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Abstract

In this paper, we study the two-dimensional Hall effect in a highly heterogeneous conducting
material in the low magnetic field limit. Extending Bergman’s approach in the framework of
H-convergence we obtain the effective Hall coefficient which only depends on the corrector of
the material resistivity in the absence of a magnetic field. A positivity property satisfied by the
effective Hall coefficient is then deduced from the homogenization process. An explicit formula for
the effective Hall coefficient is derived for anisotropic interchangeable two-phase composites.
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Introduction

Consider a conducting material with symmetric resistivity ρ. In electrodynamics it is well known (see
e.g. [9]) that a magnetic field h induces a non-symmetric conductivity ρ(h) which corresponds to the
Hall effect. In two dimensions and under the low field limit, h→ 0, the modified resistivity reads as

ρ(h) = ρ+ rh J + o(h), (0.1)

where r is the Hall coefficient and J is the 90◦ rotation matrix. Now, consider a highly heterogeneous
material with resistivity ρε, where ε is a small parameter representing the scale of the microstructure.
According to the first-order expansion (0.1), a low magnetic field h induces a perturbed resistivity ρε(h)
satisfying

ρε(h) = ρε + rεhJ + o(h), (0.2)

with a heterogeneous Hall coefficient rε. The problem is to compute the effective Hall coefficient r∗
obtained from rε in the homogenization process as ε → 0. Bergman [4] obtained for a periodic
composite a formula for the effective Hall coefficient as an average-value only involving the local Hall
coefficient and some local current fields in the absence of a magnetic field. His method is based on a
small perturbation argument.

In this paper, we extend the Bergman approach in the theoretical framework of H-convergence
due to Murat and Tartar [14]. To this end, we consider the general setting of a sequence of equi-
coercive and equi-bounded matrix-valued functions Aε(h) (not necessarily symmetric) in a bounded
open set Ω of RN , N ≥ 1, and which depends on a vector h ∈ Rn, n ≥ 1. We assume that Aε(h)
satisfies the uniform Lipschitz condition (1.12) with respect to h. According to the H-convergence
theory the sequence Aε(h) converges, up to a subsequence, in a suitable sense (see Definition 1.1 and
the compactness Theorem 1.2) to some homogenized or effective matrix-valued A∗(h). Then, if Aε(h)
admits a first-order expansion of type (0.2), so does the homogenized matrix A∗(h), hence

Aε(h) = Aε(0) +Aε
1 · h+ o(h)

H
−⇀
ε→0

A∗(h) = A∗(0) +A∗1 · h+ o(h). (0.3)
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Then, we prove (see Theorem 1.7) that the effective first-order term A∗1 ·h is deduced from a weak limit
only involving the first-order term Aε

1 · h combined with the correctors (see Definition 1.3) associated
with the unperturbed matrix-valued functions Aε(0) and Aε(0)T (and we do not necessarily assume
that Aε(0) is symmetric).

We apply this homogenization process to the two-dimensional Hall effect with the conductiv-
ity σε(h) := ρε(h)−1 satisfying the uniform Lipschitz condition (2.4) with respect to h and the first-
order expansion (0.2). Therefore, the conductivity σε(h) H-converges to the homogenized conductivity
σ∗(h) so that the effective resistivity defined by ρ∗(h) := σ∗(h)−1 satisfies the expansion

ρ∗(h) = ρ∗ + r∗hJ + o(h). (0.4)

We then obtain the effective Hall coefficient r∗ in (0.4) by the the following process (see Theorem 2.3):
the product r∗ det (σ∗(0)) is the limit in the distributions sense of the local Hall coefficient rε times
the determinant of the unperturbed current field, i.e. the product of the conductivity σε(0) by the
corrector associated with σε(0) in the absence of a magnetic field. This limit process allows us to
prove the following positivity property (see Theorem 2.4): if the original Hall coefficient rε is bounded
(from below or above) by a continuous function independent of ε, so is the effective Hall coefficient r∗.

We illustrate this homogenization approach of the two-dimensional Hall effect with two examples.
The first one is based on a explicit formula (see Theorem 3.1) obtained by the third author [12] for an
isotropic composite with two isotropic phases, which immediately gives the effective Hall coefficient
and clearly shows the positivity property. The result of the second example seems new although it is
also based on the same duality transformations due to Dykhne [7]. It consists of a periodic two-phase
material the phases of which are not necessarily isotropic but interchangeable from the point of view of
the homogenization process. For this geometry we obtain an explicit formula for the determinant and
for the antisymmetric part of the homogenized matrix. From this we deduce (see Corollary 3.9) an
explicit formula for the effective Hall coefficient when the interchangeable phases have an unperturbed
conductivity matrix σε(0) in proportion to one another. As a consequence of the explicit formulas in
the former two-phase examples, we also derive (see Corollary 3.4 and Corollary 3.9) the limit value of
the determinant of the corrector associated with σε(0) in each of the two phases.

The paper is organized as follows. In Section 1, we recall some results about H-convergence and
the correctors, and we state a result of H-convergence with a parameter (Theorem 1.7). In Section 2
we show the homogenization process involving the Hall coefficient in a general two-dimensional mi-
crostructure, and the positivity property satisfied by the effective Hall coefficient. Section 3 is devoted
to explicit formulas for the effective Hall coefficient for particular two-phase composites.

All along this article, we will use the following basic notations:

Notations

• N ∈ N, N ≥ 1.

• For x, y ∈ RN , x · y :=
∑N

i=1 xiyi where x := (x1, . . . , xN ), y := (y1, . . . , yN ).

• RM×N is the set of the (M ×N) real matrices.

• For A ∈ RM×N , A = [Aij ], we denote by AT ∈ RN×M its transpose defined by [AT ] := [Aji].

• I2 is the unit matrix of R2×2 and J is the rotation matrix of 90◦.

• M+ ⊂ R2×2 is the set of (2 × 2) matrices with a positive quadratic form, and Ms ⊂ R2×2 is
the set of (2 × 2) symmetric matrices (i.e. AT = A, ∀A ∈ Ms). Then, any matrix A ∈ M+ is
uniquely decomposed into

A = As + α(A) J, where As ∈ Ms and α(A) ∈ R. (0.5)
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• Ms
+ := M+ ∩Ms.

• D(Ω) denotes the space of functions of class C∞ on Ω with compact support in Ω, and D′(Ω)
denotes the space of distributions on Ω.

• We denote by lim
D′(Ω)

the weak limit in the distributions sense.

• M(Ω) denotes the space of Radon measures on Ω and we denote by lim
M(Ω)

the weak-∗ limit in the

Radon measures sense.

• For u : RN → R, ∇u :=
(
∂u

∂xi

)
1≤i≤N

.

• For U : RN → RN , U := (u1, · · · , uN ),

DU :=
(
∂uj

∂xi

)
1≤i,j≤N

and div (U) :=
N∑

i=1

∂ui

∂xi
. (0.6)

• For M : RN → RN×N ,

Div(M) :=

(
N∑

i=1

∂Mij

∂xi

)
1≤j≤N

and Curl(M) :=
(
∂Mij

∂xk
−
∂Mkj

∂xi

)
1≤i,j,k≤N

. (0.7)

1 A few results from homogenization theory

1.1 Review of H-convergence

We recall the definition and some properties of H-convergence theory for second-order elliptic scalar
equations introduced by Murat and Tartar [14] in the general case and by De Giorgi and Spagnolo [17]
(under the name of G-convergence) in the symmetric case. Furthermore, we also give the definition
of the correctors in homogenization.

Definition 1.1. (Murat-Tartar [14])

i) Let Ω be a bounded open set of RN . We define the space M(α, β; Ω) as the set of measurable
matrix-valued functions A defined on Ω such that

∀ ξ ∈ RN , A(x)ξ · ξ ≥ α|ξ|2 and A−1(x)ξ · ξ ≥ β−1|ξ|2, a.e. x ∈ Ω. (1.1)

ii) A sequence Aε of M(α, β; Ω) is said to H-converge to A∗ if A∗ ∈ M(α, β; Ω), f ∈ H−1(Ω) and
the solution uε of {

−div (Aε∇uε) = f in Ω,

uε ∈ H1
0 (Ω),

(1.2)

satisfies the weak convergences{
uε ⇀ u0 in H1(Ω)-weak,

Aε∇uε ⇀ A∗∇u0 in L2(Ω)-weak,
(1.3)

where u0 is the solution of {
−div (A∗∇u0) = f in Ω,

u0 ∈ H1
0 (Ω).

(1.4)

The H-convergence of Aε to A∗ is denoted by Aε H
⇀ A∗.
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An important result of H-convergence is the following “compactness theorem” due to Murat-
Tartar [14]:

Theorem 1.2. (Murat-Tartar [14]) If Aε is a sequence of M(α, β; Ω), then there exists a subse-
quence, still denoted by ε, and A∗ ∈M(α, β; Ω) such that Aε H

⇀ A∗.

Finally, we recall the definition of correctors in homogenization and a result about the convergence
of the correctors (see [14]).

Definition 1.3. Let Aε be a sequence of M(α, β; Ω). Any matrix-valued function P ε in L2(Ω)N×N

satisfying the properties 
P ε ⇀ IN in L2(Ω)N×N -weak,

Curl(P ε) is compact in H−1(Ω)N×N×N ,

Div(AεP ε) is compact in H−1(Ω)N ,

(1.5)

is called a corrector associated with Aε.

Example 1.4. Let Aε be a sequence of M(α, β; Ω) with H-limit A∗ and let U ε ∈ H1(Ω)N be the
solution of {

Div (AεDU ε) = Div (A∗) in Ω,

U ε = IN on ∂Ω.
(1.6)

Then, the matrix-valued function defined by P ε := DU ε is a corrector associated with Aε.

We have the following result which is a consequence of the div-curl lemma of Murat-Tartar [13],[14].

Proposition 1.5.

i) Assume that Aε H
⇀ A∗. Then, any corrector P ε associated with Aε satisfies the weak convergences{

AεP ε ⇀ A∗ in L2(Ω)N×N -weak,

(P ε)TAεP ε ⇀ A∗ in D′(Ω)N×N .
(1.7)

ii) Conversely, let Aε ∈ M(α, β; Ω) and let P ε be a sequence such that

P ε ⇀ IN in L2(Ω)N×N -weak,

Curl(P ε) is compact in H−1(Ω)N×N×N ,

Div(AεP ε) is compact in H−1(Ω)N ,

AεP ε ⇀ A∗ in L2(Ω)N×N -weak.

(1.8)

Then, Aε H
⇀ A∗.

iii) If P ε and Qε are two correctors associated with Aε, then P ε − Qε strongly converges to 0 in
L2

loc(Ω)N×N .

1.2 H-convergence with a parameter

In the sequel, we use the following notation:
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Notation 1.6. Let n ∈ N, n ≥ 1, and let (E, || · ||) be a normed space. Let f0 ∈ E and f, f1 : Rn → E.
We set

f(h) = f0 + f1(h) + oE(h), (1.9)

whenever there exists δ : [0,+∞) → [0,+∞) such that, for any h ∈ Rn with small enough norm, we
have

||f(h)− f0 − f1(h)|| ≤ |h| δ(|h|) with lim
t→0

δ(t) = 0. (1.10)

If E := Rn, we will simply denote oE(h) = o(h). Moreover, when f = fε, f0 = fε
0 , f1 = fε

1 depend on
an additional small parameter ε > 0, the expansion

fε(h) = fε
0 + fε

1 (h) + oE(h), (1.11)

has the same sense as (1.9), the remainder oE(h) then being uniform with respect to ε.

Theorem 1.7. Let n ∈ N, n ≥ 1, let Bκ be the open ball of Rn of radius κ and let α, β > 0. Let
Aε(h), for h ∈ Bκ, be a sequence in M(α, β; Ω) which satisfies the uniform Lipschitz condition

∃ C > 0, ∀ h, k ∈ Bκ, ||Aε(h)−Aε(k)||L∞(Ω)N×N ≤ C |h− k|, (1.12)

and the first-order expansion at h = 0

Aε(h) = Aε +Aε
1 · h+ oL∞(Ω)N×N (h). (1.13)

where Aε = Aε(0) and Aε
1 is a uniformly bounded sequence in L∞(Ω)n×N×N .

i) Then, there exists a subsequence of ε, still denoted by ε, such that Aε(h) H-converges to A∗(h)
in M(α, β; Ω) for any h ∈ Bκ, and

A∗(h) = A∗ +A∗1 · h+ oL2(Ω)N×N (h), (1.14)

where A∗ = A∗(0) and A∗1 ∈ L2(Ω)n×N×N .

ii) Moreover, if P ε and Qε are correctors associated respectively with Aε and (Aε)T we get, for any
h ∈ Bκ,

(Qε)T (Aε
1 · h)P ε ⇀ A∗1 · h in D′(Ω)N×N . (1.15)

Remark 1.8. Colombini and Spagnolo proved in [6] that the homogenized matrix A∗(h) is of class Ck

with respect to the parameter h when all the derivatives Dj
hA

ε(h), j = 0, · · · , k, satisfy the uniform
Lipschitz condition in h. In Theorem 1.7 we show that the Lipschitz control (1.12) of Aε(h) in h
allows us to obtain the differentiability (1.14) of A∗(h) at zero. The price to pay is that the remainder
in (1.14) is only controlled in L2(Ω)N×N and not in L∞(Ω)N×N .

The proof of Theorem 1.7 which is based on classical H-convergence arguments is done in the
appendix for the reader’s convenience.

1.3 About duality transformations

We recall a few results about two-dimensional duality transformation in the framework ofH-convergence
(see e.g. [11] Chapters 3, 4 for a general presentation and complete references).

Notation 1.9. For any a, b, c ∈ R, we define for A ∈ M+,

f(A) := (aA+ bJ)(−aI2 + cJA)−1. (1.16)

For fixed a, b, c, we call f the duality function associated with (a, b, c).
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Lemma 1.10. For any A ∈ M+, f(A) ∈ M+ if and only if bc > a2. Moreover, f is an involution
on M+.

The following result is due to Dykhne [7] who extended the pioneering work of Keller [8] on duality
transformations. Here, the statement is written in terms of H-convergence:

Theorem 1.11. (Dykhne [7]) Let a, b, c ∈ R be such that bc > a2 and let f be the duality function
associated with (a, b, c). If Aε ∈ M(α, β; Ω) H-converges to A∗, then f(Aε) H-converges to f(A∗).

Remark 1.12. The case a = 0, b = c = 1 corresponds to the following homogenization formula due
to Mendelson [10]:

Aε H
⇀ A∗ =⇒ (Aε)T

det(Aε)
H
⇀

(A∗)T

det(A∗)
. (1.17)

2 Homogenization of the Hall effect in dimension 2

2.1 Definition of the Hall coefficient

In dimension N , consider a conducting material with conductivity σ. Under the effect of a constant
low magnetic field h, the resulting conductivity σ(h) depends on h and the corresponding resistivity
ρ(h) := σ(h)−1 satisfies the first-order expansion

ρ(h) = ρ+ ρ1 · h+ o(h), (2.1)

where ρ := σ−1. Moreover, physical considerations (see e.g. [9]) imply that σ(h)T = σ(−h), or
equivalently, ρ(h)T = ρ(−h), hence ρ is a symmetric matrix-valued function of x and ρ1 · h is an
antisymmetric matrix-valued function of x.

In dimension N = 2, the magnetic field h then reduces to a scalar and the first-order expansion of
ρ(h) thus reads as

ρ(h) = ρ+ rh J + o(h), where J :=
(

0 −1
1 0

)
, (2.2)

and ρ = ρ(0) is symmetric and r is a scalar function.

In (2.1), (2.2) and in the text which follows, ρ(h), ρ, σ(h), σ, . . . are matrix-valued functions and
r, s, . . . are scalar functions implicitly depending on spatial coordinates x.

Definition 2.1. The function r in (2.2) is called the Hall coefficient in presence of the magnetic
field h.

Now consider a heterogeneous material with conductivity σε. Under a low magnetic field h
in (−κ, κ), κ > 0 small enough, the resulting conductivity σε(h) and resistivity ρε(h) satisfy the
first-order expansions{

σε(h) = σε + sεhJ + oL∞(Ω)2×2(h)

ρε(h) = ρε + rεhJ + oL∞(Ω)2×2(h)
where rε, sε ∈ L∞(Ω). (2.3)

We also assume that there exist α, β > 0 such that σε(h) ∈ M(α, β; Ω), and that σε(h) satisfies the
uniform Lipschitz condition

∃ C > 0, ∀ h, k ∈ (−κ, κ), ||σε(h)− σε(k)||L∞(Ω)2×2 ≤ C |h− k|. (2.4)

Note that, since the remainders of (2.3) are uniform with respect to ε, estimate (2.4) implies that sε

and rε are bounded sequences in L∞(Ω).
There is a link between the Hall coefficient rε and the coefficient sε for conductivity, given by the

following result:
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Proposition 2.2. One has
sε = −det (σε) rε. (2.5)

Proof. Since ρε(h)σε(h) = I2 and ρεσε = I2, we deduce from (2.3) that

sε (σε)−1J + rε Jσ
ε = 0. (2.6)

Taking into account the symmetry of σε, this leads us to

sε I2 = −rε JσεJ−1σε = −det (σε) rε I2, (2.7)

which gives equality (2.5).

2.2 Homogenization of the Hall effect

We have the following homogenization result:

Theorem 2.3. Let Ω be a bounded open set of R2. Let σε(h), for h ∈ (−κ, κ), be a sequence in
M(α, β; Ω) satisfying (2.3) and (2.4) with sε, rε two bounded sequences in L∞(Ω). Then, there exists
a subsequence of ε, still denoted by ε, such that σε(h) H-converges to σ∗(h) for any h ∈ (−κ, κ). The
homogenized conductivity σ∗(h) and the effective resistivity defined by ρ∗(h) := σ∗(h)−1, satisfy the
expansions {

σ∗(h) = σ∗ + s∗hJ + oL2(Ω)2×2(h)

ρ∗(h) = ρ∗ + r∗hJ + oL2(Ω)2×2(h),
with s∗ = −det (σ∗) r∗, (2.8)

where σ∗ is the H-limit of σε and ρ∗ := (σ∗)−1. Moreover, s∗ and the effective Hall coefficient r∗
belong to L∞(Ω) and are given by

s∗ = lim
D′(Ω)

[
sε det (P ε)

]
and det (σ∗) r∗ = lim

D′(Ω)

[
rε det (σεP ε)

]
, (2.9)

for any corrector P ε associated with the matrix σε.

Proof. On the one hand, by Theorem 1.7 ii) σε(h) H-converges to σ∗(h), up to a subsequence, for
any h ∈ (−κ, κ), and

σ∗(h) = ρ∗ + hσ∗1 + oL2×2(Ω)(h), with σ∗1 = lim
D′(Ω)2×2

[
rε(P ε)TJP ε

]
, (2.10)

where P ε is a corrector associated with σε. Since by assumption σε(h)T = σε(−h) and by a classical
property of H-convergence σε(h)T H-converges to σ∗(h)T , we get σ∗(h)T = σ∗(−h). Hence, the
matrix-valued function σ∗1 in (2.10) is antisymmetric. Therefore, there exists s∗ ∈ L2(Ω) such that
σ∗1 = s∗J . This combined with (2.10) yields the first-order expansion

σ∗(h) = σ∗ + s∗hJ + oL2×2(Ω)(h), (2.11)

where s∗ ∈ L2(Ω) is given by

s∗ I2 = lim
D′(Ω)2×2

[
sε J

−1(P ε)TJP ε
]

= lim
D′(Ω)2×2

[
sε det (P ε) I2

]
, (2.12)

which implies the first equality of (2.9).
On the other hand, by the uniform Lipschitz condition (2.4) combined with the estimate of the

difference of two H-limits (see e.g. [5]) we have

‖σ∗(h)− σ∗‖L∞(Ω)2×2 ≤ c |h| (2.13)
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By the second part of Theorem 2.4 above and the boundedness of sε in L∞(Ω), the function s∗
belongs to L∞(Ω). This combined with expansion (2.11) and estimate (2.13) implies that the effective
resistivity ρ∗(h) := σ∗(h)−1 satisfies the second expansion of (2.8). Similarly to (2.5) we deduce from
the expansions of (2.8) the equality s∗ = −det (σ∗) r∗, which concludes the proof of (2.8).

Finally, by the first equality of (2.9) and (2.5) we obtain

det (σ∗) r∗ = −s∗ = − lim
D′(Ω)2×2

[
sε det (P ε)

]
= lim

D′(Ω)2×2

[
rε det (σεP ε)

]
, (2.14)

which yields the second equality of (2.9).

2.3 Positivity property of the Hall effect

We have the following result:

Theorem 2.4. Under the assumptions of Theorem 2.3, let r1, r2 be two continuous functions in Ω.
Then, if the effective Hall coefficient rε satisfies the inequalities r1 ≤ rε ≤ r2 a.e in Ω, so does the
effective Hall coefficient r∗.

Similarly and independently, let s1, s2 be two continuous functions in Ω. Then, if the coefficient sε

satisfies the inequalities s1 ≤ sε ≤ s2 a.e in Ω, so does the effective coefficient s∗.

Remark 2.5. Let r be a continuous function in Ω. The particular case rε = r a.e. in Ω implies that
the effective Hall coefficient also satisfies r∗ = r a.e in Ω.

Proof. The proof of Theorem 2.4 is based on the result due to Raitums [15] (see also Theorem 1.3.23
of [2] page 60), that any H-limit is the pointwise limit of a sequence of periodic homogenized matrices,
combined with the positivity of the determinant of the periodic correctors due to Alessandrini and
Nesi [1] (see also [3]).

Taking into account the continuity of the functions r1, r2 and using a locality argument we can
assume that r1, r2 are two constants in the sequel. Following the approach of [2], consider for fixed
ε, t, h > 0 and x ∈ Ω, the periodic homogenized matrix σ∗ε,t,x(h) defined by

σ∗ε,t,x(h) :=
∫

Y
σε(h)(x+ ty)DWε,t,x(h, y) dy (2.15)

where Y := (0, 1)2, σε(h)(x + t ·) is extended by Y -periodicity in R2, and Wε,t,x(h, ·) is the unique
vector-valued function in H1

loc(R2)2 solution of the cell problem{
div
(
σε(h)(x+ ty)DWε,t,x(h, y)

)
= 0 in D′(R2)

y 7−→Wε,t,x(h, y)− y is Y -periodic with zero Y -average.
(2.16)

Consider, for fixed ε, t, x, the oscillating sequence ρε(h)
(
x+ ty

δ

)
as δ tends to zero. For this resistivity

the second expansion of (2.3) reads as

ρε(h)(x+ t·) = ρε(x+ t·) + rε(x+ t·)hJ + oL∞(Ω)2×2(h), (2.17)

where rε(x+ t·) is Y -periodic. Then, by (2.8) the expansion of the effective resistivity is given by

ρ∗ε,t,x(h) = ρ∗ε,t,x(0) + r∗ε,t,x hJ + o(h), (2.18)

where the effective resistivity ρ∗ε,t,x(h) is the inverse of the constant homogenized matrix σ∗ε,t,x(h)
defined by (2.15). Moreover, by (2.16) the sequence of gradients DWε,t,x

(
0, y

δ

)
is a corrector associated

with the sequence σε
(
x+ ty

δ

)
in the sense of Definition 1.3. Therefore, by the second limit of (2.9)

where the scale δ replaces ε, the product of the effective Hall coefficient r∗ε,t,x by det
(
σ∗ε,t,x(h)

)
is the
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limit in the distributions sense of the sequence rε(x+ ty
δ ) det

(
σε(0)(x+ ty

δ )DWε,t,x(0, y
δ )
)

as δ tends
to zero. Hence, again by periodicity we get

r∗ε,t,x det
(
σ∗ε,t,x(0)

)
=
∫

Y
rε(x+ ty) det

(
σε(0)(x+ ty)DWε,t,x(0, y)

)
dy. (2.19)

On the other hand, since det is a null Lagrangian and σε(0)(x + t·)DWε,t,x(0, ·) is Y -periodic and
divergence free, by definition (2.15) we have∫

Y
det
(
σε(0)(x+ ty)DWε,t,x(0, y)

)
dy = det

(
σ∗ε,t,x(0)

)
. (2.20)

Furthermore, thanks to the positivity result of [1] we have det
(
DWε,t,x(0, y)

)
> 0 a.e. y ∈ Y . Then,

from (2.19) and (2.20) we deduce that r1 ≤ r∗ε,t,x ≤ r2. Therefore, considering the scalar product of
the expansion (2.18) with the matrix J , we obtain

2r1 h ≤ ρ∗ε,t,x(h) : J − ρ∗ε,t,x(0) : J + o(h) ≤ 2r2 h. (2.21)

Moreover, using for example Theorem 1.3.23 of [2] there exist two sequences t, hn > 0 going to zero,
such that

lim
t→0

lim
ε→0

σ∗ε,t,x(0) = σ∗(x) and lim
t→0

lim
ε→0

σ∗ε,t,x(hn) = σ∗(hn)(x), ∀n ∈ N and a.e. x ∈ Ω, (2.22)

hence, by the continuity of the inverse the following similar limits hold for the resistivities

lim
t→0

lim
ε→0

ρ∗ε,t,x(0) = ρ∗(x) and lim
t→0

lim
ε→0

ρ∗ε,t,x(hn) = ρ∗(hn)(x), ∀n ∈ N and a.e. x ∈ Ω. (2.23)

Then, passing to the double limit ε→ 0, t→ 0 in (2.21) it follows

2r1 hn ≤ ρ∗(hn)(x) : J − ρ∗(x) : J + o(hn) ≤ 2r2 hn, ∀n ∈ N and a.e. x ∈ Ω. (2.24)

On the other hand, consider a Lebesgue point x0 ∈ Ω of the function r∗ and let B(x0, δ) be the ball
of center x0 and of radius δ > 0. The limit expansion (2.8) satisfied by ρ∗(h) yields(

−
∫

B(x0,δ)
ρ∗(hn)(x) dx

)
: J =

(
−
∫

B(x0,δ)
ρ∗(x) dx

)
: J + 2

(
−
∫

B(x0,δ)
r∗(x) dx

)
hn + oδ(hn), (2.25)

where, by the Cauchy-Schwarz inequality in L2(B(x0, δ)), |oδ(hn)| ≤ 1√
πδ2

o(hn). The former estimate
combined with (2.24) implies that for any n ∈ N,

r1 ≤ −
∫

B(x0,δ)
r∗(x) dx+

oδ(hn)
hn

≤ r2. (2.26)

Therefore, passing successively to the limits hn → 0 and δ → 0 in (2.26), we get the desired inequalities
r1 ≤ r∗(x0) ≤ r2.

The proof of the inequalities for the coefficient s∗ is quite similar, replacing in the previous proof
the current field σε(0)(x+ t·)DWε,t,x(0, ·) with the electric field DWε,t,x(0, ·).

3 Computation of the effective Hall coefficient and applications

We will consider particular cases of two-phase composites where, under some assumptions, explicit
formulas of the Hall coefficient can be derived without the use of formula (2.9). These results combined
with formula (2.9) then allow us to obtain the weak limit of the corrector determinant associated with
the resistivity matrix in each of the two phases.

First, we recall the formula for the effective Hall coefficient for isotropic two-phase composites,
obtained by the third author in [12]. Then, we prove a new (up to our knowledge) formula for
anisotropic interchangeable two-phase composites, like those depicted in figures 1 and 2. The two
results are based on the duality transformations (1.16).
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3.1 The isotropic two-phase case

Let ρ1, ρ2, r1, r2 be four continuous even functions on R, ρ1, ρ2 being positive. We consider a two-phase
material with resistivity

ρε(h) := ρε(h) I2 + rε(h)hJ, where

{
ρε(h) := χε ρ1(h) + (1− χε) ρ2(h)

rε(h) := χε r1(h) + (1− χε) r2(h).
(3.1)

We assume that the symmetric part σε(h)s of the conductivity σε(h) := ρε(h)−1, H-converges to the
isotropic matrix σ∗(h) I2, where σ∗(h) is a positive function in L∞(Ω), which is continuous and even
with respect to h. Then, the third author proved the following homogenization result:

Theorem 3.1. (Milton [12]) Up to a subsequence, σε(h) H-converges to σ∗(h) = ρ∗(h)−1, where
the effective resistivity satisfies ρ∗(h) = ρ∗(h) I2 + r∗(h)hJ , and the effective Hall coefficient r∗(h) is
given by

r2(h)− r∗(h)
r2(h)− r1(h)

=
ρ2(h)2 − ρ∗(h)2 +

(
r2(h)− r∗(h)

)2
h2

ρ2(h)2 − ρ1(h)2 +
(
r2(h)− r1(h)

)2
h2
. (3.2)

In the low-field limit h→ 0, formula (3.2) reduces to the Shklovskii’s formula [16]

r2(0)− r∗(0)
r2(0)− r1(0)

=
ρ2(0)2 − ρ∗(0)2

ρ2(0)2 − ρ1(0)2
, (3.3)

and r∗ = r∗(0) in the expansion (2.8).

Remark 3.2. In the isotropic case of Theorem 3.1 the conductivity σε(h) H-converges, up to a
subsequence, to σ∗(h) with σ∗(h)s = σ∗(h) I2. Then, thanks to the isotropy of the symmetric parts
σε(h)s, σ∗(h)s, and the duality transformation (1.17) we have

ρε(h) = σε(h)−1 =
σε(h)T

det (σε(h))
H
⇀

σ∗(h)T

det (σ∗(h))
= σ∗(h)−1 = ρ∗(h). (3.4)

Therefore, the resistivity ρε(h) H-converges to the effective resistivity ρ∗(h). Moreover, a relation
like (3.2) also holds for the homogenized conductivity matrix σ∗(h).

Remark 3.3. In the Section 4.3 of [11] page 65, the third author also gives an explicit formula for the
skew part of the effective matrix for ordinary checkerboards (or isotropic interchangeable two-phase
composites). This leads us easily to an explicit formula for the effective Hall coefficient r∗(h). We will
extend this formula to anisotropic interchangeable two-phase composites in the next section.

By the classical bounds on the effective matrix ρ∗(0) I2 we have

min (ρ1(0), ρ2(0)) ≤ ρ∗(0) ≤ max (ρ1(0), ρ2(0)) a.e. in Ω, (3.5)

which implies that the right hand side of (3.3) is nonnegative, hence

min (r1(0), r2(0)) ≤ r∗(0) ≤ max (r1(0), r2(0)) a.e. in Ω. (3.6)

These bounds on the effective Hall coefficient illustrate the positivity property of Theorem 2.4 since
the Hall coefficient rε(0) of the heterogeneous material clearly satisfies

min (r1(0), r2(0)) ≤ rε(0) ≤ max (r1(0), r2(0)) a.e. in Ω. (3.7)

10



A

A

B

B

B

B

A

A

Figure 1: Two period cells of a generalized checkerboard.

Corollary 3.4. Let ρ1, ρ2 ∈ (0,+∞), with ρ1 6= ρ2. Consider the two-phase material with isotropic
resistivity

ρε :=
(
χε ρ1 + (1− χε) ρ2

)
I2. (3.8)

Assume that the conductivity σε := (ρε)−1 H-converges to the isotropic matrix (ρ∗)
−1 I2. Then, any

corrector P ε associated with σε satisfies the formula

lim
D′(Ω)

[
χε det (P ε)

]
=
ρ−2
∗ − ρ−2

2

ρ−2
1 − ρ−2

2

. (3.9)

Proof. Take r1(0) := ρ2
1 and r2(0) := 0 in Theorem 3.1, which yields the equality

rε(0) det (σεP ε) = χε det (P ε) . (3.10)

Then, the second formula of (2.9) and formula (3.3) imply the desired result.

3.2 The anisotropic interchangeable two-phase case

Definition 3.5. Consider a two-phase material with phases A and B, the conductivity matrix Aε of
which is given by

Aε := χεA+ (1− χε)B. (3.11)

Also consider the two-phase material obtained by exchanging the two phases A and B, the conductivity
matrix of which is thus

Bε := χεB + (1− χε)A. (3.12)

The material is said to be interchangeable if Bε and Aε have the same H-limit.

Example 3.6.

1. A checkerboard is a periodic microstructure whose period cell is a parallelogram shared in four
equal 1/2-homothetic parallelograms (see Figure 1). Consider a checkerboard with clockwise
phases A and B (A,B ∈ M+). Then, the checkerboard of phases B and A must have the same
effective matrix. Thus, the two-phase periodic checkerboard represented in Fig. 1 is a periodic
interchangeable material.

2. The periodic material represented in Fig. 2 by two of its period cells, is also an interchangeable
two-phase material but not of checkerboard type.

We have the following result for interchangeable two-phase composites:

11
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Figure 2: Two period cells of an interchangeable material with a herring-bone pattern.

Theorem 3.7. Consider an interchangeable two-phase material with phases A and λA+µJ , λ, µ ∈ R.
Assume that λ > 0 and

λ det(A) +
µ
(
µ+ 2λα(A)

)
λ+ 1

>

(
µ+ 2λα(A)

λ+ 1

)2

, where A−AT = 2α(A) J. (3.13)

Then, the matrix-valued function Aε associated with this two-phase material H-converges to the con-
stant matrix A∗ such that

det(A∗) = λ det(A) +
µ
(
µ+ 2λα(A)

)
λ+ 1

and α(A∗) =
µ+ 2λα(A)

λ+ 1
. (3.14)

Remark 3.8. The determinant and the antisymmetric part of A∗ are explicit but not the whole
matrix in general.

Applying this result to the conductivity of a two-phase microstructure with interchangeable, sym-
metric and proportional phases, and using Theorem 2.3, we get the following result:

Corollary 3.9. Consider an interchangeable two-phase material with conductivity

σε := χε σ
1 + (1− χε)λσ1, with σ1 ∈ Ms

+ and λ > 0, (3.15)

and consider the conductivity ρε(h) under the low magnetic field h

σε(h) = σε + sεhJ, where sε := χε s1 + (1− χε) s2, s1, s2 ∈ R. (3.16)

Then, the resistivity ρε(h) := σε(h)−1 satisfies the expansion

ρε(h) = ρε + rεhJ + oL∞(Ω)2×2 , where

{
ρε := χε (σ1)

−1 + (1− χε) (λσ1)
−1

rε := χε r1 + (1− χε) r2,
(3.17)

where the constants r1, r2 are defined by

r1 := − s1
det (σ1)

and r2 := − s2
det (λσ1)

. (3.18)

The coefficient s∗ and the effective Hall coefficient r∗ in expansion (2.8) are given by the following
formulas

s∗ =
s2 + λ s1

1 + λ
and r∗ =

r1 + λ r2
1 + λ

. (3.19)

Moreover, for any corrector P ε associated with σε, we have

lim
D′(Ω)

[
χε det (P ε)

]
=

λ

λ+ 1
. (3.20)
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3.3 Proof of the results

3.3.1 Proof of Theorem 3.7

First we prove the following result:

Lemma 3.10. Let A ∈ M+. Then, the following equivalence holds true for any λ, µ ∈ R:

AJA = λA+ µJ ⇐⇒ λ = −2α(A) and µ = det(A). (3.21)

Proof. On the one hand, from A = As + α(A)J we deduce that

AJA = AsJAs − α(A)As − α(A)As − α(A)2 J

= −2α(A)As +
(
det(As)− α(A)2

)
J,

(3.22)

taking into account that AsJAs = det(As) J . Furthermore, it is easy to check that

det(A) = det(As) + α(A)2, (3.23)

hence
AJA = −2α(A)As +

(
det(A)− 2α(A)2

)
J. (3.24)

On the other hand, AJA = λA+ µJ is equivalent to

AJA = λAs +
(
λα(A) + µ

)
J. (3.25)

From the uniqueness of the decompositions (3.24) and (3.25) we deduce the desired result.

Now, let us prove Theorem 3.7. First, let us show there exist a, b, c ∈ R with bc > a2, such that
f(A) = λA+ µJ , where f(A) is given by (1.16) and λ > 0. We have

λcAJA = (a+ aλ+ cµ)A+ (b+ aµ) J. (3.26)

Since λc 6= 0 by assumption, we deduce from Lemma 3.10 that

a+ aλ+ cµ = −2λcα(A) and b+ aµ = λc det(A), (3.27)

which implies that

a

c
= −µ+ 2λα(A)

1 + λ
and

b

c
= λ det(A) +

µ
(
µ+ 2λα(A)

)
1 + λ

. (3.28)

Then, the condition bc > a2 is equivalent to condition (3.13).

On the other hand, we have Aε := χεA + (1 − χε)f(A). Set Bε := χε f(A) + (1 − χε)A. Since
the phases are interchangeable, Bε H-converges to A∗. Furthermore, by Lemma 1.10 we clearly have
f(Aε) = Bε, hence f(Aε) H-converges to A∗. The condition bc > a2 being satisfied, we deduce from
Theorem 1.11 and the uniqueness of the H-limit, that f(A∗) = A∗. This equality also reads as

aA∗ + b J = −aA∗ + cA∗JA∗, (3.29)

or equivalently
cA∗JA∗ = 2aA∗ + b J. (3.30)

Therefore, Lemma 3.10 and formulas (3.28) imply that

α(A∗) =
µ+ 2λα(A)

1 + λ
and det(A∗) = λ det(A) +

µ
(
µ+ 2λα(A)

)
1 + λ

, (3.31)

which concludes the proof. 2
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3.3.2 Proof of Corollary 3.9

We apply Theorem 3.7 to the interchangeable two-phase material with conductivity Aε := σε(h). In
this case A := σ1 + s1hJ and µ := (s2 − λ s1)h. Hence, condition (3.13) reads as

λ
(
det
(
σ1
)

+ s21 h
2
)

+
(s22 − λ2 s21)h

2

1 + λ
>

(
s2 + λ s1

1 + λ

)2

h2, (3.32)

which is equivalent to
λ det

(
σ1
)
> O(h2). (3.33)

This holds true for small enough |h|, since λ > 0 and σ1 ∈ Ms
+. Then, condition (3.13) holds true

without additional assumption for small enough |h|. Therefore, by the formula (3.14) of Theorem 3.7
we obtain

α(σ∗(h)) =
(s2 − λ s1)h+ 2λα(σ1 + s1hJ)

1 + λ
=
(
s2 + λ s1

1 + λ

)
h. (3.34)

Furthermore, by Theorem 2.3 and for any h, σε(h) H-converges to

σ∗(h) = σ∗ + s∗hJ + oL2(Ω)2×2(h), with s∗ = lim
D′(Ω)

[
sε det (P ε)

]
, (3.35)

which implies that the antisymmetric part of σ∗(h) satisfies

α(σ∗(h)) = s∗h+ o(h). (3.36)

Hence, by (3.34) we get

s∗ =
s2 + λ s1

1 + λ
. (3.37)

This combined with (3.35) yields in the case s1 := 1 and s2 := 0,

lim
D′(Ω)

[
χε det (P ε)

]
=

λ

λ+ 1
, (3.38)

which yields (3.20). On the other hand, by the formula (3.14) applied with A := σ1 and µ := 0, we
obtain

det (σ∗) = det (σ∗(0)) = λ det
(
σ1
)
. (3.39)

Hence, by the third equality of (2.8), formulas (3.37) and (3.18) it follows that

r∗ = − s∗
det (σ∗)

=
1

λ det (σ1)

(
det
(
λσ1

)
r2 + λ det

(
σ1
)
r1

1 + λ

)
=
r1 + λ r2

1 + λ
, (3.40)

which gives (3.19) and concludes the proof. 2

A Proof of Theorem 1.7

A.1 Proof of part i)

We follow the construction of the H-limit used by Murat-Tartar (see [14]) which depends on the vector
parameter h.

Let Ω̃ be a bounded open set of RN such that Ω ⊂ Ω̃. We extend Aε(h) in Ω̃\Ω by αIN (in order
to have Aε ∈ M(α, β; Ω̃)). We define Aε(h) ∈ L

(
H1

0 (Ω̃);H−1(Ω̃)
)

by

∀u ∈ H1
0 (Ω̃), Aε(h)u := −div (Aε(h)∇u) . (A.1)

We proceed in two steps.
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First step. For any h ∈ Bκ, Aε(h) is bounded by β and equi-coercive, i.e.

∀u ∈ H1
0 (Ω̃), < Aε(h)u, u >H−1(Ω̃),H1

0 (Ω̃)≥ α||u||2H1
0 (Ω). (A.2)

So, from the Lax-Milgram theorem, Aε(h) is invertible and, since Aε(h) admits a first-order expansion,
so does Aε(h) and Bε(h) := Aε(h)−1. Furthermore, Bε(h) is bounded by α−1, hence there exist a
subsequence, still denoted by ε, and a linear operator B∗(h) from H−1(Ω̃) to H1

0 (Ω̃) such that, for any
f ∈ H−1(Ω̃),

Bε(h)f ⇀ B∗(h)f in H1
0 (Ω̃)-weak, (A.3)

for any countable dense set of h. Due to the condition (1.12) satisfied by Aε(h), Aε(h) and Bε(h)
satisfy a uniform Lipschitz condition

∃ C > 0, ∀ h, k ∈ Bκ, ||Bε(h)−Bε(k)||L(H−1(Ω̃);H1
0 (Ω̃)) ≤ C |h− k|. (A.4)

Therefore, convergence (A.3) holds true for any h ∈ Bκ. Moreover, there exists a linear operator
Bε

1 ∈ L
(
Rn;L(H−1(Ω̃);H1

0 (Ω̃))
)

such that

Bε(h)f = Bε(0)f + (Bε
1 · h)f + oH1

0 (Ω̃)(h), ∀f ∈ H−1(Ω̃), ‖f‖H−1(Ω̃) ≤ 1. (A.5)

Since

||(Bε
1 · h)f ||H1

0 (Ω̃) = ||Bε(h)f −Bε(0)f ||H1
0 (Ω̃) + o(h) = O(h), ∀f ∈ H−1(Ω̃), ‖f‖H−1(Ω̃) ≤ 1, (A.6)

there exist a subsequence of ε, still denoted by ε, and a linear operator B∗1 ∈ L
(
Rn;L(H−1(Ω̃);H1

0 (Ω̃))
)

such that, for any h ∈ Rn and any f ∈ H−1(Ω̃),

(Bε
1 · h)f ⇀ (B∗1 · h)f in H1

0 (Ω̃)-weak. (A.7)

Then, passing to the weak limit in (A.5) and using the semicontinuity of the H1
0 (Ω̃)-norm, we get

B∗(h)f = B∗(0)f + (B∗1 · h)f + oH1
0 (Ω̃)(h), ∀ f ∈ H−1(Ω̃), ‖f‖H−1(Ω̃) ≤ 1. (A.8)

Since Bε(h) is β−1-coercive so is B∗(h) and B∗(h) is thus invertible, which allows us to define

A∗(h) := B∗(h)−1 : H1
0 (Ω) −→ H−1(Ω̃). (A.9)

Then, A∗(h) satisfies

A∗(h)u = A∗u+ (A∗1 · h)u+ oH−1(Ω̃)(h), ∀u ∈ H1
0 (Ω̃). (A.10)

Moreover, thanks to (A.4) we have

∃ C > 0, ∀ h, k ∈ Bκ, ||Aε(h)−Aε(k)||L(H1
0 (Ω̃);H−1(Ω̃)) ≤ C |h− k|. (A.11)

Second step. To obtain an expansion of the H-limit of Aε(h), we construct a corrector P ε(h)
associated with Aε(h). Let ψ ∈ D(Ω̃) such that ψ ≡ 1 on Ω and λ ∈ RN . We set uλ(x) := ψ(x)λ · x
and we define uλ

ε (h) ∈ H1
0 (Ω̃) by

uλ
ε (h) := Bε(h)

(
A∗(h)uλ

)
. (A.12)

Then, we define
P ε(h)λ := ∇uλ

ε (h) = ∇
[
Bε(h)

(
A∗(h)uλ

)]
. (A.13)

The uniform Lipschitz assumptions (A.4), (A.11) satisfied by Bε and Aε and the first-order expan-
sions (A.5) and (A.10) satisfied by Bε(h) and A∗(h) yield

∃ C > 0, ∀ h, k ∈ Bκ, ||P ε(h)− P ε(k)||L2(Ω)N×N ≤ C |h− k|, (A.14)
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and
P ε(h) = P ε(0) + P ε

1 · h+ oL2(Ω̃)N×N (h), (A.15)

with ||P ε
1 · h||L2(Ω̃)N×N = O(h).

Since Aε ∈ M(α, β; Ω̃) we have (up to a subsequence) Aε H
⇀ A∗. From the definition (A.13) of P ε(h),

it is clear that P ε := P ε(0) is a corrector associated with Aε in Ω, hence by Proposition 1.5 we have

AεP ε ⇀ A∗ in L2(Ω)N×N -weak. (A.16)

Since
uλ

ε (h) ⇀ B∗
(
A∗(h)uλ

)
= uλ in L2(Ω̃)-weak, (A.17)

we obtain, for any h ∈ Bκ,
P ε(h) ⇀ IN in L2(Ω)N×N -weak. (A.18)

Moreover, by (1.12) and (A.14) Aε(h)P ε(h) satisfies the uniform Lipschitz condition in L2(Ω)N×N for
h ∈ Bκ. Hence, there exist a new subsequence of ε, still denoted by ε, and A∗ ∈ L2(Ω)N×N such that

∀ h ∈ Bκ, A
ε(h)P ε(h) ⇀ A∗(h) in L2(Ω)N×N -weak. (A.19)

By Proposition 1.5 ii), the previous convergence combined with (A.14) and (A.18) implies that Aε(h)
H-converges to A∗(h). Finally, by (1.12) and (A.15) we have

Aε(h)P ε(h) = AεP ε +Qε
1 · h+ oL2(Ω̃)N×N (h), (A.20)

with ||Qε
1 · h||L2(Ω̃)N×N = O(h). Therefore, passing to the limit in the previous equality, we get

A∗(h) = A∗ +A∗1 · h+ oL2(Ω)N×N (h). (A.21)

The proof of the part i) of Theorem 1.7 is done. 2

Remark A.1. From (A.15) we deduce that if P ε(h), Qε(h) are the correctors associated with Aε(h)
and Aε(h)T respectively, then P ε(h) and Qε(h) admit the first-order expansions

P ε(h) = P ε + P ε
1 · h+ oL2(Ω)N×N (h) and Qε(h) = Qε +Qε

1 · h+ oL2(Ω)N×N (h), (A.22)

where P ε and Qε are the correctors associated with Aε and (Aε)T respectively. Since P ε(h) and P ε

are curl-free, we have
||Curl(P ε

1 · h)||H−1(Ω)N×N×N = o(h), (A.23)

hence P ε
1 · h is also curl-free for any h ∈ Bκ. Moreover, since P ε(h) and P ε weakly converge to IN in

L2(Ω)N×N , for any weakly convergent subsequence P ε′
1 · h in L2(Ω)N×N , the lower semicontinuity of

the L2(Ω)N×N -norm implies that

|| lim
ε′→0

(P ε′
1 · h)||L2(Ω)N×N = o(h), (A.24)

hence, for the whole sequence ε and for any h ∈ Bκ, we have

P ε
1 · h ⇀ 0 in L2(Ω)N×N -weak, (A.25)
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A.2 Proof of part ii)

By the part i) we obtain that for any h ∈ Bκ, Aε(h) H-converges to A∗(h) where

A∗(h) = A∗ +A∗1 · h+ oL2(Ω)N×N (h). (A.26)

Since, for any λ, µ ∈ RN , we have Qε(h)TAε(h)P ε(h)λ · µ = Aε(h)P ε(h)λ · Qε(h)µ, we obtain by
Proposition 1.5 i) and the div-curl lemma

A∗(h) = lim
D′(Ω)N×N

[
Qε(h)TAε(h)P ε(h)

]
. (A.27)

On the other hand, the expansion (1.13) of Aε(h) and Remark A.1 lead us to

Qε(h)TAε(h)P ε(h) = (Qε)TAεP ε + (Qε)T (Aε
1 · h)P ε

+(Qε)TAε(P ε
1 · h) + (Qε

1 · h)TAεP ε + oL1(Ω)N×N (h).
(A.28)

Let λ, µ ∈ RN , we have

(Qε)TAε(P ε
1 · h)λ · µ = (Aε)TQεµ · (P ε

1 · h)λ and (Qε
1 · h)TAεP ελ · µ = AεP ελ · (Qε

1 · h)µ. (A.29)

Hence, by the div-curl lemma and convergences (1.5) and (A.25) we get

lim
D′(Ω)N×N

[
(Qε)TAε(P ε

1 · h)
]

= lim
D′(Ω)N×N

[
(Qε

1 · h)TAεP ε
]

= 0. (A.30)

There exists a subsequence ε′, which is actually independent of h (by linearity), such that the sequence
(Qε′)T (Aε′

1 · h)P ε′ converges in the weak-∗ sense of the Radon measures. Hence, by Proposition 1.5
combined with (A.27) and (A.28) we get

A∗(h) = A∗ + lim
M(Ω)N×N

[
(Qε′)T (Aε′

1 · h)P ε′
]

+ oM(Ω)N×N (h). (A.31)

Therefore, equating (A.31) to (A.26) it follows that

A∗1 · h = lim
M(Ω)N×N

[
(Qε′)T (Aε′

1 · h)P ε′
]
. (A.32)

Since the limit is independent of the subsequence ε′, the whole sequence (Qε)T (Aε
1)P

ε thus converges
to A∗1 · h in D′(Ω)N×N . 2
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