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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR
A MARKOV-MODULATED INFINITE-SERVER QUEUE

D. ANDERSONa, J. BLOM c, M. MANDJES b,c, H. THORSDOTTIR c,b,?, K. DE TURCKd

ABSTRACT. The production of molecules in a chemical reaction network is modelled as a Poisson
process with a Markov-modulated arrival rate and an exponential decay rate. We analyze the distribu-
tional properties of M , the number of molecules, under specific time-scaling; the background process
is sped up by Nα, the arrival rates are scaled by N , for N large. A functional central limit theorem
is derived for M , which after centering and scaling, converges to an Ornstein-Uhlenbeck process. A
dichotomy depending on α is observed. For α ≤ 1 the parameters of the limiting process contain the
deviation matrix associated with the background process.
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methods
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1. INTRODUCTION

When modeling chemical reaction networks within cells, the dynamics of the numbers of molecules
of the various types are often described by deterministic differential equations. These models ignore
the inherent stochasticity that may play a role, particularly when the number of molecules are rel-
atively small. To remedy this, the use of stochastic representations of chemical networks has been
advocated, see e.g. [2, 10, 16].
In this paper we use the formulation as in [1, 4] where the numbers of molecules evolve as a
continuous-time Markov chain. A concise description of this formulation is the following, with our
specific model more formally developed in Section 2. Consider a model consisting of a finite num-
ber, `, of species and a finite number, K, of reaction channels. We let M(t) be the `-dimensional
vector whose ith component gives the number of molecules of the ith species present at time t. For
the kth reaction channel we denote by νk ∈ Z`≥0 the number of molecules of each species needed
for the reaction to occur, and by ν ′k ∈ Z`≥0 the number produced. We let µk(x) denote the rate,
or intensity (termed propensity in the biology literature), at which the kth reaction occurs when the
numbers of molecules present equals the vector x. Then, M(t) may be represented as the solution
to the (vector-valued) equation

(1) M(t) = M(0) +
K∑
k=1

(ν ′k − νk)Yk
(∫ t

0
µk(M(s))ds

)
,

where the stochastic processes Yk(·) are independent unit-rate Poisson processes [1]. Note that if, for
some k? ∈ {1, . . . ,K}, ν ′k? − νk? equals the ith unit vector ei, then the k?th reaction channel cor-
responds to the external arrival of molecules of species i. For the specific situation that subnetworks
operate at disparate timescales, these can be analyzed separately by means of lower dimensional
approximations, as pointed out in e.g. [19].

In this paper we study a model of the type described above, for the special case that there is just one
type of molecular species (i.e., ` = 1), and that there are external arrivals. The distinguishing feature
is that the rate of the external input is determined by an independent continuous-time Markov chain
J(·) (commonly referred to as the background process) defined on the finite state space {1, . . . , d}.
More concretely, we study a reaction system that obeys the stochastic representation

M(t) = M(0) + Y1

(∫ t

0
λJ(s)ds

)
− Y2

(
µ

∫ t

0
M(s)ds

)
,

where Y1(·) and Y2(·) are independent unit-rate Poisson processes, and λJ(s) takes the value λi ≥ 0

when the background process is in state i. Hence, in this model external molecules flow into the
system according to a Poisson process with rate λi when the background process J(·) is in state i,
while each molecule decays after an exponentially distributed time with mean µ−1 (independently of
other molecules present).
The main result of the paper is a functional central limit theorem (F-CLT) for the processM(t), where
we impose a specific scaling on the transition rates Q = (qij)

d
i,j=1 of the background process J(t),

as well as on the external arrival rates λ = (λ1, . . . , λd)
T (note that all vectors are to be understood

as column vectors). More precisely, the transition rates of the background process are sped up by a
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factor Nα, with α > 0, while the arrival rates are sped up linearly, that is, they become Nλi. Then
we consider the process UN (t) (with a superscript N to stress the dependence on N ), obtained from
MN (t) by centering, that is, subtracting the mean EMN (t), and normalizing, that is, dividing by an
appropriate polynomial in N . It is proven that UN (t) converges (as N → ∞) weakly to a specific
Gauss-Markov process, viz. an Ornstein-Uhlenbeck (OU) process with certain parameters (which are
given explicitly in terms of λ, µ, and the matrix Q). Our proofs are based on martingale techniques;
more specifically, an important role is played by the martingale central limit theorem.
Interestingly, if α > 1 the normalizing polynomial in the F-CLT is the usual

√
N , but for α ≤ 1 it

turns out that we have to divide by N1−α/2. The main intuition behind this dichotomy is that for
α > 1 the timescale of the background process is faster than that of the arrival process, and hence
the arrival process is effectively a (homogeneous) Poisson process. As a result the corresponding
F-CLT is in terms of the corresponding Poisson rate (which we denote by λ∞ := πTλ, where π
is the stationary distribution of the background process) and µ only. For α ≤ 1, on the contrary,
the background process jumps relatively slowly; the limiting OU process is in terms of λ and µ, but
features the deviation matrix [11] associated to the background process J(·) as well.

In earlier works [6, 7] we studied a similar setting. However, where we use a martingale-based
approach in the present paper, in [6, 7] we relied on another technique: (i) we set up a system of
differential equations for the Laplace transform of MN (t) jointly with the state of the background
process JN (t), (ii) modified these into a system of differential equations for the transform of the
(centered and normalized) processUN (t) jointly with JN (t), (iii) approximated these by using Taylor
expansions, and (iv) then derived an ordinary differential equation for the limit of the transform
of UN (t) (as N → ∞). This differential equation defining a Normal distribution, the CLT was
established. Importantly, the results derived in [6, 7] crucially differ from the ones in the present
paper. The most significant difference is that those results are no F-CLT: just the finite-dimensional
convergence to the OU process was established, rather than convergence at the process level (i.e.,
to prove weak convergence an additional ‘tightness argument’ would be needed). For the sake of
completeness, we mention that [7] covers just the case α > 1, that is, the regime in which the arrival
process is effectively Poissonian, while [6] allows all α > 0.
Our previous works [6, 7, 8] have been presented in the language of queueing theory; the model
described above can be seen as an infinite-server queue with Markov-modulated input. In comparison
to Markov-modulated single-server queues (and to a lesser extent Markov-modulated many-server
queues), this infinite-server model has been much less intensively studied. This is potentially due to
the fact that the presence of infinitely many servers may be considered less realistic, perhaps rightfully
so in the context of operational research, the major application field of queueing theory. In the context
of chemical reactions, however, it can be argued that the concept of infinitely many servers is quite
natural: each molecule brings its own ‘decay’-server.

We conclude this introduction with a few short remarks on the relation of our work with existing
literature. Incorporating Markov modulation in the external arrival rate the infinite-server queue
becomes, from a biological perspective, a more realistic model [25]. It is noted that deterministic
modulation has been studied in [13] for various types of non-homogeneous arrival rate functions
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(Mt/G/∞ queue). For earlier results on the stationary distribution of Markov-modulated infinite-
server queues, for instance in terms of a recursive scheme that determines the moments, we refer to
e.g. [12, 15, 20, 22].
As mentioned above, at the methodological level, our work heavily relies on the so-called martingale
central limit theorem (M-CLT), see for instance [14, 26]. It is noted that convergence to OU has
been established in the non-modulated setting before: an appropriately scaled M/M/∞ queue weakly
converges to an OU process. For a proof, see e.g. [24, Section 6.6]; cf. also [9, 17].

The rest of this paper is organized as follows. Section 2 sets up the model, its properties and quantities
of interest, and presents the essential mathematical tools. The Nα-scaled background process is
thoroughly investigated in Section 3; most notably we derive its F-CLT relying on the M-CLT. This
takes us to Section 4, where we first show that M̄N (t) := N−1MN (t) converges to a deterministic
solution, denoted by %(t), to finally establish the F-CLT for MN (t) by proving asymptotic normality
of the process Nβ (M̄N (t) − %(t)), with β ∈ (0, 1/2) appropriately chosen. As indicated earlier,
the parameters specifying the limiting OU process depend on which speedup is ‘faster’: the one
corresponding to the background process (i.e., α > 1) or that of the arrival rates (i.e., α < 1). We
conclude this paper by a set of numerical experiments, that illustrate the impact of the value of α.

2. THE MODEL AND MATHEMATICAL TOOLS

In this section we first describe our model in detail, and then present preliminaries (viz. a version of
the law of large numbers for Poisson processes and the M-CLT).

Model. Our paper considers the following Markovian model. Let J(t) be an irreducible continuous-
time Markov process on the finite state space {1, . . . , d}. Define its generator matrix by Q =

(qij)
d
i,j=1 and the (necessarily unique) invariant distribution by π; as a consequence, πTQ = 0T.

Let Xi(t) be the indicator function of the event {J(t) = i}, for i = 1, . . . , d; in other words:
Xi(t) = 1 if J(t) = i and 0 otherwise. It is assumed that J(·) is in stationarity at time 0 and hence at
any t; we thus have P(J(t) = i) = πi. As commonly done in the literature, the transient distribution
P(J(s) = j | J(0) = i) is denoted by pij(s) and is computed as (eQs)i,j .
The model considered in this paper is a so-called Markov-modulated infinite-server queue. Its dy-
namics can be described as follows. For any time t ≥ 0, molecules arrive according to a Poisson
process with rate λi if Xi(t) = 1. We let the service/decay rate of each molecule be µ irrespective of
the state of the background process. There are infinitely many servers so that the molecules’ sojourn
times are their service times; the molecules go in service immediately upon arrival. Throughout this
paper, M(t) denotes the number of molecules present at time t.

Scaling. In this paper a F-CLT under the following scaling is investigated. The background process as
well as the arrival process are sped up, while the service-time distribution remains unaffected. More
specifically, the transition matrix of the background process becomes NαQ for some α > 0, while
the arrival rates, λi for i = 1, . . . , d, are scaled linearly (i.e., become Nλi); then N is sent to ∞.
To indicate the fact that they depend on the scaling parameter N , we write in the sequel JN (t) for
the background process, XN

i (t) for the indicator function associated with state i of the background



A FUNCTIONAL CLT FOR A MARKOV-MODULATED INFINITE-SERVER QUEUE 5

process at time t, and MN (t) for the number of molecules in the system at time t. Later in the paper
we let the transitions of the background process go from being sublinear (i.e., α < 1) to superlinear
(i.e., α > 1); one of our main findings is that there is a dichotomy, in the sense that there is crucially
different behavior in these two regimes, with a special situation at the boundary, i.e., α = 1.

The above model can be put in terms of a chemical reaction network, as formulated in the intro-
duction. It turns out to be convenient to do so by interpreting the background process as a model
for a single molecule transitioning between d different states, with XN

i (t) denoting the number of
molecules in state i at time t. Since there is at most one such molecule, we see XN

i (t) ∈ {0, 1}. The
following table informally summarizes the relevant reactions and corresponding intensity functions
for the model of interest:

Reaction Intensity function Description
Xi → Xj (for i 6= j) NαqijX

N
i (t) J(·) jumps from i to j

∅ →M
∑d

i=1NλiX
N
i (t) Arrival

M → ∅ µMN (t) Departure

As mentioned above, it is assumed that α > 0; in addition, qij ≥ 0 for i 6= j (whileQ1 = 0), λi ≥ 0,
and µ > 0. The dynamics can be phrased in terms of the stochastic representation framework,
as described in the introduction. In the first place, the evolution of the indicator functions can be
represented as

(2) XN
i (t) = XN

i (0)−
d∑
j=1
j 6=i

Yi,j

(
Nαqij

∫ t

0
XN
i (s)ds

)
+

d∑
j=1
j 6=i

Yj,i

(
Nαqji

∫ t

0
XN
j (s)ds

)

where the Yi,j (i, j = 1, . . . , d with i 6= j) are independent unit-rate Poisson processes. It is readily
verified that if the XN

i (0), with i = 1, . . . , d, are indicator functions summing up to 1, then so are
the XN

i (t) for any t ≥ 0. The second (third, respectively) term in the right-hand side represents the
number of times that JN (·) leaves (enters) state i in [0, t].
In the second place, the number of molecules in the system evolves as

(3) MN (t) = MN (0) + Y1

(
N

∫ t

0

d∑
i=1

λiX
N
i (s)ds

)
− Y2

(
µ

∫ t

0
MN (s)ds

)
,

where Y1, and Y2 are independent unit-rate Poisson processes (also independent of the Yi,j).
The objective of this paper is to describe the limiting behavior of the system as N →∞, for different
values of α. Our main result is a F-CLT for the processMN (·); to establish this, we also need a F-CLT

for the state frequencies of JN (·) on [0, t], defined as

ZN (t) = (ZN1 (t), . . . , ZNd (t))T, with ZNi (t) :=

∫ t

0
XN
i (s)ds.

This paper essentially makes use of two more or less standard ‘tools’ from probability theory: the
law of large numbers applied to Poisson processes and the martingale central limit theorem (M-CLT).
For the sake of completeness, we state the versions used here.
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Lemma 2.1. [1, Thm. 2.2] Let Y be a unit rate Poisson process. Then for any U > 0,

lim
N→∞

sup
0≤u≤U

∣∣∣∣Y (Nu)

N
− u
∣∣∣∣ = 0,

almost surely.

The following is known as (a version of) the M-CLT, and is a corollary to Thm. 7.1.4 and the proof of
Thm. 7.1.1 in [14]. Here and in the sequel, ‘⇒’ denotes weak convergence; in addition, [·, ·]t is the
quadratic covariation process.

Theorem 2.2. Let {MN}, for N ∈ N, be a sequence of Rd-valued martingales with MN (0) = 0

for any N ∈ N. Suppose

lim
N→∞

E
[
sup
s≤t

∣∣MN (s)−MN (s−)
∣∣] = 0, with MN (s−) := lim

u↑s
MN (u),

and, as N →∞,

[MN
i ,MN

j ]t → Cij(t)

for a deterministic matrix Cij(t) that is continuous in t, for i, j = 1, . . . , d and for all t > 0. Then
MN ⇒W , whereW denotes a Gaussian process with independent increments and E

[
W (t)W (t)T

]
=

C(t) (such that E[Wi(t)Wj(t)] = Cij(t)).

There is an extensive body of literature on the M-CLT; for more background, see e.g. [18, 23, 26].

3. A FUNCTIONAL CLT FOR THE STATE FREQUENCIES

In this section we establish the F-CLT for the integrated background processes ZN (t), that is, the
state frequencies of the Markov process JN (·) on [0, t]. This F-CLT is a crucial element in the proof
of the F-CLT of MN (t), as will be given in the next section. It is noted that there are several ways to
establish this F-CLT; we refer for instance to the related weak convergence results in [5, 21], as well as
the nice, compact proof for the single-dimensional convergence in [3, Ch. II, Thm. 4.11]. We chose
to include our own derivation, as it is straightforward, insightful and self-contained, while at the same
time it also introduces a number of concepts and techniques that are used in the M-CLT-based proof
of the F-CLT for MN (t) in the next section.
We first identify the corresponding law of large numbers. To this end, we consider the processXN (t)

by dividing both sides of (2) by Nα and letting N →∞. Since XN
i (t) ∈ {0, 1} for all t, the XN

i (t)

and XN
i (0) terms both go to zero as N → ∞. Thus we may apply Lemma 2.1 to see that also, as

N →∞,

−
∑
j 6=i

qijZ
N
i (t) +

∑
j 6=i

qjiZ
N
j (t)→ 0,

almost surely, or limN→∞Z
N (t)TQ = 0T. Bearing in mind that 1TZN (t) = t, the limit of ZN (t)

solves the global balance equations, entailing that

(4) ZNj (t)→ πjt
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almost surely as N → ∞, where we recall that π is the stationary distribution associated with the
background process J(·).

As mentioned above, the primary objective of this section is to establish a F-CLT for ZN (·) as N →
∞. More specifically, we wish to identify a covariance matrix C such that, as N →∞,

(5) Nα/2
(
ZN (t)− πt

)
⇒W (t),

with W (·) representing a (d-dimensional) Gaussian process with independent increments such that
E
[
W (t)W (t)T

]
= C t. In other words: our goal is to show weak convergence to a d-dimensional

Brownian motion (with dependent components).
We start our exposition by identifying a candidate covariance matrix C, by studying the asymptotic
behavior (that is, as N → ∞) of Cov(ZNi (t), ZNj (t)) for fixed t. Bearing in mind that ZNi (t) is
the integral over s of XN

i (s), and using standard properties of the covariance, this covariance can be
rewritten as ∫ t

0

∫ s

0
Cov

(
XN
i (r), XN

j (s)
)

drds+

∫ t

0

∫ t

s
Cov

(
XN
i (r), XN

j (s)
)

drds.

Recalling that the process JN (·) starts off in equilibrium at time 0, and that Xi(s) is the indicator
function of the event {JN (s) = i}, this expression can be rewritten as∫ t

0

∫ s

0

(
πip

N
ij (s− r)− πiπj

)
drds+

∫ t

0

∫ t

s

(
πjp

N
ji (r − s)− πiπj

)
drds,

where we use the notation pNij (s) := P(JN (s) = j | JN (0) = i). Performing the change of variable
u := rNα we thus find that

NαCov(ZNi (t), ZNj (t)) = πi

∫ t

0

∫ sNα

0
(pij(u)− πj) duds+ πj

∫ t

0

∫ (t−s)Nα

0
(pji(u)− πi) duds.

A crucial role in the analysis is played by the deviation matrix D = (Dij)
d
i,j=1 associated with the

finite-state Markov process J(·); it is defined by

(6) Dij :=

∫ ∞
0

(pij(t)− πj)dt;

see e.g. [11] for background and a survey of the main results on deviation matrices. Combining the
above, we conclude that, as N → ∞, with Cij := πiDij + πjDji we have identified that candidate
covariance matrix, in the sense that we have shown that, for given t,

NαCov(ZNi (t), ZNj (t))→ Cijt

as N → ∞. The objective of the remainder of this section is to establish the weak convergence (5)
with the covariance matrix C = (Cij)

d
i,j=1.

We now prove this weak convergence relying on the M-CLT. We start by considering linear com-
binations of the XN

i (t) processes based on Eqn. (2) and introduce X̃N
i (t) := XN

i (t) − XN
i (0) for
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notational convenience. For any real constants fi, i = 1, . . . , d, we have that

d∑
i=1

fiX̃
N
i (t) =

d∑
i=1

∑
j 6=i

fi

(
Yji
(
NαZNj (t)qji

)
− Yij

(
NαZNi (t)qij

))

=
d∑
i=1

d∑
j=1

(fj − fi)Yij
(
NαZNi (t)qij

)
,(7)

where we do not need to define the processes Yii as the terms containing them are zero anyway. Note
that the quadratic variation of this linear combination is equal to

(8)

[
d∑
i=1

fiX̃
N
i

]
t

=

d∑
i=1

d∑
j=1

(fj − fi)2Yij(N
αZNi (t)qij),

as the quadratic variation of a Poisson process is equal to itself. Due to Lemma 2.1 and Eqn. (4), we
have for N →∞,

(9)

[
N−α/2

d∑
i=1

fiX̃
N
i

]
t

→ t

d∑
i=1

d∑
j=1

(fj − fi)2πiqij .

The crucial step in proving the weak convergence and consequently applying the M-CLT is the iden-
tification of a suitable martingale. We prove the following lemma.

Lemma 3.1. Let D denote the deviation matrix of the background Markov chain J(t). V N (t) :=

N−α/2X̃
N

(t)TD +Nα/2
(
ZN (t)− πt

)
is an Rd-valued martingale.

Proof. We center our unit-rate Poisson processes by introducing Ỹi,j(u) := Yi,j(u)− u. The follow-
ing algebraic manipulations are easily verified:

N−α/2
d∑
i=1

d∑
j=1

(Djk −Dik)Ỹij
(
NαZNi (t)qij

)
= N−α/2

d∑
i=1

X̃N
i (t)Dik −Nα/2

d∑
i=1

d∑
j=1

(Djk −Dik)Z
N
i (t)qij

= N−α/2
(
X̃

N
(t)TD

)
k
−Nα/2

d∑
i=1

d∑
j=1

ZNi (t)qijDjk

= N−α/2
(
X̃

N
(t)TD

)
k

+Nα/2(ZNk (t)− πkt),

where we used Eqn. (7), the fact that
∑d

i=1 Z
N
i (t) = t and the property QD = Π − I , with Π =

1πT. As centered Poisson processes are martingales, and linear combinations preserve the martingale
property, this concludes the proof. �

We now wish to apply the M-CLT to V N (t) asN →∞. As the second term is absolutely continuous,
and the first term is a jump process with jump sizes N−α/2, we have indeed vanishing jump sizes as
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required by the M-CLT. We now compute the covariations of V N (t), and note that as the second term
is absolutely continuous and thus does not contribute to the covariation, we have that

[V N
i , V N

j ]t = N−α[((X̃
N

)TD)i, ((X̃
N

)TD)j ]t

=
1

2
N−α

(
[((X̃

N
)TD)i + ((X̃

N
)TD)j ]t − [((X̃

N
)TD)i]t − [((X̃

N
)TD)j ]t

)
=

1

2
N−α

([
d∑

k=1

X̃N
k (Dki +Dkj)

]
t

−

[
d∑

k=1

X̃N
k Dki

]
t

−

[
d∑

k=1

X̃N
k Dkj

]
t

)
,(10)

where we have used the polarization identity 2[X,Y ]t = [X + Y ]t − [X]t − [Y ]t.
Using Eqn. (9), this converges to

[V N
i , V N

j ]t →
1

2
t

d∑
k=1

d∑
`=1

πkqk`

(
(Dki +Dkj −D`i −D`j)

2 − (Dki −D`i)
2 − (Dkj −D`j)

2

)

= t
d∑

k=1

d∑
`=1

πkqk`(Dki −D`i)(Dkj −D`j)

= t(πjDji + πiDij)(11)

where we used the properties Q1 = 0, ΠQ = 0, QD = Π− I and ΠD = 0.
Thus, from the M-CLT we have that V N (t) converges weakly to d-dimensional Brownian motion
with covariance matrix C := DTdiag{π} + diag{π}D. As the first term of V N (t) vanishes for
N →∞, we have established the desired F-CLT:

Proposition 3.2. As N →∞,

Nα/2
(
ZN (t)− πt

)
⇒WC(t),

where WC(·) is a zero-mean Gaussian process with independent increments and covariance struc-
ture E

[
WC(t)WC(t)T

]
= C t.

4. A FUNCTIONAL CLT FOR THE PROCESS MN (t)

Using the F-CLT for the process ZN (t), as established in the previous section, we are now in a
position to understand the limiting behavior of the main process of interest, MN (t), as N grows
large. As before, we begin by considering the average behavior of the quantity of interest. Dividing
both sides of (3) by N , and denoting M̄N (t) := N−1MN (t), we have

M̄N (t) = M̄N (0) +N−1Y1

(
N

d∑
i=1

λiZ
N
i (t)

)
−N−1Y2

(
Nµ

∫ t

0
M̄N (s)ds

)
.

Assuming that M̄N (0) converges almost surely to some value %0, the use of Lemma 2.1 in conjunc-
tion with Eqn. (4) yields that M̄N (t) converges almost surely to the solution of the deterministic
integral equation

(12) %(t) = %0 +

(
d∑
i=1

λiπi

)
t− µ

∫ t

0
%(s)ds = %0 + λ∞t− µ

∫ t

0
%(s)ds,
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with λ∞ := πTλ. It is readily verified that this solution is given by

(13) %(t) = %0e
−µt +

λ∞
µ

(1− e−µt).

As our goal is to derive a F-CLT, we center and scale the process MN (·); this we do by subtracting
N%(·), and dividing by N1−β for some β > 0 to be specified later. More concretely, we introduce
the process

UNβ (t) := Nβ
(
M̄N (t)− %(t)

)
.

Letting β > 0 be arbitrary (for the moment), we have that due to Eqn. (12),

Nβ
(
M̄N (t)− %(t)

)
= Nβ

(
M̄N (0)− %0

)
−Nβ(%(t)− %0)

+Nβ

(
N−1Y1

(
N

d∑
i=1

λiZ
N
i (t)

)
−N−1Y2

(
Nµ

∫ t

0
M̄N (s)ds

))

= Nβ(M̄N (0)− %0)−Nβ

(
λ∞t− µ

∫ t

0
%(s)ds

)
+Nβ

(
N−1Ỹ1

(
N

d∑
i=1

λiZ
N
i (t)

)
−N−1Ỹ2

(
Nµ

∫ t

0
M̄N (s)ds

))

+Nβ
d∑
i=1

λiZ
N
i (t)−Nβµ

∫ t

0
M̄N (s)ds.

This identity can be written in a more convenient form by defining the process

Rβ(t) := Ỹ1

(
N

d∑
i=1

λiZ
N
i (t)

)
− Ỹ2

(
Nµ

∫ t

0
M̄N (s)ds

)
,

which is a martingale [1]. The resulting equation for UNβ (t) is

UNβ (t) = UNβ (0) +Nβ−1Rβ(t) +Nβ

(
d∑
i=1

λiZ
N
i (t)− λ∞t

)
− µ

∫ t

0
UNβ (s)ds.(14)

We wish to establish the weak convergence of the process UNβ (t), as N → ∞. We must simultane-
ously consider how to choose the parameter β. To do so we separately inspect the terms involving
Rβ(t) and ZNi (t) in Eqn. (14).
First note that the sequence of martingales {Nβ−1Rβ(t)}, for N ∈ N, clearly satisfies the first
condition of Thm. 2.2, that of vanishing jump sizes, under the condition that β < 1, which we
impose from now on. To obtain its weak limit, we compute its quadratic variation

(15)
[
Nβ−1Rβ

]
t

= N2β−2

(
Y1

(
N

d∑
i=1

λiZ
N
i (t)

)
+ Y2

(
Nµ

∫ t

0
M̄N (s)ds

))
.

For this term to converge in accordance with Thm. 2.2, we need β ≤ 1
2 , which we impose from now

on. With β = 1
2 , the term (15) will converge to λ∞t + µ

∫ t
0 %(s)ds. Choosing β < 1

2 will take it to
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zero. Turning to the ZNi terms of (14), by Prop. 3.2, and recalling that λ∞ = πTλ, we have that for
β = α/2,

Nβ

(
d∑
i=1

λiZ
N
i (t)− λ∞t

)
⇒ λ ·WC(t),(16)

which is distributionally equivalent to W (Þt), where W is a standard Brownian motion and

(17) Þ :=

d∑
i=1

d∑
j=1

λiλjCij .

If β < α/2 the term on the left-hand side of (16) converges to zero. Combining the above leads us to
select β = min{α/2, 1/2}. In the sequel we distinguish between α > 1, α < 1, and α = 1.

Before we treat the three cases, we first recapitulate the class of Ornstein-Uhlenbeck (OU) processes.
We say that S(t) is OU(a, b, c) if it satisfies the stochastic differential equation (SDE)

dS(t) = (a− b S(t))dt+
√
cdW (t),

with W (t) a standard Brownian motion. This SDE is solved by

S(t) = S(0)e−bt + a

∫ t

0
e−b(t−s)ds+

√
c

∫ t

0
e−b(t−s)dW (s).

By using standard stochastic calculus it can be verified that (taking u ≤ t)

ES(t) = S(0)e−bt +
a

b
(1− e−bt),(18)

VarS(t) =
c

2b
(1− e−2bt),

Cov(S(t), S(u)) =
ce−bu

2b

(
ebt− e−bt

)
.

For t large, we see that

ES(∞) =
a

b
, VarS(∞) =

c

2b
, lim

t→∞
Cov(S(t), S(t+ u)) =

c

2b
e−bu.

After this intermezzo, we now treat the three cases separately.

Case 1: α > 1. In this case we pick β = 1/2. The term (15) converges to

d∑
i=1

λiπit+ µ

∫ t

0
%(s)ds = λ∞t+ µ

∫ t

0
%(s)ds,

while the term (16) converges to zero and is therefore neglected. Hence, UN1/2(t) converges in distri-
bution to the solution of

U1/2(t) = U1/2(0) +W

(
λ∞t+ µ

∫ t

0
%(s)ds

)
− µ

∫ t

0
U1/2(s)ds,

where W is a standard Brownian motion. The above solution is distributionally equivalent to the
solution of the Itô formulation of the SDE

U1/2(t) = U1/2(0) +

∫ t

0

√
λ∞ + µ%(s)dW (s)− µ

∫ t

0
U1/2(s)ds.
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This SDE can be solved using standard techniques to obtain

U1/2(t) = e−µt
(
U1/2(0) +

∫ t

0

√
λ∞ + µ%(s)eµsdW (s)

)
.

We now demonstrate how to compute the variance of U1/2(t). To this end, first recall that by virtue
of (13),

VarU1/2(t) =

∫ t

0
(λ∞ + µ%(s))e−2µ(t−s)ds

=

∫ t

0

(
λ∞ + µ

(
%0e
−µs +

λ∞
µ

(1− e−µs)
))

e−2µ(t−s)ds.

After routine calculations, this yields

VarU1/2(t) =

(
%0e
−µt +

λ∞
µ

)
(1− e−µt),

cf. the expressions in [7, Section 4]. In a similar fashion, we can derive that

Cov(U1/2(t), U1/2(t+ u)) = e−µu
(
%0e
−µt +

λ∞
µ

)
(1− e−µt).

It is seen that for t→∞ the limiting process behaves as OU(0, µ, 2λ∞).

Case 2: α < 1. In this case we pick β = α/2 and the term (15), and therefore the term Nβ−1Rβ(t),
converges to zero, whereas the term (16) converges to W (Þt), where W is a standard Brownian
motion and Þ as defined by Eqn. (17). Hence, UNα/2(t) converges weakly to the solution of

Uα/2(t) = Uα/2(0) +W (Þt)− µ
∫ t

0
Uα/2(s)ds,

It is straightforward to solve this equation:

Uα/2(t) = e−µt
(
Uα/2(0) +

∫ t

0

√
Þ eµsdW (s)

)
.

This process has variance

(19) VarUα/2(t) =

∫ t

0
Þe−2µ(t−s)ds = Þ

1− e−2µt

2µ
.

It is readily checked that this process is OU(0, µ,Þ); this is due to

Cov(Uα/2(t), Uα/2(t+ u)) = Þe−µu
1− e−2µt

2µ
.

Case 3: α = 1. In this case we put β = 1/2, and the terms Nβ−1Rβ(t) and (16) are of the same
order. Hence, their sum converges weakly to

W

(
λ∞t+ µ

∫ t

0
%(s)ds+ Þt

)
,

where W is a standard Browian motion. In this case UN1/2(t) converges weakly to the solution of

U1/2(t) = U1/2(0) +W

(∫ t

0
(λ∞ + Þ + µ%(s)) ds

)
− µ

∫ t

0
U1/2(s)ds.



A FUNCTIONAL CLT FOR A MARKOV-MODULATED INFINITE-SERVER QUEUE 13

Solving the above in a similar fashion to cases 1 and 2 yields

U1/2(t) = e−µt
(
U1/2(0) +

∫ t

0

√
λ∞ + Þ + µ%(s) eµsdW (s)

)
.

with the corresponding variance

VarU1/2(t) =

∫ t

0
(λ∞ + Þ + µ%(s)) e−2µ(t−s)ds

=

(
%0e
−µt +

λ∞
µ

)
(1− e−µt) +

Þ
2µ

(1− e−2µt)

and covariance

Cov(U1/2(t), U1/2(t+ u)) = e−µu
((

%0e
−µt +

λ∞
µ

)
(1− e−µt) +

Þ
2µ

(1− e−2µt)

)
.

For t large this process behaves as OU(0, µ, 2λ∞ + Þ).

We summarize the above results in the following theorem; it is the F-CLT forMN (t) that we wished to
establish. It identifies the Gauss-Markov process to which MN (·) weakly converges, after centering
and scaling; this limiting process behaves, modulo the effect of the initial value %0, as an OU process.
More specifically, the theorem describes the limiting behavior of the centered and normalized version
UNβ (·) of MN (·): the focus is on the process

(20) UNβ (t) = Nβ
(
M̄N (t)− %(t)

)
=
MN (t)−N%(t)

N1−β .

It is observed that for α ≥ 1, we have the usual
√
N CLT-scaling; for α < 1, however, the normalizing

polynomial is N1−α/2, that is β = min{α/2, 1/2}.

Theorem 4.1. As N →∞, the process UNβ (t) converges in distribution to the solution of

Uβ(t) = e−µt
(
Uβ(0) +

∫ t

0
σ(s)eµs dW (s)

)
where

σ(s) :=


√
λ∞ + µ%(s), α > 1, β = 1/2;
√

Þ, α < 1, β = α/2;√
λ∞ + Þ + µ%(s), α = 1, β = 1/2,

W is standard Brownian motion and Þ =
∑d

i=1

∑d
j=1 λiλjCij .

5. DISCUSSION AND AN EXAMPLE

Above we identified two crucially different scaling regimes: α > 1 and α < 1 (where the boundary
case of α = 1 had to be dealt with separately). In case α > 1, the background process evolves fast
relative to the arrival process, and as a consequence the arrival stream is effectively Poisson with rate
Nλ∞. When the arrival process is simplified in such a way, the system essentially behaves as an
M/M/∞ queue. This regime was discussed in greater detail in e.g. [7], focusing on convergence of
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the finite-dimensional distributions. On the other hand, for α < 1 the arrival rate is sped up more than
the background process. Intuitively, then the system settles in a temporary (or local) equilibrium.

5.1. A two-state example. In this example we numerically study the limiting behavior of UNβ (t) :=

Nβ (M̄N (t)−%(t)) with β = min{α/2, 1/2} (asN →∞) in a two-state system for different α. For
various values of N , we compute the moment generating function (MGF) of UNβ (t) by numerically
evaluating the system of differential equations derived in [7, Section 3.1]. We have shown that the
limiting distribution of UNβ (t) is Gaussian with specific parameters. We now explain how the MGF

of the limiting random variable can be computed. Introducing the notation Λ(t, θ) := EeθUβ(t) and
ΛN (t, θ) := EeθU

N
β (t), it is immediate from Thm. 4.1 that we have

(21) Λ(t, θ) = exp

(
θ2

2

[(
%0e
−µt +

λ∞
µ

)
(1− e−µt) 1{α≥1} + Þ

(1− e−2µt)

2µ
1{α≤1}

])
,

In the regime that α ≤ 1, we need to evaluate the parameter Þ, which can be easily computed for
d = 2. For the generator matrixQ = (qij)

2
i,j=1, let qi := −qii and note that qi > 0. With q̄ := q1+q2,

the matrix exponential is given by

eQt =
1

q̄

[
q2 + q1e

−q̄t q1 − q1e
−q̄t

q2 − q2e
−q̄t q1 + q2e

−q̄t

]
.

Since π1 = q2/q̄ and π2 = q1/q̄, we can now compute the components of the deviation matrix D
(see Eqn. (6)) and covariance matrix C:

D =
1

q̄2

[
q1 q1

−q2 q2

]
, C =

2q1q2

q̄3

[
1 −1

−1 1

]
.

From the above we find the value of Þ:

Þ =
2q1q2

q̄3
(λ1 − λ2)2.

Fig. 5.1 illustrates the convergence of UNβ (t) to Uβ(t) when q = (1, 3), λ = (1, 4) and µ = 1. We
assume %0 = 0 and let θ = 0.5. In Figs. 5.1.(A)–(C) we see the effect of α. Fig. 5.1.(D) depicts the
convergence rate, computed as

max
t≥0

∣∣ΛN (t, θ)− Λ(t, θ)
∣∣ .

We observe a roughly loglinear convergence speed for α ≥ 1, whereas for α < 1 the convergence
turns out to be substantially slower.
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at several useful references.
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