Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Environmental Pollution Année : 2016

Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms

Résumé

This study aimed at determining the fate of trace elements (TE) following soil organic waste (OW) application. We used a unique combination of X-ray absorption spectroscopy analyses, to determine TE speciation, with incubation experiments for in situ monitoring of TE availability patterns over a time course with the technique of the diffusive gradients in thin films (DGT). We showed that copper (Cu) and zinc (Zn) availability were both increased in OW-amended soil, but their release was controlled by distinct mechanisms. Zn speciation in OW was found to be dominated by an inorganic species, i.e. Zn sorbed on Fe oxides. Zn desorption from Fe oxides could explain the increase in Zn availability in OW amended soil. Cu speciation in OW was dominated by organic species. Cu release through the mineralization of organic carbon from OW was responsible for the increase in Cu availability. (C) 2016 Elsevier Ltd. All rights reserved.

Dates et versions

hal-01427332 , version 1 (05-01-2017)

Identifiants

Citer

Marie Tella, Matthieu N. Bravin, Laurent Thuriès, Patrick Cazevieille, Claire Chevassus-Rosset, et al.. Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms. Environmental Pollution, 2016, 212, pp.299-306. ⟨10.1016/j.envpol.2016.01.077⟩. ⟨hal-01427332⟩
130 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More