Revealing the hidden structure of dynamic ecological networks

Abstract : Recent technological advances and long-term data studies provide interaction data that can be modelled through dynamic networks, i.e a sequence of different snapshots of an evolving ecological network. Most often time is the parameter along which these networks evolve but any other one-dimensional gradient (temperature, altitude, depth, humidity, . . . ) could be considered. Here we propose a statistical tool to analyse the underlying structure of these networks and follow its evolution dynamics (either in time or any other one-dimensional factor). It consists in extracting the main features of these networks and summarise them into a high-level view. We analyse a dynamic animal contact network and a seasonal food web and in both cases we show that our approach allows for the identification of a backbone organisation as well as interesting temporal variations at the individual level. Our method, implemented into the R package dynsbm, can handle the largest ecological datasets and is a versatile and promising tool for ecologists that study dynamic interactions.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01426652
Contributeur : Catherine Matias <>
Soumis le : jeudi 5 janvier 2017 - 15:59:35
Dernière modification le : jeudi 27 avril 2017 - 09:46:27
Document(s) archivé(s) le : jeudi 6 avril 2017 - 12:16:15

Fichiers

mee_miele.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01426652, version 1
  • ARXIV : 1701.01355

Collections

UPMC | USPC | PMA

Citation

Vincent Miele, Catherine Matias. Revealing the hidden structure of dynamic ecological networks. 2017. <hal-01426652>

Partager

Métriques

Consultations de
la notice

114

Téléchargements du document

51