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Motion Planning for Urban Autonomous Driving using Bézier Curves and
MPC

Xiangjun Qian1 Iñaki Navarro2 Arnaud de La Fortelle1 Fabien Moutarde1

Abstract— This paper presents a real-time motion planning
scheme for urban autonomous driving that will be deployed as
a basis for cooperative maneuvers defined in the European
project AutoNet2030. We use a path-velocity decomposition
approach to separate the motion planning problem into a path
planning problem and a velocity planning problem. The path
planner first generates a collision-free piecewise linear path
and then uses quintic Bézier curves to smooth the path with
C2 continuity. A derive-free optimization technique Subplex is
used to further smooth the curvature of the path in a best-
effort basis. The velocity planner generates an optimal velocity
profile along the reference path using Model Predictive Control
(MPC), taking into account user preferences and cooperative
maneuver requirements. Simulation results are presented to
validate the approach, with special focus on the flexibility,
cooperative-awareness and efficiency of the algorithms.

I. INTRODUCTION

A. Motivation

Autonomous driving is becoming a promising technology
to enhance traffic efficiency and reduce resources wasted on
accidents and congestions. It is predicted that, by the date
of 2030, more than 50% of vehicles on the road will be
automated [1].

This work is supported by the European project Au-
toNet2030 [1] that shall develop multi-vehicle cooperative
algorithms for various driving scenarios, such as platooning,
convoy (multi-lane platoons) and lane change. This requires
to develop a unified motion planning framework that can be
tuned to cope with different individual driving scenarios and
various cooperative maneuvers (flexibility and cooperative
awareness). Moreover, the motion planner will run alongside
other computationally demanding modules such as coop-
erative sensing/communication modules. Thus we need the
motion planner to be fast within an embedded architecture
(efficiency). The concerned vehicle platforms are illustrated
in Fig. 1.

In the following, we survey existing literature and present
our contribution.

1Xiangjun Qian, Arnaud de La Fortelle and Fabien Moutarde
are with MINES ParisTech, PSL - Research University,
Centre for Robotics, 60 Bd St Michel, 75006 Paris, France
{xiangjun.qian, arnaud.de la fortelle,
fabien.moutarde}@mines-paristech.fr
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Fig. 1: (a) Cybus platform of INRIA and (b) Automated truck of
Scania

B. Related work

Years of research have borne fruits to many motion
planning frameworks [2]–[7]. The literature can be roughly
divided into three categories of approaches: sampling based
approaches, Model Predictive Control (MPC) based ap-
proaches and path-velocity decomposition approaches.

Sampling based approaches [2]–[4] sample directly the
state space of the autonomous vehicle to obtain a set of
feasible trajectories, and then select the best one to execute,
subject to some cost function. Deterministic sampling ap-
proaches [2] discretize the state space using a conformal spa-
tiotemporal lattice. Graph search methods are then adopted to
find the optimal trajectory. The disadvantage of deterministic
sampling is that it is not complete. In order to mitigate
this problem, stochastic sampling approaches [3], [4] are
proposed using Rapid Exploring Random Tree Star (RRT*)
and its variants. RRT* is powerful in exploring the state
space and is asymptotically complete. However, the resulted
trajectory is usually jerky and needs further smoothing.

Sampling based approaches spend a large amount of
computation resources to generate a large set of trajectories,
while most of them are discarded. Model Predictive Con-
trol (MPC) based methods [8], [9] formulate the trajectory
generation problem as an optimization problem over the
state space and use gradient-descending techniques to find
the optimal trajectory. The optimization problem is solved
in a periodic fashion with a limited horizon to take into
account new environmental information. This category of
approaches is inherently more efficient than the sampling
based one as the optimal trajectory can be found within
only a couple of iterations with the help of the gradi-
ent information. Furthermore, MPC-based approach permits
high-precision planning, for example, keeping a precisely
given distance from its preceding vehicle, thanks to its
optimization nature; while sampling based approaches cannot
achieve the same level of accuracy unless a prohibitive



amount of samples is evaluated. However, a major drawback
is that most optimization algorithms require constraints to
be differentiable, which is often not the case for on-road
obstacles. Moreover, the computation time may significantly
increase if the environment is complex, e.g., the presence of
multiple obstacles.

Considering the specificities of on-road motion planning
where the environment is highly structured, the path-velocity
decomposition technique [10] can be adopted to break down
the state space into two subspaces with lower dimensions
thus drastically decreasing the computational complexity.
The path planning problem determines a kinematically feasi-
ble (curvature-continuous) path along the road. Various path
generation methods are proposed using cubic curvature poly-
nomials [11], Bézier curves [5], [12], clothoid tentacles [13],
Dubin’s paths [14], and nonlinear optimization technique [7].
Quintic Bézier curves [5] is a promising approach because it
is easy to compute and tune. However, further adaptation is
necessary to make it compatible with real-time on-road au-
tonomous driving. The velocity planning problem generates a
speed profile that is feasible to the previously generated path.
Previous work [7], [15], [16] usually assumes the velocity
profile to have certain shape (polynomial, trapezoidal, etc.)
and samples some terminal states to generate a set of profiles.
A best profile is then selected using some cost function.
However, a velocity profile with a priori form might not be
optimal.

One drawback of the classical path-velocity decomposition
lies in the handling of dynamic obstacles. For dynamic
objects like the vehicles on the same direction or objects
traversing the road, simply regulating the vehicle speed is
sufficient for collision avoidance, while for other kinds of
moving objects like a bicyclist moving at the border of the
lane, lateral swerve is necessary. A precise solution of such
scenario requires the unification of the path planning and the
velocity planning. However, in urban scenario, objects that
requires lateral swerve usually move at low speeds. We can
approximate the slowly moving obstacle by a sweep volume
up to certain temporal horizon so that it can be considered
during the path planning stage.

C. Contribution

This paper proposes a framework to satisfy the require-
ments of flexibility, cooperative-awareness and efficiency.
We adopt a modified path-velocity decomposition approach.
The path planner generates first a piecewise linear path
that satisfies a tunable cost function and avoid static/slow
objects on the road. Quintic Bézier curves are then used
to smooth the path with C2 continuity. The path is then
further optimized using Subplex, a derive-free optimization
technique. The design of the velocity planner is inspired by
the MPC literature. We use an MPC controller to generate
an optimal reference velocity profile. The MPC controller
allows us to take into account various criteria (dynamic
obstacle avoidance, comfort, fuel consumption, etc.). It
permits high-precision velocity planning which is a major
enabler of cooperative maneuvers. Finally, our design in-
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Fig. 2: Autonomous driving architecture: a simplified view

herits the efficiency property of the classical path-velocity
decomposition methods.

The rest of the paper is organized as follows. In Section
II, the necessary background information is given. The path
planner algorithm is described in Section III, while the
velocity planner is presented in Section IV. The experimental
results carried out in simulation are shown in Section V.
Finally, Section VI draws the conclusions of this work.

II. PRELIMINARIES

A. Architecture Overview

In Fig 2, we present a multi-level modular framework
of our autonomous driving architecture. At the top is the
behavior planner that is responsible for high-level decision
making by fusing the data from sensors (laser scanners,
radars, etc.), V2X devices, pre-calculated routes and traffic
rules. The output of the behavior planner is an object called
motion goal that contains information on the desired behavior
of the vehicle for the next period of time. In this paper,
we assume that the motion goal is available to the motion
planner, and it carries information like user preferences,
desired maneuvers and cooperative rules.

The motion planner adopts the proposed path-velocity
decomposition approach to generate reference trajectories,
which are in turn fed to the low-level controller for tracking.

As the focus of this paper is on the motion planner,
we make the following assumptions. We assume that the
perception and communication are reliable. The vehicle is
convolved to the map thus we only need to consider the
planning for a point. Finally, we assume that the map is
preprocessed to provide a drivable region and a reference
centerline.

B. Vehicle Model

For high-level motion planning, we describe the vehicle
using a particle motion model on a 2-D Cartesian plane:

ẋ(t) = v(t) cos(φ(t)),

ẏ(t) = v(t) sin(φ(t)),

φ̇(t) = v(t)κ(t),

(1)

where ( xy ) , v, φ, κ are respectively 2-D position, velocity,
heading and curvature. The curvature is related to the steering
angle δ by

κ = tan(δ)
L , (2)



where L is the wheel base.
In the path-velocity decomposition approach, the path

is firstly computed and then a velocity profile is used to
parameterize the path. Assuming the path is given, (1) is
decomposed into a function of the curvilinear abscissa s (also
called vehicle offset or station) and the velocity

ẋ(s) = v(s) cos(φ(s)),

ẏ(s) = v(s) sin(φ(s)).
(3)

Finally the dynamics of the vehicle on the reference path is
reduced to

ṡ(t) = v(t),

v̇(t) = u(t), (4)

where u ∈ [umin, umax] is the longitudinal acceleration. The
lateral acceleration is given by al(t) = v2(t)κ(t) and should
stay bounded: al ∈ [−al,max, al,max].

C. Quintic Bézier Curves

We briefly introduce quintic Bézier curves because of
their importance hereafter. A quintic Bézier curve on a 2-
D Cartesian plane is defined in parametric form as

B(τ) =

5∑
i=0

(
5

i

)
(1− τ)5−iτ ibi, τ ∈ [0, 1], (5)

where b{0...5} are six control points. The curve satisfies the
following properties

1) End Point Interpolation:

B(0) = b0, B(1) = b5. (6)

2) Tangent at End Points:

B′(0) = 5(b1 − b0), B′(1) = 5(b4 − b5). (7)

3) Second Derivative at End Points:

B′′(0) = 20(b2 + b0 − 2b1), B′′(1) = 20(b3 + b5 − 2b4).
(8)

4) Curvature:

k(τ) =
|B′(τ)×B′′(τ)|
||B′(τ)||3

, τ ∈ [0, 1]. (9)

The properties above imply that b{0...5} are uniquely
defined by [B(0), B(1), B′(0), B′(1), B′′(0), B′′(1)].

III. PATH PLANNER

The path planner generates a curvature-continuous refer-
ence path subject to the directives of the behavior planner
and conforms to user preferences. The path planning pro-
cess has two stages: piecewise linear path generation and
quintic Bézier curve interpolation, respectively discussed in
the following. At the end of this section, we discuss the
initialization and replanning scheme for the planner.

Fig. 3: Lane-adapted grid and piece-wise linear path.

'
'

Fig. 4: Illustration of the interpolation process using quintic Bézier
curves. The blue line is the first computed piecewise linear path. The
red dashed line is the smoothed path using quintic Bézier curves.

A. Piecewise Linear Path Generation

We adopt a classic technique to lay out a lane-adapted
grid [2], with N longitudinal layers separated by an interval
∆s and K lateral samples with an interval ∆l for each layer
(see Fig. 3). A piece-wise linear path can then be constructed
by connecting sample points in a forward manner. Let pi
denote a sample point at layer Li. Let li be the lateral
deviation of pi from the centerline. Edge ei connects a point
pi at layer Li to a point pi+1 at layer Li+1. We adopt
the dynamic programming technique to decide the optimal
piecewise linear path. Different cost functions are defined
for different actions. The optimal piecewise linear path
represented by waypoints {p∗i+1} is said to be optimal for
the lane-keeping action such that:

{p∗i } = arg min
{pi∈Li}

N−1∑
i=0

w1l
2
i + w2||ei||2 + cobs(ei) (10)

where l2i penalizes lateral deviation; ||ei||2 penalizes long
edges; cobs(ei) equals to zero if edge ei does not intersect
with any obstacle (and the sweep volume of the obstacle)
and equals to infinity otherwise. The parameters w1 and w2

can be adapted according to user preferences.
A different optimal criteria can be defined for the lane

change action:

{p∗i } = arg min
{pi∈Li}

N−1∑
i=0

w1

(
li+1 − li

∆tp

)2

+ w2l
2
i + cobs(ei)

(11)
subject to

li+1 + li−1 − 2li
∆t2p

< ulat (12)

The term
(
li+1−li

∆tp

)2

penalizes the lateral speed with ∆tp
as the estimated time to traverse one layer. The constraint
given by (12) is used to limit the lateral acceleration. Other
terms are similar to the lane-keeping scenario.

Note that the programming problem is of polynomial
complexity O(NK2), thus it can be solved in real-time. The
proposed formulation is quite flexible: by using different



optimization criteria, we can generate different forms of
paths suitable for different actions.

B. Interpolation and Optimization using Quintic Bézier
Curves

The piecewise linear path cannot be followed by au-
tonomous vehicle. From Section II-B we see that curvature
continuity (C2 continuity for the curve) is the minimal re-
quirement for a feasible path. We adopt quintic Bézier curves
to achieve this goal. The approach is modified from [5]
to consider a different cost function and more path tuning
parameters. We also use a different optimization method.

We consider an arbitrary intermediate layer Li. Let Bi−1

and Bi be two quintic Bézier curves joining at point wi at
layer Li. Let ti and ai be the tangent and second derivative
vectors at wi. In order to have C2 continuity, we need (see
Fig. 4)

wi = Bi−1(1) = Bi(0)

ti = B′i−1(1) = B′i(0)

ai = B′′i−1(1) = B′′i (0)

(13)

The point wi is determined by laterally shifting the optimal
waypoint p∗i obtained from the previous section with a small
free parameter αi, such that

wi = p∗i + αi[
sin θi
cos θi

], (14)

where θi is the angle of the corresponding centerline.
The tangent ti is obtained by manipulating an initial guess

t̄i as following:
ti = βiR(γi)̄ti. (15)

The initial guess t̄i uses a widely accepted heuristic that
sets the tangent perpendicular to the angular bisector of the
neighboring line segments, such that t̄i =

e′i−1

||e′i−1||
+

e′i
||e′i||

,
where e′i = −−−−→wi−1wi is the line segment connecting two way-
points. Note that e′i is different from ei. The free parameter
βi adjusts the magnitude of the tangent. The term R(γi)
rotates the tangent with a small parameter γi.

Given wi and ti for all i ∈ 0, ..., N − 1, Piecewise
cubic Bézier curves are fully determined but with only C1

continuity at join points. As the curvature of cubic Bézier
curve is in general small [5], we adopt the same heuristics as
in [5] to set the second derivatives of quintic Bézier curves
at a join point as a weighted mean of second derivatives
of the corresponding cubic Bézier curves at this point. The
interpolation process is illustrated in Fig. 4.

For the last layer LN−1, the end point tangent is set
as tN−1 = βN−1R(γN−1)̄tN−1, where t̄N−1 =

e′N−2

||e′N−2||
.

aN−1 is simply set as the the second derivatives of the
corresponding cubic Bézier curve at this point.

With the formulation above, the path constructed from
Bézier curve is controlled by 3(N − 1) free parameters
{αi, βi, γi}i={1,...,N−1} to be optimized. The goal of op-
timization is to minimize the mean square curvature of the
entire path given as

min
1

sf

∫ sf

0

(|κ(s)|2 + cobs(s))ds (16)

Fig. 5: Replanning scheme with C2 continuity.

where sf is the total length of the path and the term cobs(s)
avoids the optimized path to intersect with the obstacles.

Note that the curvature κ(s) does not have an analytic
form. Therefore the cost is computed using the forward
Euler method. Parameters are then optimized through Sub-
plex [17]. Subplex is a subspace-searching simplex method
that requires no derivatives. It is well suited for noisy
objective functions, thus is robust against errors caused
by numerical integration of |κ(s)|2. The time complexity
of Subplex is linear to the number of parameters to be
optimized. Another specificity of Subplex is that the cost
is at least non-increasing through iterations. Hence we can
run the optimization in a best-effort basis. We fix a constant
maximal execution time for the algorithm. The algorithm
returns the best result so far once the time is expired.

C. Initialization and Replanning

Once the autonomous mode is activated, the current vehi-
cle state X(0) = (( x0

y0 ) , v0, φ0, k0) is used as the initializa-
tion parameter for the motion planner. The starting point for
the path planner is set as p∗0 = w0 = ( x0

y0 ). The tangent of
the starting point is set as the vehicle heading multiplied by
a parameter d1 representing the magnitude of the tangent:
t0 = d1

(
cos(φ0)
sin(φ0)

)
. In this paper we use a heuristic to select

d1 as half the length of e′0 (d1 =
||e′0||

2 ), the first piece of
the piecewise linear path. An alternative is to consider d1 as
a free parameter in the optimization process mentioned in
Section III-B. After deciding the starting point and starting
tangent, we still need to fix the starting second derivative a0.
In order to simplify mathematical derivation, we first rotate
the coordinate system to transform t0 to t̃0 =

(
d1
0

)
such that

t̃0 = R(−φ0)t0. Note that the trajectory is not affected as
Bézier curve is invariant to affine transformation. Then from
(9) we have k0 = t̃0×ã0

|̃t0|3
. We represent ã0 in polar coordinate

form such that ã0 = d2

(
cos(φa)
sin(φa)

)
,we then obtain

sin(φa) =
k0d

2
1

d2
,

cos(φa) =

√
1− sin2(φa).

(17)

The unknown parameter d2 represents the magnitude of
the second derivative vector. It is heuristically set to be iden-
tical to d1. The starting second derivative is then obtained by
rotating back the coordinate system such that a0 = R(φ0)ã0.
As the vehicle moves forward, the perception system obtains
new information that renders the current path obsolete. Hence
the path needs to be replanned in a continuous way. In Fig. 5,
the path of the last iteration is displayed in black while the
new path is displayed in red. Let p(t0 + hp) be the current
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Fig. 6: (a) Obstacle following. (b)Intersection.

vehicle position such that hp is the replanning interval. Let
pr be the closest point to the vehicle on the reference path. If
||p(t0 +hp)−pr|| is less than a threshold value dthresh, we
consider the vehicle is closely tracking the reference path.
The replanning process then starts from pr, the tangent and
second derivative vectors at this point are readily available
by differentiating the path at pr. Such method ensures the C2

continuity of the path during replanning. On the other hand,
if ||p(t0 +hp)−pr|| is larger than a threshold value dthresh,
we consider that the vehicle fails to track the reference path
due to some reason, the path planner is then re-initialized
using the updated vehicle state X(t0 + hp).

IV. VELOCITY PLANNER

With the reference path as input, this section presents the
generation of velocity profile using MPC.

A. Safe Handling of Dynamic Obstacles

The dynamics of ego vehicle is described by (4). Let tm be
the internal time of the MPC controller of the ego vehicle, a
dynamic obstacle o on the road is described as a point mass
evolving along its path, maintaining constant velocity vo in
the look-forward horizon of MPC. Therefore

so(tm) = votm (18)

where so is the curvilinear abscissa of the obstacle along its
path.

We consider two scenarios:
1) Obstacle following: If the perception system detects

an obstacle and the behavior planner decides to stay behind
the obstacle, we consider it as an obstacle following case:
see Fig. 6 (a). We require the vehicle to remain brake-safe
against the obstacle in front, that is: the ego vehicle should be
able to maximally brake to avoid colliding on the obstacle,
if the obstacle performs an emergency brake. The equation
reads:

s0 + s(tm) +
v2(tm)

2|umin|
< so(tm) +

v2
o(tm)

2|ao,min|
+ smin (19)

such that s0 is the initial distance, ao,min is the estimated
maximal deceleration (minimal acceleration) of the obstacle
and smin be the minimal safe distance.

2) Intersection: If the predicted path of the dynamic
obstacles crosses the reference path of the ego vehicle, we
consider it as an intersection scenario: see Fig. 6 (b). Let
[L,H]× [Lo, Ho] be the collision region in the ego vehicle
centered frame, such that only one vehicle (obstacle) is
allowed to be in the region for any given time. We note that
the ego vehicle has two choices, either to cross the region

before the dynamic obstacle does, or after it. This actually
implies the existence of homotopy classes of trajectories in
on-road motion planning, as discussed in [18], [19]. We
assume that the behavior planner decides the right-of-way of
the ego vehicle. If the ego vehicle does not have the right-
of-way, we enforce the brake-safe constraint:

s(tm) +
v2(tm)

2|umin|
− L < 0, if so(tm) < Ho, (20)

On the other hand, if the ego vehicle has the right-of-way
to cross first, then the ego vehicle should ensure the brake-
safe property (see [18]) of the dynamic obstacle against the
ego vehicle. The constraint read:

s(tm)−H > 0 if s(tm) +
v2
o(tm)

2|ao,min|
> Lo, (21)

B. MPC Formulation

Next we show how the velocity profile generation problem
can be formulated as an MPC problem. Let ξ = (s, v)′ be
the vehicle state. The vehicle model is discretized with an
interval hv such that

ξ[k + 1] = fd(ξ[k], u[k]), (22)

where the index k represents MPC internal time tm = khv .
Let ξ = [ξ[0], ..., ξ[H]], u = [u[0], ..., u[H]] respectively

denote the vector of states and inputs, where H is the pre-
diction horizon. The MPC problem can then be formulated
as a constrained optimization problem:

min
u
J (ξ,u), (23)

subject to

ξ[0] = (s0, v0)′, (24)

ξ[k] ∈ R+ × [0, vmax], u[k] ∈ [umin, umax], k = 0, ...,H,
(25)

ξ[k + 1] = fd(ξ[k], u[k]), k = 0, ...,H − 1, (26)

∀oi ∈ O, d(s[k], soi [k]) < 0, k = 0, ...,H, (27)

v2[k]κ[k]− al,max < 0, k = 0, ...,H. (28)

The cost function J (ξ,u) varies with regards to current
motion goal. A cost function for free driving is given as

J (ξ,u) =

H∑
k=0

c1(vtarget − v[k])2 + c2u[k]2 (29)

such that the vehicle tracks a target speed. Additional terms
(fuel consumption, jerk, etc.) can also be integrated into the
cost functional.

The cost function can also be configured to handle coop-
erative platoon driving. A constant time headway policy for
platoon driving can be expressed through the following cost
function

J (ξ,u) =

H∑
k=0

c1(s[k]+v[k]tdes−sprev[k])2+c2u[k]2, (30)



TABLE I: Parameters for path generation experiments

∆s (m) ∆l (m) N K w1 w2

lane keeping 10 0.15 10 41 0.5 1
lane change 10 0.3 10 41 0.5 1

where sprev[k] is the predicted position of the previous car
at time step k and tdes is the desired time gap.

The safety constraints are written compactly in (27). In
practice, they will be written as soft constraints to allow
slight constraint violations in exchange of optimization fea-
sibility. The safety condition should hold against all vehicles
that have right-of-ways, i.e., ∀oi ∈ O. The constraints (28)
limit the lateral acceleration of the ego vehicle.

The velocity profile can then be extracted from the optimal
state vector ξ∗. The reference trajectory is then fed to the
low level controller for tracking.

V. EXPERIMENTAL RESULTS

The first set of tests focuses on the path planner. We test its
capability of generating smooth trajectories for lane keeping
and lane change scenarios. The second set of tests aims at
verifying the on-road driving capability of the motion plan-
ner. Scenarios of lane keeping and intersection are examined.
The last experiment tests the cooperative capability of the
framework using platooning as an example. Execution time
information is provided to verify the real-time ability. Ex-
periments are conducted in a high-fidelity robotic simulator
Webots [20] installed on a laptop with Core i5-4200M CPU
and 8 GB RAM. The simulated vehicle model captures real
vehicle dynamics such as steering dynamic response and
friction of the tires. Algorithms are written in C++. For
optimization algorithms, we use the Subplex and SLSQP
solver available in the open-source nlopt package [21]. The
video for the on-road driving experiments is provided as
supplementary material.

A. Path Generation

In Fig. 7a, we present a challenging lane keeping scenario
in which three obstacles (red color) are distributed along
the lane. Waypoints that representing the optimal piecewise
linear path are labeled by blue ”x”, while paths before and
after optimization are respectively labeled by red and green
color. We observe that paths successfully avoid all obstacles.
In Fig. 7b, we observe that the curvature after optimization
is smoother. Same analysis can also be applied to the lane
change scenarios in Fig. 7c and Fig. 7d. Note that different
cost functions are used in two scenarios. Parameters for the
experiments are available in Table I.

B. On-road Driving capability

We demonstrate the capability of our framework in han-
dling various driving scenarios. The path planning param-
eters of the following tests are identical to the first row of
Table I. The sampling time for the velocity planner is selected
as hv = 0.32s.
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Fig. 7: Path planning for lane keeping and lane change scenarios

1) Lane Driving with Static Obstacles (LD): We first test
the basic lane keeping capability of the proposed framework.
The lane is composed by a straight segment and a curvy
segment. Three obstacles are distributed along the lane (see
Fig 8a). We adopt the cost function (29) for velocity
planning with c1 = 1 and c2 = 5. From Fig 8a, we observe
that the reference path is continuous and obstacle-free. The
speed profile in Fig 8b shows that the vehicle slows down
in advance before entering the curvy segment, thanks to the
predictive ability of MPC.

2) Intersection Crossing with Emergency Brake of the
Dynamic Obstacle (IC): We consider the case that the ego
vehicle confronts another vehicle with right-of-way at an
intersection. The initial distances of two vehicles to the
intersection are identical. We examine the response of the
ego vehicle when the dynamic obstacle unexpectedly brakes.
We adopt the cost function (29) for velocity planning with
c1 = 1, and c2 = 5. From Fig. 9, we observe that the
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Fig. 9: Vehicle 0 has priority while vehicle 1 does not. Vehicle 0
performs an emergency brake from 11s to 13s. (a) Speed profiles of
two vehicles. (b) Station of two vehicles. t0 and t1 are respectively
two intervals that two vehicles are in the intersection. We note that
two intervals do not overlap.

ego vehicle also brakes to avoid colliding on the dynamic
obstacles and no collision occurs.

C. Cooperative Platoon Driving (PC)

Vehicle platoon can be formed thanks to the flexibility
of our framework. We simulate the platoon driving of three
vehicles in a straight lane segment. The velocity profile of the
leader vehicle is prefixed to have a perturbation between 9s
and 28s. We adopt the cost function from (30) for velocity
planning with c1 = 1 and c2 = 5. The desired time gap
is 0.5s. Fig. 10a shows the speeds of three vehicles as a
function of time. Fig. 10b shows the gap deviations from the
desired gap. We observe that the gap deviation recovers to
zero after the perturbation. The simulation confirms that our
framework is able to handle platoon driving.

One highlight of the proposed framework is its efficiency.
The dynamic programming part takes around 30ms and the
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a perturbation to the leader between 9s and 28s to observe the
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TABLE II: Execution time statistics for the velocity planner
in different driving scenarios. LD–Lane Keeping Scenario. IC–
Intersection Scenario. PC1–First follower in platooning scenario.
PC2–Second follower in platooning scenario.

LD IC PC1 PC2
Average (ms) 0.81 4.71 2.34 2.31
Max (ms) 4.13 7.68 9.61 10.99
Min (ms) 0.25 2.01 0.51 0.52
Standard Deviation (ms) 0.56 1.12 1.05 1.28

optimization algorithm for path planning is running in a best-
effort basis with 25ms as the maximal execution time. The
MPC problem for velocity planning is solved in millisecond
scale. Table II summarizes the execution time statistics of the
velocity planner for the different on-road driving test cases
that we have performed on the above. The execution time is
significantly less than the re-planning interval hp = 200ms.

VI. CONCLUSIONS

In this paper, we presented a novel motion planning
framework for on-road autonomous driving in response to
the requirements of flexibility, cooperative-awareness and ef-
ficiency. We adopted a two-step approach to split the motion
planner into a path planner and a velocity planner. The path
planner generates a curvature-continuous path using dynamic
programming and quintic Bezier curve interpolation, while
the velocity planner uses MPC to parameterize the path with
an optimal velocity profile.

In order to better demonstrate the capabilities of our
framework, we are planning to implement our framework
on a real vehicles. We plan to use different platforms of
the EU project AutoNet2030, which consist of automated
cars, automated trucks and manually driven cars. We will
also consider more complex traffic scenarios. Lastly, we want
to benchmark our framework against other motion planning
algorithms.
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