Rd, A(x)ξ ·ξ ≥ α |ξ|2 and A−1(x)ξ ·ξ ≥ β−1 |ξ|2, a.e. x ∈ Ω; (1.1)

• H1
] (Yd) denotes the space of functions which are Yd-periodic in Rd and belong

to H1
loc(Rd);

• for u : Rd −→ R, ∇u :=
(

∂u

∂xi

)
1≤i≤d

;

• for U : Rd −→ Rd, U = (u1, . . . , ud), DU :=
(

∂uj

∂xi

)
1≤i,j≤d

;

• for Σ : Rd −→ Rd×d,

Div (Σ) :=
(

∂Σij

∂xi

)
1≤j≤d

, Curl (Σ) :=
(

∂Σik

∂xj
− ∂Σjk

∂xi

)
1≤i,j,k≤d

;

• for a sequence of functions fε : O −→ H, ε > 0, where O is a neighborhood
of 0 in Rd and (H, ‖ · ‖) a Banach space, we denote

fε(h) = oH(h) ⇐⇒ lim
h→0

(
1
|h|

sup
ε>0

‖fε(h)‖
)

= 0, (1.2)

i.e. the oH(h) is uniform with respect to ε;
• D′(Ω) denotes the space of the distributions on Ω.

2. The Hall effect and Homogenization.

2.1. The three-dimensional Hall effect in a microstructure. Let Ω be a
bounded open subset of R3, and let α, β > 0. Consider a sequence Σε(h), for ε > 0
and h ∈ R3, of matrix-valued functions in M(α, β; Ω), which represents the conduc-
tivity matrix of a heterogeneous conducting material in the presence of a constant
magnetic field h, and the microstructure of which depends on the small parameter ε
(which in the simplest case of a periodic composite may represent the length of the
unit cell). We assume that Σε(h) belongs to M(α, β; Ω) and satisfies the uniform
Lipschitz condition

∃C > 0, ∀h, h′ ∈ R3, ‖Σε(h)− Σε(h′)‖L∞(Ω)3×3 ≤ C |h− h′|. (2.1)

From the physics of the problem it can be shown (see e.g. Section 21 of [11] pages 132-
135) that the resistivity ρε(h) := Σε(h)−1 satisfies the property

∀h ∈ R3, ρε(h)T = ρε(−h), (2.2)

which implies that the symmetric part of ρε(h) is even and the antisymmetric one is
odd with respect to h. Then, in the presence of a low magnetic field h we assume
that ρε(h) has a first-order expansion around h = 0. The zeroth-order term ρε := ρε(0)
of the expansion is the unperturbed resistivity which is a symmetric matrix. By
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contrast, the first-order term is an antisymmetric matrix and is linear with respect
to h. Therefore, the first-order expansion of ρε(h) reads as (see [8] for more details)

ρε(h) = ρε + E(Rεh) + oL∞(Ω)3×3(h), (2.3)

where Rε is the local Hall matrix which is bounded in L∞(Ω)3×3, and E is the Levi-
Civita tensor which maps a vector to an antisymmetric matrix according to

E

a1

a2

a3

 =

 0 a3 −a2

−a3 0 a1

a2 −a1 0

 for a1, a2, a3 ∈ R. (2.4)

Remark 2.1. In dimension two the first-order term in the expansion (2.3) reads
as rεh J , where rε, h are scalar and J is the rotation matrix by an angle of 90◦. So,
the Hall matrix reduces to the single Hall coefficient rε (see [9]).

2.2. Review of homogenization. Let Ω be a bounded open set of Rd, and
let α, β > 0. We recall here the definition of the Murat-Tartar [13] H-convergence
for a sequence of matrix-valued functions in M(α, β; Ω) (see the notation (1.1)), some
properties of H-convergence, and the definition of a corrector:

Definition 2.2. (Murat-Tartar [13]) A sequence Aε in M(α, β; Ω) is said to
H-converge to A∗ in M(α, β; Ω) if, for any f ∈ H−1(Ω), the solution uε of problem{

−div (Aε∇uε) = f in D′(Ω)

uε ∈ H1
0 (Ω),

(2.5)

weakly converges in H1
0 (Ω) to the solution u of{

−div (A∗∇u) = f in D′(Ω)

u ∈ H1
0 (Ω),

(2.6)

and the sequence Aε∇uε weakly converges to A∗∇u in L2(Ω)d. Then, the matrix-
valued function A∗ is called the homogenized matrix or the H-limit of Aε.

Murat and Tartar proved that any sequence in M(α, β; Ω) admits a subsequence
which H-converges in M(α, β; Ω). We will confine our attention to convergent subse-
quences in the sequel.

The periodic case provides a classical formula for the H-limit (see e.g. [2]): Let
A] be a Yd-periodic matrix-valued function in M(α, β; Rd). Then, the oscillating
sequence Aε(x) := A](x

ε ) H-converges on every bounded open subset of Rd to the
constant matrix A∗ defined by

A∗ :=
∫

Yd

A]DU dy, (2.7)

where U is the unique (up to an additive constant) solution in H1
loc(Rd)d of the

periodic cell problem {
Div

(
A]DU

)
= 0 in D′(Rd)

Uε(y)− y is Yd-periodic.
(2.8)
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In Definition 2.2 the electric field ∇uε does not strongly converge to ∇u in L2(Ω)d

due to the oscillations of the microstructure. Murat and Tartar introduced the notion
of corrector in order to measure the oscillations of the electric field and to recover the
H-limit:

Definition 2.3. (Murat-Tartar [13]) Let Aε be a sequence in M(α, β; Ω)
which H-converges to A∗. Any matrix-valued function P ε in L2(Ω)3 satisfying

P ε −⇀ Id weakly in L2(Ω)d×d

Curl (P ε) −→ 0 strongly in H−1(Ω)d×d×d

Div (AεP ε) −→ Div (A∗) strongly in H−1(Ω)d×d,

(2.9)

is called a corrector associated with Aε. The interest in correctors comes from the
following result:

Proposition 2.4. Let Aε be a sequence in M(α, β; Ω) which H-converges to A∗,
and let P ε be a corrector associated with Aε. Then, the following convergence holds
true

AεP ε −⇀ A∗ weakly in L2(Ω)d×d. (2.10)

Moreover, the potentials uε and u which are respectively solutions of (2.5) and (2.6),
satisfy the strong convergence

∇uε − P ε∇u −→ 0 in L1(Ω)d. (2.11)

The following result allows us to build correctors:
Proposition 2.5. (Murat-Tartar [13]) Let Aε be a sequence in M(α, β; Ω)

which H-converges to A∗. Let Uε be the solution in H1(Ω)3 of the problem{
Div (AεDUε) = Div (A∗) in Ω

Uε(x) = x on ∂Ω.
(2.12)

Then, DUε is a corrector associated with Aε. In the periodic case there is a more
explicit corrector:

Example 2.6. Let A] be a Yd-periodic matrix-valued function in M(α, β; Rd).
Then, the sequence P ε := DU(x

ε ), where the vector-valued function U solves (2.8), is
a corrector associated with the oscillating sequence Aε(x) := A](x

ε ).

2.3. The homogenized Hall matrix. Let Ω be a bounded open set of R3

and let α, β > 0. We consider a conductivity matrix Σε(h) in M(α, β; Ω), with h ∈
R3, which satisfies the uniform Lipschitz condition (2.1) and which is such that the
resistivity ρε(h) := Σε(h)−1 satisfies the first-order expansion (2.3) at h = 0. We
assume that Σε(h) H-converges to some conductivity Σ∗(h) for any h (this is not a
restrictive assumption if h belongs to a countable set).

Since Σε(h)T = Σε(−h) H-converges to Σ∗(h)T by a classical property of H-
convergence, we also get that Σ∗(h)T = Σ∗(−h) for any h. Therefore, one can prove
(see [9] and [8]) that there exists a matrix-valued S∗ in L2(Ω)3×3 such that the H-
limit Σ∗(h) satisfies the first-order expansion

Σ∗(h) = Σ∗ + E(S∗h) + oL2(Ω)3×3(h). (2.13)
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We also assume that S∗ belongs to L∞(Ω)3×3. Then, (2.13) leads us to the first-order
expansion satisfied by the homogenized resistivity ρ∗(h) := Σ∗(h)−1:

ρ∗(h) = ρ∗ + E(R∗h) + oL2(Ω)3×3(h), (2.14)

where R∗ ∈ L∞(Ω)3×3 is the homogenized Hall matrix.

The homogenization problem is now to derive the pair (ρ∗, R∗) of homogenized
matrices from the sequence (ρε, Rε) of local matrices. As suggested by the work of
Bergman [3] the result simply depends on the solutions for the current field without
any magnetic field present. More precisely, in [8] we proved the following distributional
convergence:

For any corrector P ε associated with the unperturbed conductivity Σε := Σε(0),
the following convergence holds true

Cof (ΣεP ε)T
Rε −⇀ Cof (Σ∗)T

R∗ = Cof (Σ∗) R∗ in D′(Ω)3×3. (2.15)

Remark 2.7. In the two-dimensional case of [9], the convergence (2.15) reduces
to

det (ΣεP ε) rε −⇀ det (Σ∗) r∗ in D′(Ω)3×3, (2.16)

where rε is the local Hall coefficient and r∗ is the homogenized one.
Remark 2.8. The norm of the homogenized Hall matrix R∗ is invariant by

an orthogonal change of variables. Indeed, let O be an orthogonal matrix of R3×3,
i.e. OOT = I3. Making the change of variables x′ = Ox, the homogenized resistiv-
ity ρ∗

O
in the new coordinates x′ is given by the formula ρ∗

O
(x′) = O ρ∗(x) OT (see

e.g. Lemma 38 of [19]). This also yields for the perturbed resistivities ρ∗
O
(h′)(x′) =

O ρ∗(h)(x) OT , where h′ := Oh is the magnetic field in the new coordinates. Then,
by (2.14) the homogenized Hall matrix R∗

O
and the magnetic field h′ in the new

coordinates satisfy

E
(
R∗

O
(x′)h′

)
= O E

(
R∗(x)h

)
OT . (2.17)

On the other hand, using Lemma 1 of [8] and the orthogonality of O the right-hand
side of (2.17) is also equal to E

(
OR∗(x)h

)
, which thus implies the equalities

R∗
O
(x′) = O R∗(x)OT and

∣∣R∗
O
(x′)

∣∣ = ∣∣R∗(x)
∣∣. (2.18)

2.4. Sufficient conditions of boundedness of the homogenized Hall ma-
trix. In dimension two we proved [9] that the homogenized Hall coefficient r∗ (see
Remark 2.7) preserves the bounds of the local Hall coefficient rε. This is not the case
in dimension three. The next Section 3 is devoted to three counterexamples. How-
ever, if the local conductivity of the microstructure is uniformly bounded from above,
and the homogenized conductivity is bounded, then the homogenized Hall matrix is
controlled by the bounds on the local Hall matrix as in dimension two. More precisely,
we have the following result:

Theorem 2.9. Let Ω be a bounded open subset of R3, and let α, β, βH , rH > 0.
Consider a microstructure in Ω with a conductivity matrix Σε ∈ M(a, β; Ω), with
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0 < a ≤ α, and an isotropic Hall matrix Rε := rε I3 in L∞(Ω)3×3. We assume that
Σε H-converges to some

Σ∗ ∈ M(α, β; Ω), (2.19)

and that

|Σε| ≤ βH a.e. in Ω ∩ {rε 6= 0}, (2.20)

and

|rε| ≤ rH a.e. in Ω. (2.21)

Then, the homogenized Hall matrix R∗ satisfies the bound

|R∗| ≤ 18
βH

α
rH a.e. in Ω. (2.22)

Remark 2.10. The homogenized Hall matrix is bounded, up to a multiplica-
tive constant, by the product of the contrast βH

α of the local conductivity times the
bound rH of the local Hall coefficient rε. Note that this contrast is less or equal to
the global contrast β

α of the conductivity, since by (2.20) βH is the bound obtained in
the region where the Hall coefficient is nonzero.

Proof. Let P ε := DUε be the corrector defined by Proposition 2.5, with Uε :=
(uε

1, u
ε
2, u

ε
3). By (2.15) the sequence Sε := Cof (ΣεP ε)T

Rε converges in the distri-
butions sense to the matrix-valued function S∗ := Cof (Σ∗)T

R∗ which belongs to
L∞(Ω)3×3. Let us estimate the sequence Sε

11.
First, the Cauchy-Schwarz inequality implies that for any i, j = 1, 2, 3,

∣∣(ΣεP ε)ij

∣∣ ≤ ∣∣ΣεP εej

∣∣ ≤ |Σε|
1
2
∣∣(Σε)

1
2 P εej

∣∣ = |Σε|
1
2
(
Σε∇uε

j · ∇uε
j

) 1
2 . (2.23)

Let ϕ ∈ C1
c (Ω), ϕ ≥ 0. Using successively (2.20), (2.23) and the Cauchy-Schwarz

inequality for the integrals we have∣∣∣∣ ∫
Ω

Sε
11 ϕ dx

∣∣∣∣
≤
∫

Ω

|rε|
∣∣∣Cof

(
ΣεP ε

)T
11

∣∣∣ϕ dx

=
∫

Ω

|rε|
∣∣(ΣεP ε)22(ΣεP ε)33 − (ΣεP ε)23(ΣεP ε)32

∣∣ϕ dx

≤
∫

Ω

|rε|
∣∣(ΣεP ε)22

∣∣ ∣∣(ΣεP ε)33
∣∣ϕ dx +

∫
Ω

|rε|
∣∣(ΣεP ε)23

∣∣ ∣∣(ΣεP ε)32
∣∣ϕ dx

≤ 2 βHrH

∫
Ω

(
Σε∇uε

2 · ∇uε
2

) 1
2
(
Σε∇uε

3 · ∇uε
3

) 1
2 ϕ dx

≤ 2 βHrH

(∫
Ω

Σε∇uε
2 · ∇uε

2 ϕ dx

) 1
2
(∫

Ω

Σε∇uε
3 · ∇uε

3 ϕ dx

) 1
2

.

(2.24)
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Similarly, by (2.23) we have for Sε
12∣∣∣∣ ∫

Ω

Sε
12 ϕ dx

∣∣∣∣
≤
∫

Ω

|rε|
∣∣∣Cof

(
ΣεP ε

)T
12

∣∣∣ϕ dx

=
∫

Ω

|rε|
∣∣(ΣεP ε)12(ΣεP ε)33 − (ΣεP ε)13(ΣεP ε)32

∣∣ϕ dx

≤ 2 βHrH

(∫
Ω

Σε∇uε
2 · ∇uε

2 ϕ dx

) 1
2
(∫

Ω

Σε∇uε
3 · ∇uε

3 ϕ dx

) 1
2

.

(2.25)

Moreover, the Murat-Tartar div-curl Lemma [18] combined with the Definition 2.2
implies the convergences∫

Ω

Σε∇uε
i · ∇uε

i ϕ dx −→
ε→0

∫
Ω

Σ∗ii ϕ dx, for i = 1, 2, 3. (2.26)

Therefore, passing to the limit in estimate (2.24) we get∣∣∣∣ ∫
Ω

S∗11 ϕ dx

∣∣∣∣ ≤ 2 βHrH

(∫
Ω

Σ∗22 ϕ dx

) 1
2
(∫

Ω

Σ∗33 ϕ dx

) 1
2

. (2.27)

Since the functions S∗11,Σ
∗
22,Σ

∗
33 belong to L∞(Ω), by a density argument estimate

(2.27) still holds true for any ϕ ∈ L1(Ω).
Then consider a Lebesgue point x common to the matrix-valued functions S∗

and Σ∗. By making an orthogonal change of variables which preserves the norms
|Σ∗|, |R∗| (see Remark 2.8 above), we can assume that Σ∗(x) is a diagonal matrix
without loss of generality. Using the test function ϕ := 1B(x,δ)/|B(x, δ)| in (2.27)
(where B(x, δ) denotes the ball of center x and radius δ) and passing to the limit as
δ → 0, we obtain the inequality

|S∗11(x)| ≤ 2 βHrH

(
Σ∗22(x) Σ∗33(x)

) 1
2 . (2.28)

Similarly, we have for any i, j = 1, 2, 3,

|S∗ij(x)| ≤ 2 βHrH

(
Σ∗i1i1(x)Σ∗i2i2(x)

) 1
2 , where {i, i1, i2} = {1, 2, 3}. (2.29)

Now, let us go back to the homogenized Hall matrix

R∗ = Cof (Σ∗)−T
S∗ = det (Σ∗)−1 Σ∗S∗.

Since Σ∗(x) is a positive definite diagonal matrix, we have for any i, j = 1, 2, 3,

|Σ∗ij(x)| ≤
(
Σ∗ii(x) Σ∗jj(x)

) 1
2 .

This combined with the estimates (2.29) yields for any i, j = 1, 2, 3,

|R∗ij(x)| =
1

det
(
Σ∗(x)

) ∣∣Σ∗i1(x) S∗1j(x) + Σ∗i2(x) S∗2j(x) + Σ∗i3(x)S∗3j(x)
∣∣

≤ 6 βHrH

det
(
Σ∗(x)

)(Σ∗ii(x)
) 1

2
(
Σ∗11(x) Σ∗22(x) Σ∗33(x)

) 1
2

= 6βHrH

(
Σ∗ii(x)

Σ∗11(x) Σ∗22(x) Σ∗33(x)

) 1
2

≤ 6 βHrH

α
, (Σ∗kk(x) ≥ α),

(2.30)

which implies (2.22) since |R∗(x)| ≤ 3 max1≤i,j≤3 |R∗ij(x)|.
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3. Unbounded homogenized Hall coefficients. This section is devoted to
three examples of three-dimensional microstructures which have unbounded effective
Hall coefficients due to the presence of low or/and high conductivity regions.

3.1. A battery of Hall materials. In this Section, Ω = ω × (0, 1) is an open
bounded cylinder of height 1 and of cross section ω ⊂ R2.

Theorem 3.1. There exists a microstructure in Ω depending on the positive
integer n, with an εY3-periodic conductivity Σε,n, and a εY3-periodic isotropic Hall
matrix Rε,n := rε,n I3, such that

Σε,n = I3 a.e. in Ω ∩ {rε,n 6= 0}, (3.1)

rε,n ∈ {0, 1} a.e. in Ω, (3.2)

Moreover, the homogenized conductivity matrix Σ∗,n and the homogenized Hall ma-
trix R∗,n are constant and satisfy

lim
n→∞

|R∗,n| = ∞. (3.3)

Remark 3.2. The assumptions (2.20) and (2.21) of Theorem 2.9 hold in Theo-
rem 3.1 with βH = 1 and rH = 1, thanks to conditions (3.1) and (3.2). However, the
sequence Σ∗,n is not bounded from below by α I3, where α is a constant independent
of n. So, the arbitrarily large homogenized Hall coefficients, implied by (3.3), are
not forbidden by Theorem 2.9. As a consequence, by virtue of (3.3) we can obtain
arbitrarily large homogenized Hall coefficients.

3.1.1. Description of the microstructure. We consider in Ω a εY3-periodic
columnar microstructure aligned along the x3-axis, the cross section of which is rep-
resented in figure 3.1. The period cell Y2 = (0, 1)2 of the cross section of the mi-
crostructure is divided into three regions as shown in figure 3.2:

• The 1-conductivity (grey) region Qn is composed of n rectangles (n = 3
in figure 3.2) Qn

1 , . . . , Qn
n. Each rectangle Qn

k has an x1-length equal to L1
n and

a x2-length equal to L2. The distance between two consecutive rectangles Qn
k

and Qn
k+1 is of order 1

n .
• The high conductivity (black) region Qn

s has n connected components in
the two-dimensional torus which link successive pairs of the n rectangles
Qn

1 , . . . , Qn
n, and which link Qn

n with Qn
1 across the boundary of the unit

cell, as sketched in the figure.
• The low conductivity (white) region Qn

w is the complementary of Qn ∪ Qn
s

in Y2. It contains the three rectangles R0, R1, R2 the width of each of which
is of order 1, as well as additional thin connecting regions, which serve to
insulate the various components.

On the other hand, the conductivity of the microstructure is defined by the two
parameters κ � 1 and n ∈ N \ {0} as follows. Let σ],κ,n be the Y2-periodic function
defined by its restriction on Y2

σ],κ,n(y) :=


1 if y ∈ Qn = Qn

1 ∪ · · · ∪Qn
n

κ if y ∈ Qn
s

1
n3

if y ∈ Qn
w.

(3.4)
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Fig. 3.1. The cross section of the columnar microstructure
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Fig. 3.2. The cross section of the microstructure period cell
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Denote by χ : R → R the 1-periodic function which agrees on the interval (0, 1) with
the characteristic function of (0, 1

2 ), and denote by χQ : R2 → R the Y2-periodic
function which agrees on Y2 with the characteristic function of any set Q ⊂ Y2.
We consider the εY3-periodic and anisotropic conductivity Σε,κ,n associated with the
microstructure of figure 3.1 and defined for x = (x′, x3) ∈ Ω, by

Σε,κ,n(x) = Σ],κ,n
(

x′

ε

)
:=

σ],κ,n 0 0
0 σ],κ,n 0
0 0 χQn

s
a + (1− χQn

s
)σ],κ,n

(x′

ε

)
. (3.5)

where a is a constant which will be chosen later.
Remark 3.3. The conductivity Σε,κ,n is anisotropic only in the high con-

ductivity (black) region to avoid a strong conductivity along the x3-direction. We
could have considered an isotropic conductivity by introducing in the black region a
laminate along the x3-direction at a smaller scale than ε. Using the reiterated ho-
mogenization for a multi-scale microstructure (see e.g. [2]), this two-scale isotropic
conductivity does the same job as the anisotropic conductivity Σε,κ,n. For the sake of
clarity we directly start from the anisotropic one. By the periodic homogenization
formula (2.7) and since Σε,κ,n is independent of x3, the H-limit of the sequence Σε,κ,n

is the constant matrix

Σ∗,κ,n :=

Σ∗,κ,n
11 Σ∗,κ,n

12 0
Σ∗,κ,n

21 Σ∗,κ,n
22 0

0 0 Σ∗,κ,n
33

 , (3.6)

where Σ∗,κ,n
33 is the average value of the Y2-periodic function Σ],κ,n

33 , i.e.

Σ∗,κ,n
33 = a |Qn

s |+ |Qn|+ 1
n3
|Qn

w|. (3.7)

The entries Σ∗,κ,n
ij , i, j = 1, 2, are given by

Σ∗,κ,n
ij :=

∫
Y2

σ],κ,n∇uκ,n
i · ∇uκ,n

j dy =
∫

Y2

σ],κ,n∇uκ,n
i · ej dy

=
∫

Y2

σ],κ,n
∂uκ,n

i

∂yj
dy,

(3.8)

where the functions uκ,n
i , i = 1, 2, solve the period cell problem{

div (σ],κ,n∇uκ,n
i ) = 0 in D′(R2)

uκ,n
i (y)− yi is Y2-periodic.

(3.9)

Finally, we consider in Ω the εY3-periodic x3-independent isotropic Hall matrix
defined by

Rε,κ,n(x) := rε,κ,n(x) I3 where rε,κ,n(x) := χQn

(
x′

ε

)
, for x = (x′, x3) ∈ Ω. (3.10)

Note that the local Hall coefficient rε,κ,n is concentrated in the (grey) region of con-
ductivity 1.
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3.1.2. A physical approach. To simplify the physical understanding, let us
slightly change the problem and suppose the isotropic white region has zero conduc-
tivity, and the black region has infinite transverse conductivity in the x1-x2 plane.
Next suppose the average current is directed along the x3 axis. Since the black and
grey regions have finite conductivities a and 1 in this direction, a fixed portion of
the total current will flow in the grey material in the direction x3. If the magnetic
field h is directed in the x1 direction this current will induce a Hall voltage VH (in-
dependent of n) in the x2 direction across each grey region Qn

k , for k = 1, . . . , n.
Thus, each of these grey regions will act in the transverse plane as a battery, and the
black connecting regions serve to connect them in series. Since the black regions are
perfectly conducting in the transverse direction there will be zero voltage drop in the
transverse direction across each connected black segment. Therefore, the total voltage
drop in the x2 direction across the unit cell will be nVH . This implies the Hall matrix
coefficient R∗11 is proportional to n, which becomes unboundedly large as n →∞.

3.1.3. A mathematical proof. Taking into account the Example 2.6, the con-
vergence (2.15) combined with the εY3-periodicity of Σε,κ,n (3.5) and Rε,κ,n (3.10),
imply that the homogenized Hall matrix R∗,κ,n is given by

Cof (Σ∗,κ,n) R∗,κ,n =
∫

Qn

Cof
(
Σ],κ,nDUκ,n

)T
dy, (3.11)

where Uκ,n := (uκ,n
1 , uκ,n

2 , uκ,n
3 ) is defined by (3.9), and uκ,n

3 = y3 (up to an additive
constant) due to the y3-independence of Σ],κ,n in (3.5). Since Σ],κ,n = I3 in Qn and
Uκ,n := (uκ,n

1 , uκ,n
2 , y3), we also have

R∗,κ,n =
Σ∗,κ,n

det (Σ∗,κ,n)

∫
Qn

Cof
(
DUκ,n

)T
dy, (3.12)

where the transpose of the corrector Cofactor matrix reads as

Cof
(
DUκ,n

)T =


∂uκ,n

2
∂y2

−∂uκ,n
2

∂y1
0

−∂uκ,n
1

∂y2

∂uκ,n
1

∂y1
0

0 0 ∂uκ,n
1

∂y1

∂uκ,n
2

∂y2
− ∂uκ,n

1
∂y2

∂uκ,n
2

∂y1

 . (3.13)

From now on, we choose a in (3.7) in such a way that

Σ∗,κ,n
33 = 1, (3.14)

the coefficient a being then of order 1 as n →∞.

Let us focus on the Hall coefficient R∗,κ,n
11 . The formula (3.12) combined with (3.14),

(3.6) and (3.13), yields

R∗,κ,n
11 =

Σ∗,κ,n
11

∫
Qn

∂uκ,n
2

∂y2
dy − Σ∗,κ,n

12

∫
Qn

∂uκ,n
1

∂y2
dy

Σ∗,κ,n
11 Σ∗,κ,n

22 −
(
Σ∗,κ,n

12

)2 . (3.15)

We will estimate R∗,κ,n
11 passing successively to the limits κ →∞ and n →∞.

First step : Passage to the limit κ →∞.
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For a fixed positive integer n and i = 1, 2, by equicoercivity of Σκ,n the sequence uκ,n
i

weakly converges, as κ →∞, in H1
loc(R2) to the function un

i which solves the periodic
cell problem

∫
Y2

σ],n∇un
i · ∇v dy = 0 ∀ v ∈ H1

] (Y2), ∇v = 0 in Qn
s ,

∇un
i = 0 in Qn

s ,

un
i (y)− yi is Y2-periodic,

(3.16)

where the conductivity σ],n is the Y2-periodic function defined by

σ],n(y) :=


1 if y ∈ Qn

1
n3

if y ∈ Qn
w.

(3.17)

By equation (3.9) and the weak convergence of ∇uκ,n
i to ∇un

i in L2(Y2), we also have∫
Y2

σ],κ,n

∣∣∇uκ,n
i −∇un

i

∣∣2 dy =
∫

Y2

σ],n∇un
i · ∇(un

i − uκ,n
i ) dy −→

κ→∞
0. (3.18)

This combined with (3.6) yields for any i, j = 1, 2,

Σ∗,κ,n
ij =

∫
Y2

σ],κ,n∇uκ,n
i · ∇uκ,n

j dy −→
κ→∞

Σ∗,nij :=
∫

Y2

σ],n∇un
i · ∇un

j dy, (3.19)

hence we deduce that the coefficient R∗,κ,n of (3.12) satisfies the following limit

lim
κ→∞

R∗,κ,n
11 = R∗,n11 :=

Σ∗,n11

∫
Qn

∂un
2

∂y2
dy − Σ∗,n12

∫
Qn

∂un
1

∂y2
dy

Σ∗,n11 Σ∗,n22 −
(
Σ∗,n12

)2 . (3.20)

Second step : Estimate of Σ∗,nij , for i, j = 1, 2.

Let us start by Σ∗,n11 . By (3.16) the function un
i , i = 1, 2, solves the minimization

problem

Σ∗,nii =
∫

Y2

σ],n |∇un
i |2 dy

= min
{∫

Y2

σ],n |∇v|2 dy : v(y)− yi ∈ H1
] (Y2), ∇v = 0 in Qn

s

}
.

(3.21)

Consider a test function v1 = v1(y1) in (3.21) with v1(1) = 1, such that v1 is equal to
zero in Y2 \R1 (see figure 3.2). Then, by the definition (3.17) of σ],n we have

Σ∗,n11 ≤ 1
n3

∫
R1

|∇v1|2 dy ≤ c1

n3
. (3.22)

Moreover, by the Cauchy-Schwarz inequality and the 1-periodicity of (y1 7→ u1(y)− y1),
we get

Σ∗,n11 ≥ 1
n3

∫
Y2

(
∂un

1

∂y1

)2

dy ≥ 1
n3

(∫
Y2

∂un
1

∂y1
dy

)2

=
1
n3

. (3.23)
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Therefore, there exists a constant c1 > 0 such that

1
n3

≤ Σ∗,n11 ≤ c1

n3
. (3.24)

The estimate of Σ∗,n22 is more delicate. On the one hand, we can build a test
function vn

2 of (3.21) satisfying the following properties (see figure 3.2):

vn
2 (y1, 0) = 0, vn

2 (y1, 1) = 1,

vn
2 = 1− k

n in each connected component of Qn
s joining Qn

k and Qn
k+1,

∇vn
2 = 1

nL2
e2 in Qn, i.e. vn

2 is an affine function of y2 in each set Qn
k ,

|∇vn
2 | is bounded in Y2 by a constant independent of n.

(3.25)

To deduce the fourth property of (3.25) from the values of vn
2 given by the first three

ones, we first make an interpolation in the rectangles between two consecutive sets Qn
k

and Qn
k+1, the width of these rectangles being of order 1

n . Then, we make a second
interpolation in the (white) rectangles R0, R1, R2 the width of which is of order 1 (see
figure 3.2).

Putting the test function vn
2 in (3.21) we get by the third and fourth properties

of (3.25),

Σ∗,n22 ≤
∫

Y2

σ],n |∇vn
2 |2 dy =

∫
Qn

|∇vn
2 |2 dy +

1
n3

∫
Qn

w

|∇vn
2 |2 dy

=
L1

n2L2
+ O

( 1
n3

)
.

(3.26)

On the other hand, let cn,i
0 be the value of un

i in the (black) upper connected compo-
nent of Qn

s in figure 3.2, let cn,i
n be the one in the lower connected component, and

let cn,i
k be the value of the connected component of Qn

s which joins two consecutive
sets Qn

k and Qn
k+1, for i = 1, 2 and k = 1, . . . , n − 1. Then, by the Cauchy-Schwarz

inequality we have

Σ∗,n22 ≥
∫

Qn

|∇un
2 |2 dy ≥

∫
Qn

(
∂un

2

∂y2

)2

dy ≥ 1
|Qn|

(∫
Qn

∂un
2

∂y2
dy

)2

. (3.27)

Moreover, since cn,2
0 − cn,2

n = 1 by the 1-periodicity of (y2 7→ un
2 (y)− y2), we obtain

owing to an integration by parts

1
|Qn|

(∫
Qn

∂un
2

∂y2
dy

)2

=
1

L1L2

(
L1

n

n∑
k=1

(
cn,2
k−1 − cn,2

k

))2

=
L1

n2L2
. (3.28)

This combined with (3.27) and (3.26) yields

L1

n2L2
≤
∫

Qn

|∇un
2 |2 dy ≤ Σ∗,n22 ≤ L1

n2L2
+ O

( 1
n3

)
, (3.29)

which implies that

Σ∗,n22 =
L1

n2L2
+ O

( 1
n3

)
,

1
n3

∫
Qn

w

|∇un
2 |2 dy = Σ∗,n22 −

∫
Qn

|∇un
2 |2 dy = O

( 1
n3

)
.

(3.30)
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Moreover, using successively (3.30), (3.25), the first property of (3.16) with v :=
vn
2 − un

2 , and again (3.30) we get∫
Qn

|∇un
2 −∇vn

2 |2 dy

=
∫

Qn

|∇un
2 |2 dy +

∫
Qn

|∇vn
2 |2 dy − 2

∫
Qn

∇un
2 · ∇vn

2 dy

=
2 L1

n2L2
+ O

( 1
n3

)
− 2

∫
Y2

σ],n∇un
2 · ∇vn

2 dy + O
( 1

n3

)
=

2 L1

n2L2
− 2

∫
Qn

σ],n∇un
2 · ∇un

2 dy + O
( 1

n3

)
=

2 L1

n2L2
− 2 Σ∗,n22 + O

( 1
n3

)
= O

( 1
n3

)
.

(3.31)

Finally, let us estimate Σ∗,n12 . By definition (3.19), (3.24) and the second estimate
of (3.30) we have

Σ∗,n12 =
∫

Y2

σ],n∇un
1 · ∇un

2 dy

=
∫

Qn

∇un
1 · ∇un

2 dy + O
( 1

n3

)
=
∫

Qn

∇un
1 · ∇vn

2 dy +
∫

Qn

∇un
1 · (∇un

2 −∇vn
2 ) dy + O

( 1
n3

)
.

(3.32)

On the one side, by the definition of the constants c1,n
k (defined after (3.26)) and the

1-periodicity of (y2 7→ un
1 (y)), it follows that∫

Qn

∇un
1 · ∇vn

2 dy =
1

nL2

n∑
k=1

∫
Qn

k

∂un
1

∂y2
dy =

L1

n2L2

n∑
k=1

(
cn,1
k−1 − cn,1

k

)
=

L1

n2L2

(
cn,1
0 − cn,1

n

)
= 0.

(3.33)

On the other side, the Cauchy-Schwarz inequality combined with estimates (3.24)
and (3.31) yields ∣∣∣∣ ∫

Qn

∇un
1 · (∇un

2 −∇vn
2 ) dy

∣∣∣∣
≤
(
Σ∗,n11

) 1
2

(∫
Qn

|∇un
2 −∇vn

2 |2 dy

) 1
2

= O
( 1

n3

)
.

(3.34)

Therefore, from (3.32), (3.33) and (3.34) we deduce that

Σ∗,n12 = O
( 1

n3

)
. (3.35)

Third step : Estimate of the homogenized Hall coefficient R∗,n11 .
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First of all, by proceeding as in (3.27) and (3.24) we obtain

∫
Qn

∂un
i

∂y2
dy =

L1

n

n∑
k=1

(
cn,i
k−1 − cn,i

k

)
=

L1

n

(
cn,i
0 − cn,i

n

)
=


0 if i = 1

L1

n
if i = 2.

(3.36)

This combined with estimates (3.24), (3.30) and (3.35) implies that the sequence R∗,n11

defined by (3.20) satisfies

R∗,n11 =
Σ∗,n11

Σ∗,n11 Σ∗,n22 −
(
Σ∗,n12

)2 ∫
Qn

∂un
2

∂y2
dy

≈
n→∞

1
Σ∗,n22

∫
Qn

∂un
2

∂y2
dy ≈

n→∞

n2L2

L1

L1

n
= n L2.

(3.37)

Fourth step : Proof of (3.3).

By virtue of the limit (3.20) combined with the estimate (3.37), there exists a se-
quence κn such that

R∗,κn,n
11 ≥ 1

2
n L2, for any large enough n. (3.38)

Finally, we consider the microstructure of figure 3.1 associated with the local con-
ductivity matrix Σε,n := Σε,κn,n of (3.5) and the local Hall coefficient rε,n := rε,κn,n

of (3.10). Therefore, (3.38) implies that the homogenized Hall matrix R∗,n := R∗,κn,n

of (3.12) satisfies the desired result (3.3).

3.2. An isotropic laminate with a low effective conductivity. The mi-
crostructure we have just studied achieves a large Hall effect by combining transverse
Hall voltages like batteries in series. By contrast, the laminate materials analyzed
in this subsection and the subsequent subsection achieve large Hall voltages through
large local electrical currents flowing through a small volume of material having a Hall
coefficient of order 1, and conductivity much greater than the surrounding material.

We have the following result:
Theorem 3.4. There exists a laminate microstructure associated with an isotropic

conductivity Σε,t depending on a small parameter t > 0, and an isotropic Hall matrix
Rε = rε,t I3, with rε,t ∈ {0, 1}, such that the homogenized conductivity Σ∗,t = σ∗,t I3

and the homogenized Hall matrix R∗,t = r∗,t I3 are isotropic, with

lim
t→0

σ∗,t = 0 and lim
t→0

r∗,t = ∞. (3.39)

Proof. The proof of Theorem 3.4 is based on a two-phase rank-one laminate in the
direction ξ ∈ {e1, e2, e3}, where (e1, e2, e3) is the canonical basis of R3. Let Σ1,Σ2 be
the conductivity phases of the laminate with the respective volume fractions θ, 1− θ.
By virtue of [12] and [7] there exists an associated corrector (electric field) which has
the same laminate structure with components P1, P2 in the two phases satisfying the
relation

P1 = MP2 where M := I3 +
1

Σ1ξ · ξ
(ξ ⊗ ξ) (Σ2 − Σ1) . (3.40)
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Fig. 3.3. The Schulgasser laminate

Moreover, the effective conductivity matrix of the laminate is given by

Σ∗ := Σ1+(1−θ) (Σ2 − Σ1)N−1 where N := I3+
θ

Σ1ξ · ξ
(ξ ⊗ ξ) (Σ2 − Σ1) , (3.41)

in such a way that

θ Σ1P1 + (1− θ) Σ2P2 = Σ∗P̄ where P̄ := θ P1 + (1− θ) P2. (3.42)

To obtain an isotropic composite we will apply the Schulgasser construction [16] to a
two-phase rank-one laminate of the previous type, considered as a single crystal with
the effective conductivity matrix (3.41). The construction will provide a rank-three
laminate based on 4 elementary two-phase rank-one laminates (that is to say 8 layers
at the smallest scale) as shown in figure 3.3. Following the principle stated in [12] and
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proved in [7] there exists a corrector which is constant in each layer of the laminate.
This combined with (2.15) will allow us to derive an explicit formula for the effective
Hall matrix.

First step: construction of 4 elementary two-phase rank-one laminates.
We start from a two-phase rank-one laminate in the direction e1 composed of the hard
(high conducting) phase Σ1 := I3 and the soft (low conducting) phase Σ2 := t I3, with
the respective volume fractions θ := t, 1− t, where t � 1. So, the soft phase occupies
the major part of the volume. The effective conductivity matrix of the laminate is
given by

Σ∗11 := I3 − (1− t)2
[
I3 + t (t− 1) (e1 ⊗ e1)

]−1 =

λ 0 0
0 µ 0
0 0 µ

 , (3.43)

where λ :=
t

1− t + t2
and µ := 2t− t2. (3.44)

Thanks to (3.40) the correctors Ph
1 (h for the hard phase) and P s

1 (s for the soft
phase) associated with this first rank-one laminate satisfy

Ph
1 = M11 P s

1 where M11 := I3 + (t− 1) (e1 ⊗ e1) . (3.45)

The second rank-one laminate is similar but in the direction e2, with the effective
conductivity matrix

Σ∗12 := I3 − (1− t)2
[
I3 + t (t− 1) (e2 ⊗ e2)

]−1 =

µ 0 0
0 λ 0
0 0 µ

 , (3.46)

and the associated correctors Ph
2 , P s

2 satisfying

Ph
2 = M12 P s

2 where M12 := I3 + (t− 1) (e2 ⊗ e2) . (3.47)

The third rank-one laminate is a copy of the first one with the effective conductivity
matrix Σ∗13 := Σ∗11 and the associated correctors Ph

3 , P s
3 satisfying

Ph
3 = M11 P s

3 . (3.48)

The fourth rank-one laminate is similar to the first one in the direction e3, with the
effective conductivity matrix

Σ∗14 := I3 − (1− t)2
[
I3 + t (t− 1) (e3 ⊗ e3)

]−1 =

µ 0 0
0 µ 0
0 0 λ

 , (3.49)

and the associated correctors Ph
4 , P s

4 satisfying

Ph
4 = M14 P s

4 where M14 := I3 + (t− 1) (e3 ⊗ e3) . (3.50)

Second step: construction of two rank-two laminates with the composite phases of the
first step.
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The first rank-two laminate is a rank-one laminate in the direction e3 of the composite
phases Σ∗11, Σ∗12, with the respective volume fractions 1

3 , 2
3 . By (3.41) the effective

conductivity of this laminate is given by

Σ∗1 := Σ∗11 +
2
3

(Σ∗12 − Σ∗11)
[
I3 +

1
3 Σ∗11e3 · e3

(e3 ⊗ e3) (Σ∗12 − Σ∗11)
]−1

=

λ+2µ
3 0 0
0 2λ+µ

3 0
0 0 µ

 .

(3.51)

We set

P̄i := t Ph
i + (1− t) P s

i , for i = 1, . . . , 4. (3.52)

By [12] and [7] this rank-two laminate can be regarded as a two-phase rank-one
laminate the correctors of which are (averaging at the smallest scale of the rank-three
laminate) P̄1, P̄2 satisfying

P̄1 = M1 P̄2 where M1 := I3 +
1

Σ∗11e3 · e3
(e3 ⊗ e3) (Σ∗12 − Σ∗11) = I3. (3.53)

The second rank-two laminate is a rank-one laminate in the direction e2 of the com-
posite phases Σ∗13, Σ∗14, with the respective volume fractions 1

3 , 2
3 . By (3.41) and by

the equality Σ∗13 = Σ∗11 its effective conductivity is given by

Σ∗2 := Σ∗11 +
2
3

(Σ∗14 − Σ∗11)
[
I3 +

1
3 Σ∗11e2 · e2

(e2 ⊗ e2) (Σ∗14 − Σ∗11)
]−1

=

λ+2µ
3 0 0
0 µ 0
0 0 2λ+µ

3

 ,

(3.54)

and the associated correctors P̄3, P̄4 satisfy

P̄3 = M2 P̄4 where M2 := I3 +
1

Σ∗11e2 · e2
(e2 ⊗ e2) (Σ∗14 − Σ∗11) = I3. (3.55)

Third step: construction of the isotropic rank-three laminate.
The final composite is a two-phase rank-one laminate in the direction e1 of the compos-
ite phases Σ∗1, Σ∗2 given by the second step, with the volume fractions 1

2 , 1
2 . By (3.41)

its effective conductivity is the isotropic matrix

Σ∗,t = σ∗,t I3 := Σ∗1 +
1
2

(Σ∗2 − Σ∗1)
[
I3 +

1
2 Σ∗1e1 · e1

(e1 ⊗ e1) (Σ∗2 − Σ∗1)
]−1

=
(

λ + 2µ

3

)
I3.

(3.56)
We set with (3.52)

¯̄P1 :=
1
3

P̄1 +
2
3

P̄2 and ¯̄P2 :=
1
3

P̄3 +
2
3

P̄4. (3.57)
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By [12] and [7] this isotropic composite can be considered as a two-phase rank-one
laminate the correctors of which are (averaging at the meso-scale of the rank-three
laminate) ¯̄P1, ¯̄P2 satisfying

¯̄P1 = M ¯̄P2 where M := I3 +
1

Σ∗1e1 · e1
(e1 ⊗ e1) (Σ∗2 − Σ∗1) = I3. (3.58)

Moreover, by the first convergence of (2.9) the whole average of the rank-three lami-
nate correctors is equal to I3, hence

1
2

¯̄P1 +
1
2

¯̄P2 = I3. (3.59)

This combined with (3.58) yields

¯̄P1 = ¯̄P2 = I3. (3.60)

Therefore, by combining (3.45), (3.47), (3.48), (3.50), (3.52), (3.53), (3.55), and (3.60)
we obtain successively the following explicit formulas for the 8 elementary correctors
Ph

i , P s
i , i = 1, . . . 4:

P s
4 = (t M14 + (1− t) I3)

−1
, Ph

4 = M14 P s
4

P s
3 = (t M11 + (1− t) I3)

−1
, Ph

3 = M11 P s
3

P s
2 = (t M12 + (1− t) I3)

−1
, Ph

2 = M12 P s
2

P s
1 = (t M11 + (1− t) I3)

−1
, Ph

1 = M11 P s
1 .

(3.61)

Now, we consider the isotropic local Hall matrix Rε,t = rε,t I3 defined by

rε,t :=



1 in the layers of the corrector Ph
1 of volume fraction t

6

1 in the layers of the corrector Ph
2 of volume fraction t

3

1 in the layers of the corrector Ph
3 of volume fraction t

6

1 in the layers of the corrector Ph
4 of volume fraction t

3

0 elsewhere.

(3.62)

Then, since the conductivity is equal to 1 in the layers of the correctors Ph
i , the

formula (2.15) giving the effective Hall matrix R∗,t reads as

Cof
(
Σ∗,t

)
R∗,t =

t

6
Cof

(
Ph

1

)T +
t

3
Cof

(
Ph

2

)T +
t

6
×Cof

(
Ph

3

)T +
t

3
Cof

(
Ph

4

)T
. (3.63)

Therefore, taking into account that the correctors are diagonal matrices we obtain
the following effective Hall matrix

R∗,t =
Σ∗,t

det (Σ∗,t)

[
t

6
Cof

(
Ph

1

)
+

t

3
Cof

(
Ph

2

)
+

t

6
Cof

(
Ph

3

)
+

t

3
Cof

(
Ph

4

)]
. (3.64)

By (3.56) and (3.44) we have

σ∗,t =
t
(
5− 6t + 6t2 − 2t3

)
3 (1− t + t2)

=
5
3

t + O
(
t3
)
. (3.65)
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Moreover, using Maple the formulas (3.61) and (3.64) combined with (3.56) imply
that

R∗,t = r∗,t I3 where r∗,t :=
3 (1 + t + t2) (1− t + t2)
t (5− 6t + 6t2 − 2t3)2

=
3
25

t−1
(
1 + O(t)

)
. (3.66)

The previous results show that the effective conductivity is isotropic and tends to zero
as t, and that the effective Hall matrix is isotropic and blows up as t−1. The proof of
Theorem 3.4 is thus done.

3.3. An isotropic laminate with an effective conductivity of order 1. In
the two previous examples (subsection 3.1 and subsection 3.2) the effective conduc-
tivity is not bounded from below and only the assumption (2.19) of Theorem 2.9 does
not hold. By contrast in the following example the condition (2.19) is satisfied but not
the condition (2.20). We obtain a composite with an isotropic effective conductivity
of order 1, while the effective Hall matrix is asymptotically isotropic and unbounded
with respect to a small parameter.

Theorem 3.5. There exists a laminate associated with an isotropic conductivity
Σε,t ≥ I3 depending on a small parameter t > 0, and an isotropic Hall matrix Rε,t =
rε,t I3, with rε,t ∈ {0, 1}, such that the homogenized conductivity Σ∗,t = σ∗,t I3 is
isotropic and the homogenized Hall matrix R∗,t = r∗,t

(
I3 + o(1)

)
is asymptotically

isotropic, with

lim
t→0

σ∗,t =
4
3

and lim
t→0

r∗,t = ∞. (3.67)

Proof. The microstructure is still based on the isotropic Schulgasser construc-
tion. However, the role of the single crystal is now played by a rank-three laminate
defined as follows (this role is played by the rank-one laminate with the effective
conductivity (3.43) in the Schulgasser construction of subsection 3.2):

• At the first level of lamination we construct a rank-one laminate in the di-
rection e1 := (1, 0, 0) built from two phases with conductivities t−1I3, I3 with
the respective volume fractions t, 1 − t. Its effective conductivity matrix is
given by

Σ∗11 :=

 1
1−t+t2 0 0

0 2− t 0
0 0 2− t

 . (3.68)

• At the second level of lamination we construct a rank-one laminate in the
direction e2 := (0, 1, 0) composed by the two phases Σ∗11, I3 with the respective
volume fractions 4

5 , 1
5 . Its effective conductivity matrix is given by

Σ∗12 :=

 5−t+t2

5 (1−t+t2) 0 0

0 5 (2−t)
6−t 0

0 0 9−4t
5

 . (3.69)

• At the third level of lamination we construct a rank-one laminate in the
direction e3 := (0, 0, 1) composed by the two phases Σ∗12, I3 with the respective
volume fractions 3

4 , 1
4 . Therefore, the effective conductivity of the rank-three
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laminate is given by

Σ∗,t1 :=

λ 0 0
0 µ 0
0 0 µ

 where λ :=
5− 2t + 2t2

5 (1− t + t2)
and µ :=

9− 4t

6− t
, (3.70)

Note that the effective matrix Σ∗,t1 is similar to the one of (3.43). But this time Σ∗,t1 is
of order 1 with respect to t since the hard phase of conductivity t−1 is surrounded by
the three soft phases of conductivity 1 in this rank-three laminate. Also note that the
specific choice of the prescribed volume fractions 4

5 , 3
4 allows us to obtain an effective

matrix with two equal eigenvalues and so to simplify a lot the next step.

Now, we proceed to the Schulgasser construction from the previous four-phase
rank-three laminate regarded as a three-dimensional single crystal with conductiv-
ity (3.70). On the one hand, this leads us to a rank-five laminate (i.e. with five
ordered micro-scales) composed of 4× 4 = 16 elementary layers (there are 2× 4 = 8
elementary layers in the laminate of subsection 3.2 since the starting crystal is a two-
phase rank-one laminate). Resting on the lamination formulas (3.41) and (3.42) we
obtain 16 associated correctors. The computations are quite similar to the ones of
subsection 3.2, hence we do not give the details. In particular, using Maple we get
that the correctors P1, P2, P3, P4 associated with the 4 hard layers of conductivity t−1,
are given by

P1 = P3 :=

ν1 0 0
0 ν2 0
0 0 ν3

 , P2 :=

ν2 0 0
0 ν1 0
0 0 ν3

 , P4 :=

ν3 0 0
0 ν2 0
0 0 ν1

 , (3.71)

where ν1 :=
20t

29− 20t + 20t2
, ν2 :=

20
38− 9t

and ν3 :=
20

33− 4t
. (3.72)

Moreover, the homogenized conductivity of this rank-five laminate is the isotropic
matrix

Σ∗,t = s∗,t I3 where s∗,t :=
40− 49t + 48t2 − 14t3

5 (6− t) (1− t + t2)
=

4
3

+ O(t), (3.73)

which establishes the first part of (3.67).
On the other hand, we consider the local Hall coefficient rε,t defined by (compare

to (3.62))

rε,t :=



1 in the layers of P1 of volume fraction 4
5

3
4

t
6 = t

10

1 in the layers of P2 of volume fraction 4
5

3
4

t
3 = t

5

1 in the layers of P3 of volume fraction 4
5

3
4

t
6 = t

10

1 in the layers of P4 of volume fraction 4
5

3
4

t
3 = t

5

0 elsewhere.

(3.74)

Then, since the conductivity is equal to t−1 in the layers of the correctors Pi, the
formula (2.15) giving the effective Hall matrix R∗,t reads as

Cof
(
Σ∗,t

)
R∗,t =

t

10
Cof

(
t−1P1

)T +
t

5
Cof

(
t−1P2

)T
+

t

10
Cof

(
t−1P3

)T +
t

5
Cof

(
t−1P4

)T
,

(3.75)
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or equivalently,

R∗,t =
Σ∗,t

det (Σ∗,t)

[
1

10t
Cof

(
P1

)
+

1
5t

Cof
(
P2

)
+

1
10t

Cof
(
P3

)
+

1
5t

Cof
(
P4

)]
. (3.76)

Therefore, the formula (3.76) combined with (3.73), (3.71) and (3.72) implies that
R∗,t is diagonal with

R∗,t11 =
R∗,t22 + R∗,t33

2
, (3.77)

and satisfies the asymptotic expansion

R∗,t =
15
418

t−1
(
I3 + O(t)

)
. (3.78)

This yields the second part of (3.67) and concludes the proof.
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[14] M. Ali Omar: Elementary Solid State Physics, Addison Wesley, Reading Massachusetts, World
Student Series Edition, 1975.

[15] M. Rohde & H. Micklitz: “Critical behavior of the Hall conductivity near the percolation
threshold in granular Sn:Ar mixtures”, Phys. Rev. B, 36 (1987), 7289-7291.

[16] K. Schulgasser: “Bounds on the conductivity of statistically isotropic polycrystals”, J.
Phys. C: Solid State Phys., 10 (1977), 407-417.

[17] D. Stroud & D.J. Bergman: “New exact results for the Hall-coefficient and magnetoresistance
of inhomogeneous two-dimensional metals”, Physical Review B (Solid State), 30 (1984),
447-449.



GIANT HALL EFFECT 25

[18] L. Tartar: “Compensated compactness and applications to partial differential equations”,
Nonlinear Analysis and Mechanics, Research Notes in Mathematics, 39, ed. by R.J. Knops,
Pitman, 1979, 136-212.

[19] L. Tartar: “An introduction to the homogenization method in optimal design”, Optimal Shape
Design, Lecture Notes in Math., 1740 (2000), 47-156.


