R. Bastien, T. Bohr, B. Moulia, and S. Douady, Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants, Proc. Natl Acad. Sci. USA, pp.755-60, 2013.
DOI : 10.1073/pnas.0306308101

URL : https://hal.archives-ouvertes.fr/hal-00964714

R. D. Firn and J. Digby, The Establishment of Tropic Curvatures in Plants, Annual Review of Plant Physiology, vol.31, issue.1, pp.131-179, 1980.
DOI : 10.1146/annurev.pp.31.060180.001023

C. W. Whippo and R. Hangarter, The "sensational" power of movement in plants: A Darwinian system for studying the evolution of behavior, American Journal of Botany, vol.96, issue.12, pp.2115-2142, 2009.
DOI : 10.3732/ajb.0900220

B. Moulia and M. Fournier, The power and control of gravitropic movements in plants: a biomechanical and systems biology view, Journal of Experimental Botany, vol.60, issue.2, pp.461-86, 2009.
DOI : 10.1093/jxb/ern341

URL : https://hal.archives-ouvertes.fr/hal-00964501

M. Morita, Directional Gravity Sensing in Gravitropism, Annual Review of Plant Biology, vol.61, issue.1, pp.705-725, 2010.
DOI : 10.1146/annurev.arplant.043008.092042

G. Perbal, La perception geotropique dans la coiffe des racines de Lentille, Physiologia Plantarum, vol.102, issue.1, pp.42-50, 1976.
DOI : 10.1146/annurev.pp.17.060166.002115

G. Perbal, B. Jeune, A. Lefranc, E. Carnero-diaz, and . Driss-ecole, The dose-response curve of the gravitropic reaction: a re-analysis, Physiologia Plantarum, vol.92, issue.3, pp.336-378, 2002.
DOI : 10.1006/jtbi.1996.0259

H. Fukaki, J. Wysocka-diller, T. Kato, H. Fujisawa, P. Benfey et al., Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana Plant J, pp.425-455, 1998.

E. B. Blancaflor, J. M. Fasano, and S. Gilroy, Mapping the Functional Roles of Cap Cells in the Response of Arabidopsis Primary Roots to Gravity, Plant Physiology, vol.116, issue.1, pp.213-235, 1998.
DOI : 10.1104/pp.116.1.213

S. Gerttula, M. Zinkgraf, G. Muday, D. Lewis, F. M. Ibatullin et al., Transcriptional and hormonal regulation of gravitropism of woody stems in populus, Plant Cell, vol.27, pp.2800-2813

S. Vanneste and J. Friml, Auxin: A Trigger for Change in Plant Development, Cell, vol.136, issue.6, pp.1005-1021, 2009.
DOI : 10.1016/j.cell.2009.03.001

B. Nèmec, Uber die art der wahrnehmung des schwerkraftreizes bei den pflanzen Dtsch, Bot. Ges. XVIII S, pp.241-246, 1900.

G. Haberlandt, Uber die perzeption des geotropischen reizes, Ber. Dtsch. Bot. Ges, vol.18, pp.26-72, 1900.

B. Pickard and K. Thimann, Geotropic Response of Wheat Coleoptiles in Absence of Amyloplast Starch, The Journal of General Physiology, vol.49, issue.5, pp.1065-86, 1966.
DOI : 10.1085/jgp.49.5.1065

J. Z. Kiss, R. Hertel, and F. Sack, Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana, Planta, vol.9, issue.2, pp.198-206, 1989.
DOI : 10.1007/BF00392808

K. J. Fitzelle and J. Kiss, Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity, Journal of Experimental Botany, vol.52, issue.355, pp.265-75, 2001.
DOI : 10.1093/jexbot/52.355.265

O. A. Kuznetsov and K. Hasenstein, Magnetophoretic induction of curvature in coleoptiles and hypocotyls, Journal of Experimental Botany, vol.48, issue.11, pp.1951-1958, 1997.
DOI : 10.1093/jxb/48.11.1951

K. H. Hasenstein, O. Kuznetsov, M. Toyota, N. Ikeda, S. Sawai-toyota et al., Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope Plant J, pp.648-60, 1999.

J. Shen-miller, Reciprocity in the activation of geotropism in oat coleoptiles grown on clinostats, Planta, vol.43, issue.2, pp.152-63, 1970.
DOI : 10.1007/BF00385208

P. Barlow, Gravity perception in plants: a multiplicity of systems derived by evolution? Pant Cell Environ, pp.951-62, 1995.

F. Darwin, The Statolith Theory of Geotropism, Nature, vol.67, issue.1746, pp.571-573, 1903.
DOI : 10.1038/067571a0

G. Leitz, B. H. Kang, M. E. Schoenwaelder, and L. A. Staehelin, Statolith Sedimentation Kinetics and Force Transduction to the Cortical Endoplasmic Reticulum in Gravity-Sensing Arabidopsis Columella Cells, THE PLANT CELL ONLINE, vol.21, issue.3, pp.843-60, 2009.
DOI : 10.1105/tpc.108.065052

K. Hasenstein, Plant responses to gravity?insights and extrapolations from ground studies Gravit, Space Res, vol.22, p.2133, 2009.

A. K. Strohm, G. A. Barrett-wilt, and P. Masson, 2014 A functional TOC complex contributes to gravity signal transduction in Arabidopsis Frontiers Plant Sci, p.148

Z. K. John, M. G. Mary, J. Allison, and S. Kathi, Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis Plant Cell Physiol, pp.518-543, 1997.

J. Fasano, Changes in Root Cap pH Are Required for the Gravity Response of the Arabidopsis Root, THE PLANT CELL ONLINE, vol.13, issue.4, pp.907-929, 2001.
DOI : 10.1105/tpc.13.4.907

J. H. Joo, Y. Bae, and J. Lee, Role of Auxin-Induced Reactive Oxygen Species in Root Gravitropism, PLANT PHYSIOLOGY, vol.126, issue.3, pp.1055-60, 2001.
DOI : 10.1104/pp.126.3.1055

M. Toyota, T. Furuichi, H. Tatsumi, and M. Sokabe, Cytoplasmic Calcium Increases in Response to Changes in the Gravity Vector in Hypocotyls and Petioles of Arabidopsis Seedlings, PLANT PHYSIOLOGY, vol.146, issue.2, pp.505-519, 2008.
DOI : 10.1104/pp.107.106450

Y. S. Kolesnikov, S. V. Kretynin, I. D. Volotovsky, E. L. Kordyum, E. Ruelland et al., Molecular mechanisms of gravity perception and signal transduction in plants, Protoplasma, vol.8, issue.4, pp.987-1004, 2015.
DOI : 10.1016/j.molp.2014.12.021

L. Band, Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism, Proc. Natl Acad. Sci. USA, pp.4668-73, 2012.
DOI : 10.1105/tpc.111.088047

URL : https://hal.archives-ouvertes.fr/cea-00848570

J. Petrá?ek, PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux, Science, vol.312, issue.5775, pp.914-922, 2006.
DOI : 10.1126/science.1123542

J. Wi?niewska, J. Xu, D. Seifertová, P. B. Brewer, K. Ru?i?ka et al., Polar PIN Localization Directs Auxin Flow in Plants, Science, vol.312, issue.5775, pp.883-886, 2006.
DOI : 10.1126/science.1121356

J. Friml, J. Wi?niewska, E. Benková, K. Mendgen, and K. Palme, Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis Nature, pp.806-815, 2002.

H. Rakusová, J. Gallego-bartolomé, M. Vanstraelen, H. S. Robert, D. Alabadí et al., Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana, The Plant Journal, vol.107, issue.5, pp.817-843, 2011.
DOI : 10.1111/j.1365-313X.2011.04636.x

M. Iino, Y. Tarui, and C. Uematsu, Gravitropism of maize and rice coleoptiles: dependence on the stimulation angle, Plant, Cell and Environment, vol.2, issue.10, pp.1160-1168, 1996.
DOI : 10.1006/anbo.1995.1021

P. Galland, Tropisms of Avena coleoptiles: sine law for gravitropism, exponential law for photogravitropic equilibrium, Planta, vol.215, issue.5, pp.779-84, 2002.
DOI : 10.1007/s00425-002-0813-6

A. H. Brown, D. K. Chapman, A. Johnsson, and D. Heathcote, Gravitropic responses of the Avena coleoptile in space and on clinostats. I. Gravitropic response thresholds, Physiologia Plantarum, vol.43, issue.1, pp.27-33, 1995.
DOI : 10.1007/BF00385208

H. Chauvet, O. Pouliquen, and Y. Forterre, Legué V and Moulia B 2016 Inclination not force is sensed by plants during shoot gravitropism Sci, p.35431
DOI : 10.1038/srep35431

URL : http://doi.org/10.1038/srep35431

M. Tanimoto, R. Tremblay, and J. Colasanti, Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels, Plant Molecular Biology, vol.13, issue.1-2, pp.57-69, 2008.
DOI : 10.1007/s11103-008-9301-0

A. B. Myers, G. H. Glyn, J. Digby, and R. Firn, The Effect of Displacement Angle on the Gravitropic and Autotropic Growth Responses of Sunflower Hypocotyls, Annals of Botany, vol.75, issue.3, pp.277-80, 1995.
DOI : 10.1006/anbo.1995.1021

O. Hamant and B. Moulia, How do plants read their own shapes? New Phytol, pp.333-340, 2016.
DOI : 10.1111/nph.14143

R. Bastien, S. Douady, and B. Moulia, A unifying modeling of plant shoot gravitropism with an explicit account of the effects of growth Frontiers Plant Sci, p.136, 2014.

A. W. Galston and M. Hand, Studies on the Physiology of Light Action. I. Auxin and the Light Inhibition of Growth, American Journal of Botany, vol.36, issue.1, pp.85-94, 1949.
DOI : 10.2307/2438126

W. Silk, Quantitative Descriptions of Development, Annual Review of Plant Physiology, vol.35, issue.1, pp.479-518, 1984.
DOI : 10.1146/annurev.pp.35.060184.002403

R. Bastien, D. Legland, M. Martin, L. Fregosi, A. Peaucelle et al., KymoRod: a method for automated kinematic analysis of rod-shaped plant organs, The Plant Journal, vol.103, issue.3, pp.468-75, 2016.
DOI : 10.1111/tpj.13255

URL : https://hal.archives-ouvertes.fr/hal-01417736

F. D. Sack, M. M. Suyemoto, and A. Leopold, Amyloplast Sedimentation and Organelle Saltation in Living Corn Columella Cells, American Journal of Botany, vol.73, issue.12, pp.1692-1700, 1986.
DOI : 10.2307/2444235

C. Saito, M. T. Morita, T. Kato, and M. Tasaka, Amyloplasts and Vacuolar Membrane Dynamics in the Living Graviperceptive Cell of the Arabidopsis Inflorescence Stem, THE PLANT CELL ONLINE, vol.17, issue.2, pp.548-58, 2005.
DOI : 10.1105/tpc.104.026138

M. Nakamura, M. Toyota, M. Tasaka, and M. Morita, E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing, The Plant Cell, vol.23, issue.5, pp.1830-1878, 2011.
DOI : 10.1105/tpc.110.079442

Z. Zheng, J. Zou, H. Li, S. Xue, Y. Wang et al., Microrheological Insights into the Dynamics of Amyloplasts in Root Gravity-Sensing Cells, Molecular Plant, vol.8, issue.4, pp.660-663, 2015.
DOI : 10.1016/j.molp.2014.12.021

E. Blancaflor, Regulation of plant gravity sensing and signaling by the actin cytoskeleton, American Journal of Botany, vol.100, issue.1, pp.143-52, 2013.
DOI : 10.3732/ajb.1200283

K. Yamamoto and J. Kiss, Disruption of the Actin Cytoskeleton Results in the Promotion of Gravitropism in Inflorescence Stems and Hypocotyls of Arabidopsis, PLANT PHYSIOLOGY, vol.128, issue.2, pp.669-81, 2002.
DOI : 10.1104/pp.010804

G. Hou, V. L. Kramer, Y. S. Wang, R. Chen, G. Perbal et al., roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient, The Plant Journal, vol.125, issue.1, pp.113-138, 2004.
DOI : 10.1111/j.1365-313X.2004.02114.x

S. Mancuso, P. W. Barlow, D. Volkmann, and F. Baluka, Actin turnover-mediated gravity response in maize root apices Plant Signaling Behav, pp.52-60, 2006.
DOI : 10.4161/psb.1.2.2432

H. Friedman, J. W. Vos, P. K. Hepler, S. Meir, A. Halevy et al., The role of actin filaments in the gravitropic response of snapdragon flowering shoots, Planta, vol.216, pp.1034-1076, 2003.

S. Dharmasiri, AXR4 Is Required for Localization of the Auxin Influx Facilitator AUX1, Science, vol.312, issue.5777, pp.1218-1238, 2006.
DOI : 10.1126/science.1122847

D. Volkmann and M. Tewinkel, Gravisensitivity of cress roots, Advances in Space Research, vol.21, issue.8-9, pp.1209-1226, 1998.
DOI : 10.1016/S0273-1177(97)00637-6

R. Laurinavicius and D. Svegzdiene, Determination of the threshold acceleration for the gravitropic stimulation of cress roots and hypocotyls, Advances in Space Research, vol.21, issue.8-9, pp.1203-1210
DOI : 10.1016/S0273-1177(97)00636-4

D. Driss-ecole, V. Legué, E. Carnero-diaz, and G. Perbal, Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the national Space Station Physiol. Plant, pp.191-201, 2008.

S. Vitha, M. Yang, F. Sack, and J. Kiss, Gravitropism in the starch excess mutant of Arabidopsis thaliana, American Journal of Botany, vol.94, issue.4, pp.590-598, 2007.
DOI : 10.3732/ajb.94.4.590