Introduction:

Improvement of nitrogen transport in surface nanocrystallized (NanoPeening®) during thermochemical treatments (gaseous nitridation) [1]:

→ increase the nitrided depth
→ decrease the nitriding temperature
→ increase in hardness and resistance to wear [2-3]

Samples: Pure Iron

EBSD after NanoPeening®

Oxygen depth profiles (GDOES)

NanoPeening®: adaptation of shot peening

→ severe plastic deformations (10-20 min)

Nitriding kinetic studies

Symmetric thermobalance (SETARAM TAG-24)

- Rising to the soaking temperature 500°C at 30°C C/min (He : 3 L/h).
- Isothermal reduction step (He : 3.875 L/h, H₂ : 0.125 L/h)
- Isothermal nitriding step (He : 2 L/h, N₂ : 1.4 L/h, NH₃ : 0.6 L/h) with different durations (from 60 to 210 minutes).
- Cooling at 30°C C/min He (3 L/h).

Mass gain and rate of mass gain for 1) untreated samples
2) short duration nanostructured 3) long duration nanostructured samples

CONCLUSIONS

- NanoPeening® improve nitrogen diffusion
- multiplying the number of grain boundaries which act as fast broadcast channels.
- Reduction improve nitriding efficiency
- increasing the specific reacting area
- Transfer the process on materials with alloying elements.

Authors

Peres Véronique(1)
Lacaille Victor(2),
Kermouche Guillaume(1),
Morel Constance (3)
Bergheau Jean Michel(4)

(1) Ecole Nationale Supérieure des Mines, LGF, UMR 5307 CNRS, Saint-Etienne France
(2) EIGSI La Rochelle, La Rochelle France
(3) WINOA
(4) Univ. Lyon, ENISE, LTDS, UMR 5513 CNRS, 58 Saint-Etienne France

References