Improving Robustness of Monocular Urban Localization using Augmented Street View

Abstract : — With the fast development of Geographic Information Systems, visual global localization has gained a lot of attention due to the low price of a camera and the practical implications. In this paper, we leverage Google Street View and a monocular camera to develop a refined and continuous positioning in urban environments: namely a topological visual place recognition and then a 6 DoF pose estimation by local bundle adjustment. In order to avoid discrete localization problems, augmented Street View data are virtually synthesized to render a smooth and metric localization. We also demonstrate that this approach significantly improves the sub-meter accuracy and the robustness to important viewpoint changes, illumination and occlusion.
Type de document :
Communication dans un congrès
19th IEEE International Conference on Intelligent Transportation Systems (ITSC'2016), Nov 2016, Rio de Janeiro, Brazil. 2014, Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01425632
Contributeur : Fabien Moutarde <>
Soumis le : mardi 3 janvier 2017 - 16:54:21
Dernière modification le : lundi 12 novembre 2018 - 10:54:22
Document(s) archivé(s) le : mardi 4 avril 2017 - 14:45:47

Fichier

monocularLocalization-augmente...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01425632, version 1

Collections

Citation

Li Yu, Cyril Joly, Guillaume Bresson, Fabien Moutarde. Improving Robustness of Monocular Urban Localization using Augmented Street View. 19th IEEE International Conference on Intelligent Transportation Systems (ITSC'2016), Nov 2016, Rio de Janeiro, Brazil. 2014, Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on. 〈hal-01425632〉

Partager

Métriques

Consultations de la notice

151

Téléchargements de fichiers

287