
HAL Id: hal-01425541
https://hal.science/hal-01425541

Submitted on 6 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distribution of the Habitat Suitability of the Main
Malaria Vector in French Guiana Using Maximum

Entropy Modeling
Yi Moua, Emmanuel Roux, Romain Girod, Isabelle Dusfour, Benoit de

Thoisy, F. Seyler, Sébastien Briolant

To cite this version:
Yi Moua, Emmanuel Roux, Romain Girod, Isabelle Dusfour, Benoit de Thoisy, et al.. Distribution
of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy
Modeling. Journal of Medical Entomology, 2016, �10.1093/jme/tjw199�. �hal-01425541�

https://hal.science/hal-01425541
https://hal.archives-ouvertes.fr


Moua et al. The habitat suitability of An. darlingi in French Guiana 

1 

 

Journal of Medical Entomology 

Distribution of the habitat suitability of the main malaria vector in French Guiana using 

Maximum Entropy modeling 

Yi Moua
1
, Emmanuel Roux

2
, Romain Girod

3
, Isabelle Dusfour

3
, Benoit de Thoisy

4
, Frédérique 

Seyler
2
, Sébastien Briolant

3, 5, 6, 7 

1
 Université de Guyane, ESPACE-DEV, UMR 228 (IRD, UM, UR, UA, UG), Cayenne, French 

Guiana
 

2
 Institut de Recherche pour le Développement, ESPACE-DEV, UMR 228 (IRD, UM, UR, UA, 

UG), Montpellier, France
 

3 
Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana

 

4 
Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana

 

5 
Direction Interarmées du Service de Santé en Guyane, Cayenne, French Guiana

 

6 
Institut de Recherche Biomédicales des Armées, Unité de Parasitologie et d’Entomologie 

Médicale, Marseille, France
 

7
 Unité de Recherche en Maladies Infectieuses Tropicales Emergentes, UMR 63, CNRS 7278, IRD 

198, INSERM 1095, Faculté de Médecine La Timone, Marseille, France



Moua et al. The habitat suitability of An. darlingi in French Guiana 

2 

 

 Abstract 1 

Malaria is an important health issue in French Guiana. Its principal mosquito vector in this region is 2 

Anopheles darlingi. Knowledge of the spatial distribution of this species is still very incomplete due 3 

to the extent of French Guiana and the difficulty to access most of the territory. 4 

Species Distribution Modeling based on the maximal entropy procedure was used to predict the 5 

spatial distribution of An. darlingi using 39 presence sites.  6 

The resulting model provided significantly high prediction performances (mean 10-fold cross-7 

validated partial AUC and continuous Boyce index equal to, respectively, 1.11 – with a level of 8 

omission error of 20 % – and 0.42). The model also provided a habitat suitability map and 9 

environmental response curves in accordance with the known entomological situation. 10 

Several environmental characteristics that had a positive correlation with the presence of An. 11 

darlingi were highlighted: non-permanent anthropogenic changes of the natural environment; the 12 

presence of roads and tracks; opening of the forest. Some geomorphological landforms and high 13 

altitude landscapes appear to be unsuitable for An. darlingi.  14 

The Species Distribution Modeling was able to reliably predict the distribution of suitable habitats 15 

for An. darlingi in French Guiana. Results allowed completion of the knowledge of the spatial 16 

distribution of the principal malaria vector in this Amazonian region, and identification of the main 17 

factors that favor its presence. They should contribute to the definition of a necessary targeted 18 

vector control strategy in a malaria pre-elimination stage, and allow extrapolation of the acquired 19 

knowledge to other Amazonian or malaria-endemic contexts. 20 

Keywords: Maxent, species distribution model, presence-only, Anopheles darlingi, sampling bias21 



Moua et al. The habitat suitability of An. darlingi in French Guiana 

3 

 

Malaria is a public health issue in the Amazonian region, with major transmission foci depending on 22 

specific local characteristics associated with changing environmental and socio-demographic 23 

contexts. French Guiana is a French overseas territory with ~260,000 inhabitants. It remains one of 24 

the major malaria foci in the region, despite an improving epidemiological situation during the past 25 

ten years. The number of reported clinical cases has significantly dropped from 4,479 in 2005 to 26 

434 in 2015 (Petit-Sinturel et al. 2016), and now corresponds to an incidence rate of two cases for 27 

1,000 inhabitants for the whole territory, making it possible to target the pre-elimination of the 28 

disease in 2018 (Agence Régionale de Santé Guyane 2015). Plasmodium vivax is at present 29 

predominant and this species was responsible for 67% of the diagnosed cases of malaria in the 30 

territory in 2014, the others being mainly due to Plasmodium falciparum (Musset et al. 2014, 31 

Ardillon et al. 2015). However, this epidemiological situation is heterogeneous in space and time. In 32 

particular, a recrudescence of malaria cases is currently observed in the inland region (Saül, Cacao, 33 

and Régina) and eastern French Guiana (municipalities of Camopi and Saint-Georges-de-34 

l’Oyapock), with a general incidence rate reaching 55.2 cases per 1,000 inhabitants in 2013 (Musset 35 

et al. 2014), likely due to the emergence and/or persistence of local foci of high malaria 36 

transmission (Berger et al. 2012, Musset et al. 2014). This Amazonian region, especially near the 37 

international borders, includes vulnerable populations. Some are hard-to-reach and have poor access 38 

to health services and treatment-seeking behaviors that may favor the development of resistance to 39 

antimalarial drugs (Musset et al. 2014, Wangdi et al. 2015). Uncontrolled areas of malaria 40 

transmission are also prevalent in illegal gold mining areas (Pommier de Santi et al. 2016a, 41 

Pommier de Santi et al. 2016b). The epidemiological situation remains quite unstable, and pre-42 

elimination of malaria, corresponding to an incidence rate below one case for 1,000 inhabitants in 43 

any locality of French Guiana, remains a major challenge. 44 

In this context, public health authorities must maintain control efforts while targeting them more 45 

precisely and objectively in time and space (Alimi et al. 2015). A map of malaria risk in French 46 
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Guiana is updated regularly by the regional unit of the French National Public Health Agency, based 47 

on the number of cases reported per locality and the data available on movements of human 48 

populations at risk, especially due to gold mining activities. This map is validated by the local 49 

expert committee of epidemic diseases (Comité d'Experts des Maladies à Caractère Épidémique, 50 

CEMCE), which brings together different experts of the disease in the region (from the Health 51 

Surveillance Agency, the Pasteur Institute of French Guiana, the Regional Unit of the National 52 

Public Health Agency, vector control services, hospitals, and other diagnosis and care centers, and 53 

the Defense Health Service in French Guiana). The lack of objective knowledge of several key 54 

factors, especially the spatiotemporal distribution of the main malaria vectors and human 55 

populations infected by Plasmodium and/or carrying gametocytes, makes such a map highly 56 

approximate. 57 

Anopheles (Nyssorhynchus) darlingi Root (Diptera: Culicidae) is one of the most efficient malaria 58 

vectors in South America and is considered to be the primary malaria vector in French Guiana 59 

because of its anthropophilic behavior, natural infectability, high density, and sensitivity to P. 60 

falciparum (Girod et al. 2008, Hiwat et al. 2010, Fouque et al. 2010). Used entomological data 61 

collection for the entire territory, for the mapping of entomological risk indicators at the regional 62 

scale, is not feasible. French Guiana occupies a large territory (84,000 km²) which is mostly covered 63 

by rain forest (more than 80%) and highly inaccessible. Knowledge of the recent geographical 64 

distribution of An. darlingi is thus restricted to coastal areas, some villages along the international 65 

border rivers, and some illegal gold mining sites (Figure 1). 66 

Species Distribution Modeling (SDM) offers an efficient solution to geographically extrapolate such 67 

knowledge to the entire territory (Pearson et al. 2007). Species Distribution Modeling produces 68 

maps of species habitat suitability by using known presence locations of the species and relevant 69 

environmental data. The use of SDM is thus encouraged to “improve and facilitate the development 70 

of alternative vector control strategies” (Alimi et al. 2015). Numerous SDM approaches are 71 
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proposed in the literature. Some of them, such as Maximum Entropy (Maxent; Phillips et al. 2006), 72 

Genetic Algorithm for Rule-Set Prediction (GARP; Stockwell 1999), Boosted Regression Trees 73 

(BRT; Friedman et al. 2000), Generalized linear and additive models (GLM and GAM; Guisan, et 74 

al. 2002), and Multivariate adaptive regression splines (MARS; Leathwick et al. 2005), exploit only 75 

species presence information, offering a significant advantage over methods that also require 76 

absence data. Indeed, absence data are often difficult to obtain. According to Peterson (2007) and 77 

Hirzel et al. (2002), absence can result from (1) the non-detection of the species in a suitable 78 

habitat, even if it is present, (2) the actual absence of the species for historical reasons, whereas the 79 

habitat is suitable, and (3) the true absence of the species and the unsuitability of the habitat. 80 

Comparative studies (Elith et al. 2006, Tognelli et al. 2009, Pearson et al. 2007, Hernandez et al. 81 

2006, Wisz et al. 2008) show that Maxent is able to fit complex functions between habitat suitability 82 

and predictor variables, is the least sensitive to the size of the presence dataset, and tends to 83 

outperform other comparable methods when the dataset is small. 84 

In this study, the mapping of the habitat suitability of An. darlingi at the scale of all of French 85 

Guiana was performed using the Maxent SDM approach. This work aims to provide reliable maps 86 

for improving malaria transmission risk mapping in French Guiana, and to identify the 87 

environmental factors and associated mechanisms that favor the presence of An. darlingi. 88 

Materials and Methods 89 

Study area 90 

French Guiana (84,000 km²), a French overseas region located in South America, is separated from 91 

Suriname by the Maroni River and from Brazil by the Oyapock River and the Tumuc-Humac 92 

mountains. More than 80% of the territory is covered by rain forest. The country has an equatorial 93 

climate characterized by two annual dry seasons, from mid-August to mid-November and in March, 94 

and two wet seasons, from mid-April to mid-August and mid-November to February. The average 95 

annual rainfall reaches 4,000 mm and 2,000 mm in the wettest (north-east) and driest (north-west) 96 
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areas, respectively (Hammond 2005). The average monthly rainfall is >100 mm for the entire 97 

territory throughout the year, except for the three driest months: September, October, and November 98 

(Héritier, 2011). The average humidity is between 80% and 90%. The temperature is homogeneous 99 

over the entire territory throughout the year, with an average annual temperature of 26°C. The 100 

difference between the minimum and maximum daily temperature is more important than the 101 

annual variations. For example, in Maripasoula (on the border with Surinam) and Camopi (on the 102 

border with Brazil), the annual ranges of the minimum and maximum temperatures were,  4.3°C 103 

and 9.6°C (averages over the period 2001-2008), respectively, whereas the mean daily thermal 104 

amplitude was 9.8°C (average over the period 2001-2008; Météo-France, 2016). The population of 105 

~260,000 inhabitants is unequally distributed throughout the territory. Approximately 90% of the 106 

population lives in the coastal area and most of the rest lives along the Maroni and the Oyapock 107 

rivers (Amerindians and Bush-Negroes). However many people live and/or transit through inland 108 

and remote areas of the territory (forestry workers, gold miners, and soldiers). According to many 109 

studies (Berger et al. 2012, Verret et al. 2006, Queyriaux et al. 2011, Hustache et al. 2007, Stefani et 110 

al. 2011, Pommier de Santi et al. 2016a), Amerindians, gold miners, and soldiers may be highly 111 

infected by malaria, whereas the areas in which they live and/or transit are those with the poorest 112 

knowledge of the presence and density of malaria vectors. It is thus of potential interest to consider 113 

the malaria risk, study the distribution of malaria vectors, and implement prevention and control 114 

actions over the entire territory of French Guiana. 115 

Species Records 116 

Presence sites of An. darlingi were provided by surveys of the Medical Entomology Unit of the 117 

Pasteur Institute of French Guiana and the Defense Health Service in French Guiana. Culicidae 118 

collections were performed using either human landing catches or traps (light traps or odor baited 119 

traps). Human landing catches consisted of exposing collector's lower leg and collecting landing 120 

mosquito with a mouth aspirator. Collectors were members of the Pasteur Institute or Defense 121 
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Health Services, they were aware of the risks associated with the method and had given their free 122 

consent. Malaria prophylaxis was proposed and information on the medication was explained. Light 123 

trap catches were performed with Center for Disease Control and Prevention (CDC) light traps, and 124 

odor baited catches were performed with Mosquito Magnet ® traps (Woodstream Corporation, 125 

Lititz, PA) baited with Octenol, a combination considered to be the best candidate for Anopheles 126 

surveillance in the region (Vezenegho et al., 2015). 127 

Anopheles species were morphologically identified using taxonomic keys specific for the region 128 

(Floch and Abonnenc 1951, Faran and Linthicum 1981, Forattini 1962). Only Culicidae collections 129 

performed since the year 2000 were precisely geolocated by GPS coordinates and were used for the 130 

study (Figure 1). These data correspond to 74 capture sites for the family Culicidae, and to 48 131 

presence sites for the species An. darlingi. 132 

The difficulty in accessing most of the French Guiana territory, and the priority given to the areas at 133 

risk of malaria transmission where many people live, led to a significant sampling bias with 134 

oversampling of the anthropized region of the territory, notably those easily accessible by roads 135 

(Figure 1). 136 

Ecological knowledge and hypotheses 137 

The presence of An. darlingi is linked to compositional and configurational features of the land 138 

cover and land use, as they partially determine breeding, feeding, and resting sites of the vector 139 

(Stefani et al. 2013). The natural environment for this vector in the Amazonian region includes 140 

floodable savanna, swamps (Girod et al. 2011, Zeilhofer et al. 2007), and flooded forest (Rozendaal 141 

1992). Larvae are found along river edges, on flooded riverbanks, creeks, and pools formed near 142 

river-beds (Rozendaal 1992, Hiwat et al. 2010). Breeding sites are generally situated at low altitude 143 

(Mouchet 2004) and solely in freshwater, as An. darlingi is sensitive to salinity (Deane et al. 1948). 144 

Hydrological and geomorphological factors are responsible for the formation and destruction of 145 

Anopheles breeding sites (Smith et al. 2013). 146 
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Human activities, comprising deforestation and fish farming, also contribute to the creation of 147 

active breeding sites (Patz et al. 2000, Richard 1987, Stefani et al. 2013, Takken et al. 2005, 148 

Terrazas et al. 2015, Vittor et al. 2006, Vittor et al. 2009). Unpaved roads, tracks, and culverts form 149 

ideal breeding sites for An. darlingi in the Amazon region (Singer and Castro 2001). The presence 150 

of An. darlingi is also maintained by regular human presence due to its strong anthropophilic 151 

behavior. However, the presence and density of An. darlingi can either be favored or restricted 152 

depending on the type and intensity of the anthropogenic impacts. Stefani et al. (2013) 153 

systematically reviewed the literature and showed that all the studies describe the same mechanisms 154 

linking deforestation, land use, and the degree of urbanization with malaria transmission risk in the 155 

Amazonian region: opening the forest and maintaining a high degree of interaction between 156 

forested and deforested areas decreases the distance between feeding, breeding, and resting sites of 157 

An. darlingi, favoring the presence and high density of the vector (as well as a high probability of 158 

contact between humans and vectors); in contrast, intensifying deforestation and creating large 159 

urbanized and/or cultivated surfaces tends to decrease suitable habitat for An. darlingi. These two 160 

antagonistic consequences of human activities were considered in the SDM described here, by 161 

explicitly separating favorable and unfavorable factors in the environmental characterization. 162 

The optimum temperature range for An. darlingi is between 20 and 30°C with a humidity of above 163 

60% (Martens et al. 1995). Several studies established a minimal monthly rainfall threshold to 164 

designate suitable breeding habitats for Anopheles (reviewed in Smith et al. 2013). These values 165 

vary between 10 and 80 mm and need to be maintained for three or four months.  166 

Environmental Variables 167 

Environmental variables chosen as SDM inputs must characterize the ecological factors that 168 

influence the presence of An. darlingi, previously described. These factors are separated into three 169 

types: 1) natural environment features, associated with land cover, land use, and geomorphology for 170 

which the impact on the presence of An. darlingi depends on specific values or categorical classes; 171 
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2) anthropogenic activities that non-permanently alter the natural environment on a highly local 172 

scale and favor the presence of An. darlingi; 3) urbanization, corresponding to human presence and 173 

activities that permanently alter the natural environment over large areas and hinders the presence 174 

of the vector. Meteorological variables were not included in the model, because the temperature, 175 

rainfall, and humidity fall within the optimal ranges for presence of the species in French Guiana. 176 

Thus, these variables cannot significantly explain differences in the time average habitat suitability 177 

distribution over the year (this point is extensively discussed in the Discussion section). 178 

Raw Geographic Data. Variables chosen as SDM inputs were derived from the following 179 

raw geographic data: 180 

- Geomorphological landscape (GLS) and Geomorphological landforms (GLF) from the 181 

French Forest Office (ONF) (Guitet et al. 2013); 182 

- Landscape types (LS) from the French Agricultural Research Centre for International 183 

Development (CIRAD) (Gond et al. 2011). This provides the distribution of landscape types 184 

in French Guiana, most being forested landscapes; 185 

- Altitude (ATL) derived from the Digital Elevation Model provided by the Shuttle Radar 186 

Topography Mission (SRTM, spatial resolution: 30 meters) of the United States Aeronautics 187 

and Space Administration (NASA); 188 

- Human footprint (HFP): An integrated human activity index that gives a general measure 189 

of the extent of expected threats on biodiversity, by assigning a score depending on the 190 

nature of the disturbance. It combines sublayers spatializing human population density, 191 

urban areas, legal and illegal mining sites, agriculture, forest settlements and camps, tourist 192 

camps, logged areas (forest activities), and potential hunting areas corresponding to a zone 193 

of two kilometers around roads, tracks and rivers, likely to be used by humans. The total 194 

disturbance score is the sum of all human activity scores (de Thoisy et al. 2010); 195 

- Roads and tracks from the BD TOPO® database of the French Institute of Geographical 196 
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and Forestry Information (IGN). 197 

Table 1 summarizes the main features of these raw geographic data. 198 

Definition of Environmental Variables Used as Inputs for SDM. Several variables were 199 

extracted from the previously described raw data to better reflect the ecological knowledge and 200 

hypotheses mentioned above. The reference spatial resolution (pixel size) permitting the integration 201 

of all environmental layers was set to 1 by 1 km, i.e., the coarsest resolution of the available layers, 202 

associated with the LS map. 203 

The length of roads and tracks outside of urban areas (ROADS) was computed in the 1 km-cell grid 204 

from the BD TOPO® database. 205 

The sublayers composing the HFP were first rasterized into 30˗m grid cells, the smaller polygon of 206 

the HFP having a size of approximately 40 by 10 m. Distinct attributes were then extracted: 207 

- The percentage of urbanization (PER_URB) within the 1 km grid cells; 208 

- The percentage of urbanization within the eight neighbor cells of each urban cell 209 

(PER_URB_NEIGH), which permits distinguishing small from large urban areas. This layer was 210 

obtained for each 1 km-cell considered to be urban (i.e., with PER_URB ≥ 50%), by averaging 211 

the PER_URB values for the eight (1 km side) neighbor pixels; 212 

- The human activities which non-permanently alter the natural environment (HA), by first 213 

summing the scores of the following sublayers: tourist and forest camps, mining activities and 214 

logged areas, hunting areas nearby rivers, and then, by computing the minimum, median, and 215 

maximum values within the 1˗km grid cells. 216 

The agriculture sublayer from HFP was not used because it covers only the coastal area. The 217 

population density sublayer was also excluded because it did not have sufficient level of detail. The 218 

sublayer of potential hunting areas near roads and tracks were not used to avoid duplication of the 219 

length of roads and tracks outside of urban areas computed previously. 220 

For each 1˗km grid cell, the majority class of the categorical variables GLS and GLF, and the 221 
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minimum, median, and maximum altitude (ALT) values were computed. 222 

Eventually, some corrections of the LS layer were performed as it did not identify urban areas and 223 

did not distinguish flooded forests associated with freshwater from those of the coastal strip 224 

associated with brackish water (mangroves): LS cells with an PER_URB value greater than or equal 225 

to 50% were reclassified into a new LS class referred to as Urban; LS cells classified as Flooded 226 

forest and corresponding to mangroves according to the coastal land use map provided by the ONF 227 

(Office National des Forêts Direction Régionale de Guyane, 2013) were reclassified as Mangrove. 228 

The variable PER_URB was excluded from the input SDM variables, as the urban areas were 229 

mapped, and their extent quantified, by the corrected LS and PER_URB_NEIGH layers, 230 

respectively. 231 

Table 1 lists and describes the environmental variables used to build the model. 232 

Maxent Model Principle 233 

Maxent is an SDM which requires environmental variables and species presence-only data. It is 234 

based on the principle of maximum entropy to estimate an (a priori) unknown probability 235 

distribution over the entire study area. This probability distribution assigns a value that is 236 

proportional to the probability of the presence of the species to each pixel of the study area. It is 237 

therefore interpreted as a habitat suitability index (HSI) across the study area (Phillips et al. 2006). 238 

The Maximum Entropy principle consists of approximating the unknown probability distribution by 239 

finding the one that maximizes entropy and satisfies the constraints imposed by the environmental 240 

features at the known sites of presence. Environmental features are a set of input environmental 241 

variables chosen according to their expected relevance for the studied taxon (Phillips et al. 2006, 242 

Elith et al. 2011). The constraints ensure that the environmental values expected under the 243 

approximated probability distribution are consistent with environmental information observed at the 244 

presence points. 245 

In practice, the Maxent distribution is defined on a set of points called background points. These 246 
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points should reflect the available environmental conditions of the study area and are chosen by 247 

uniform random sampling. This approach assumes that the presence data are not biased and that 248 

environmental conditions are uniformly sampled (Yackulic et al. 2013). However, in practice, some 249 

areas are more intensively sampled than others, and environmental conditions are not uniformly 250 

distributed and may imply a strong sampling bias. Phillips et al. (2009) proposed selecting the 251 

background points with the same environmental bias as the presence dataset to correct the effect of 252 

this sampling bias. 253 

Model Building and Evaluation 254 

Eleven environmental variables and 48 An. darlingi presence points (their coordinates were in the 255 

table in supplementary material S1) are used as inputs for Maxent.  Only one presence site was 256 

selected to build the model when more than one occurred in the same pixel. As a result, only 39 257 

presence sites were actually used for building the model. Hinge and categorical features were 258 

selected for the environmental variables. A hinge feature provides a good compromise between 259 

simplicity and the quality of the approximation of the species response curves (Elith et al. 2011, 260 

Phillips and Dudík 2008). 261 

In this study, the distribution of the background points was biased so that the selection bias 262 

corresponds to that of the sampling. The sampling bias was defined as the relative sampling effort in 263 

the environmental space, and was estimated by considering the capture locations of Culicidae, 264 

obtained using the same capture techniques and supposed to be subjected to the same sampling bias 265 

as the An. darlingi species. The details of the method to create the relative sampling effort map are 266 

described in supplementary material S2. 267 

The model was computed using version 3.3.3k of Maxent. The recommended values derived from 268 

Phillips and Dudík (2008) concerning the regularization parameters and the background set size, 269 

were applied. Regularization parameter values were set to 0.25 and 0.5 for categorical and hinge 270 

features, respectively, and the size of the background was set to 10,000. The extrapolation option 271 
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was not selected to avoid making predictions in environmental domains in which the model was not 272 

trained. The model was fitted using the full data set and evaluated using a 10-fold cross-validation 273 

procedure. The Receiver Operating Characteristic (ROC) curves and the associated Areas Under the 274 

ROC Curve (AUC) were computed. This was completed by computing the mean partial AUC ratios 275 

(Peterson et al., 2008), consisting of the ratios of the partial AUCs of the model over the null AUC 276 

(corresponding to random prediction), for omission errors (E) of 20, 10, and 5%. The Continuous 277 

Boyce Index (CBI), considered to better adapted to presence-only models than the AUC (Hirzel et 278 

al., 2006), was also computed. The gain (regularized training gain) was also used to evaluate the 279 

performance of the model prediction. It is a measure of the likelihood of the sample, and indicates 280 

how much better the estimated distribution fits the presence points than the uniform distribution,  281 

which corresponds to a null gain (Yost et al. 2008). 282 

The importance of each variable was estimated using two methods, a heuristic method and the 283 

jackknife test. The heuristic method computes the percentage contribution of each variable to the 284 

model. During the training process, the increase of the gain is due to the adjustment of the feature 285 

weights and this increase is assigned to the environmental variable that the feature depends on. The 286 

sum of these increases in gain indicates the percentage contribution of each environmental variable. 287 

The jackknife test evaluates the individual contribution of each variable to the model by estimating 288 

the difference of the gain when removing each variable, one by one, and when considering the 289 

given variable alone to build the model. 290 

Results 291 

The mean AUC was 0.93, and the mean partial AUC ratios were 1.08, 1.03, and 1.01 for maximum 292 

omission errors sets to 20, 10, and 5% respectively. The mean CBI was 0.356 and the mean gain 293 

was 3.14. Three variables cumulatively contributed >80% (Table 2): the length of roads and tracks 294 

outside of urban areas (ROADS), the percentage of urbanization of neighboring pixels 295 

(PER_URB_NEIGH), and landscape (LS). The maximum value of the human activities which non-296 
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permanently alter the natural environment (HA_MAX), geomorphological landscape (GLS), 297 

minimum altitude (ALT_MIN), and geomorphological landform (GLF) contributed moderately to 298 

the model, with contributions of 6.84%, 5.35%, 1.34%, and 1.19%, respectively. The following 299 

input variables contributed very little to the model: minimum and median values of human activities 300 

which non-permanently alter the natural environment (HA_MIN and HA_MED; 0.35 and 0.24%, 301 

respectively); and median and maximum values of altitude (ALT_MED and ATL_MAX; 0.69 and 302 

0.06%, respectively). 303 

The results of the Jackknife test confirmed the non-significant contribution of the input variables 304 

HA_MIN, HA_MED, ALT_MED, and ALT_MAX (Table 2). 305 

A second model was built using only the most highly contributing environmental variables: 306 

ROADS, LS, PER_URB_NEIGH, HA_MAX, GLS, GLF, and ALT_MIN. The overall performance of 307 

this simpler model was very similar to the previous one, with the mean AUC and partial AUC ratios 308 

equal to 0.93 and 1.11, 1.05, and 1.03, respectively. The mean gain was equal to 3.19 and the mean 309 

CBI was 0.421. Relative contributions of the input variables were also very similar (Table 3). 310 

The response curves of the environmental variables are represented in Figures 2 and 3. They show 311 

that the HSI is maximal when the PER_URB_NEIGH is below 8%. Above this value, the HSI 312 

decreases progressively towards 0. The HSI increases as ROADS increases up to 7,000 meters, 313 

reaches a plateau value, and then tends to decrease above 10,000 meters. Among all LS classes, 314 

Woodland savanna/dry forest and Open forest contribute the most to the high HSI values. The 315 

geomorphological landscape classes Coastal flat plain and Plain with residual relief and the 316 

geomorphological landform classes Small-size and flat wet land, Small-size rounded hill, and 317 

Lowered half-orange relief – a tropical relief type corresponding to a hill with convex flanks giving 318 

to it a roughly hemispherical shape (George, 1972) and usually linked to flat or swampy lowlands 319 

drained by streams with meanders – are also associated with high HSI values. The HSI is maximal 320 

when ALT is ~0, with a rapid decrease as altitudes increase. The HA_MAX response curve presents a 321 
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more complicated profile. The HSI increases for HA_MAX values between 0 and 8, decreases until 322 

HA_MAX reaches 24, and then again increases as values continue to climb above 24. 323 

The map of habitat suitability for An. darlingi, based on all the presence data for modeling, shows 324 

six main areas (A – F) with a high HSI and a seventh area (G) corresponding to an epidemiological 325 

interest area (see Figure 4). A qualitative analysis was performed to determine the characteristics of 326 

the environmental variables of the areas with high HSI values (Table 4).  327 

In the coastal area (A), where 90% of the Guyanese population lives, the HSI tends to be higher 328 

along the main road representing the main traffic route in French Guiana. Focusing on the main 329 

urban areas, represented in Figure 5, the HSI values within the highly urbanized districts of 330 

Cayenne and Kourou (rectangles in Figure 5) are lower than those of the surrounding pixels that are 331 

not considered to be highly urbanized. A very high HSI was predicted within the urban area of 332 

Saint-Laurent-du-Maroni. However, none of the pixels characterizing this city has a 333 

PER_URB_NEIGH value higher than or equal to 50%. The high HSI values in areas B, D, E, and G 334 

are characterized by the environmental variables ROADS, HA_MAX, the classes Open forest and 335 

Mixed high and open forest, and flat or moderately hilly terrain. The high HSI in areas C and F is 336 

essentially linked to Open forest and flat terrain. 337 

The areas for which the model did not predict the HSI, due to the choice to not extrapolate to 338 

environmental domains not used to train the model, correspond to areas with an altitude higher than 339 

400 meters. They represent a small number of pixels of the study area. 340 

Discussion 341 

The prediction performances of the model are excellent and significantly greater than those of the 342 

null model. The following discussion focuses on the ecological interpretation of the results and the 343 

methodological choices and alternatives. 344 

Environmental Factors Explaining the Habitat Suitability 345 

The geographic distribution of habitat suitability is consistent with existing knowledge of the 346 
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entomological situation despite the small number of presence points. The high HSI values can be 347 

explained by different environmental contexts depending on the geographical locations. In most 348 

areas (A, B, D, and E), the HSI values depend on human presence and activities, characterized by 349 

the environmental variables HA_MAX and ROADS (in areas D, E, and B, most roads are not paved 350 

and correspond mostly to tracks). The significantly positive correlation between the variable 351 

ROADS and the HSI confirms that road and track opening, accompanied by deforestation and 352 

pooling of rainwater at the roadside, may favor breeding sites (Singer and Castro 2001). The 353 

response curve for the variable ROADS (Figure 3) reaches a plateau above 7,000 meters of road per 354 

square kilometer and decreases thereafter. The decrease of the HSI at values above 7,000 meters 355 

suggests that the density of the road network leads to an improvement of the road quality (paved 356 

road eliminating culverts, adding sidewalks), thus limiting the availability of breeding and/or resting 357 

sites, in the same way as urbanization. Indeed, the response curve of the PER_URB_NEIGH 358 

variable confirms that highly urbanized areas provide a poorly suitable habitat for An. darlingi 359 

(Figure 3). Intensive urbanization implies concrete paving, the decrease or removal of green areas 360 

and forests, and consequently, the destruction of breeding and resting sites for An. darlingi (Stefani 361 

et al. 2013). This phenomenon is observed in the highly urbanized areas of Cayenne and Kourou 362 

(Figure 5). In contrast, Saint-Laurent-du-Maroni, the second largest urban area of French Guiana in 363 

terms of urbanization size and density, has high HSI values. In fact, unlike Cayenne and Kourou, 364 

this area is not considered to be highly urbanized using the criterion of this study 365 

(PER_URB_NEIGH ≥ 50%). However, the result for Saint-Laurent-du-Maroni seems unlikely 366 

because the presence of An. darlingi has not yet been reported in an urban area. Further field works 367 

could confirm the presence of this species in the city. The sensitivity of the model for the criterion 368 

that defines a highly urbanized area may also merit further study.  369 

The values of HA_MAX in areas D and E were essentially associated with mining activity. In French 370 

Guiana, this activity is responsible for forest loss reaching 2,000 hectares per year (Office National 371 
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des Forêts Direction Régionale de Guyane, 2014). Between 2001 and 2013, Alvarez-Berríos and 372 

Aide (2015) estimated that the largest forest loss due to gold mining in the tropical and subtropical 373 

moist forest in South America was situated in the Guianan region including French Guiana. This 374 

suggests that this activity, resulting in deforestation and creating sources of standing water such as 375 

mining pits, combined with the presence of a large number of people, creates suitable conditions for 376 

An. darlingi. The high HSI in these two areas is also explained by the Mixed high and open forest 377 

landscape which is associated with human disturbance (Gond et al. 2011). Indeed, this landscape is 378 

described as a forest environment linked to young or unstable vegetation mostly due to first stages 379 

of anthropization. These results confirm the important role of human presence in the creation of 380 

suitable habitats for An. darlingi, which is also consistent with the strong anthropophilic behavior of 381 

this vector. 382 

Some landscape types which are not directly associated with human presence or activities were also 383 

associated with a HSI. The Woodland savanna/dry forest class appears to highly contribute to high 384 

HSI values (Figure 2). It corresponds to the driest landscape in French Guiana (Gond et al. 2011), 385 

but can be seasonally inundated due to its poor drainage, creating breeding sites (Rosa-Freitas et al. 386 

2007). The high HSI values in this area are in accordance with previous studies (Vezenegho et al. 387 

2015, Dusfour et al. 2013), which reported finding An. darlingi in the coastal savanna environments 388 

of French Guiana. In uninhabited areas (zones F and C in Figure 4), a high HSI is associated with 389 

the Open forest class (LS layer) and flat terrain. This LS class can be associated with different land 390 

cover types in French Guiana (Gond et al. 2011) depending on the geographical location. 391 

Consequently, this LS class may differentially affect An. darlingi habitat suitability. The Open forest 392 

in area C mainly corresponds to wetlands (classified as Flooded forest according to the coastal land 393 

use map provided by the Office National des Forêts Direction Régionale de Guyane, 2013), whereas 394 

in area F, it corresponds to Large surfaces of bamboo thicket and forbs. Anopheles darlingi was 395 

found in flooded forest; however, to our knowledge, no information is available concerning its 396 
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presence in large areas of bamboo thicket and forbs. The prediction in these areas should be taken 397 

with precaution as a more precise description of the habitats within Open forest class is required. 398 

Overall, this information highlights that natural environment could form highly suitable habitats 399 

despite the high anthropophily of An. darlingi. 400 

Meteorological Variables 401 

In this study, meteorological variables were not used to build the model. Temperatures fall within 402 

the optimal range for the species presence, and were considered to be geographically and 403 

temporally too homogeneous to explain differences in the spatial distribution of habitat suitability. 404 

Such a hypothesis is common in the Amazonian context. Olson et al. (2009) report that in their 405 

study region (Amazon basin), “monthly temperatures were between 24.6°C and 29.4°C (well within 406 

the range for optimal malaria transmission) for 95% of the observations,” and consequently did not 407 

include temperatures in their model. In French Guiana, several studies also used rainfall data to 408 

study the intra-annual variations in An. darlingi density (Hiwat et al., 2010, Girod et al., 2011). The 409 

exclusion of rainfall data is more debatable, as rainfall clearly influenced the intra-annual density of 410 

An. darlingi in the study region (Hiwat et al., 2010, Girod et al., 2011, Vezenegho et al., 2015) even 411 

if the relationship was not systematically observed (Girod et al., 2011). The evidence for this impact 412 

on densities is that An. darlingi habitat suitability varies at an intra-annual scale, due to the 413 

alternation of dry and wet seasons. However, the entire study area is subject to this alternation. 414 

Moreover, given the high density of the French Guiana hydrological network and that the driest area 415 

(north-west) still receives 2,000 mm a year, it can be reasonably assumed that An. darlingi can find 416 

suitable conditions within the entire territory throughout most of the year. In French Guiana, the 417 

geomorphological landscape highly influences the availability of breeding sites, and therefore their 418 

spatial distribution, whereas the rainfall quantities influence the intra-annual variations of An. 419 

darlingi densities. As a consequence, on an average over the year, we assume that the significant 420 

factor influencing the distribution of habitat suitability is not the quantity of rainfall, but the 421 
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capacity of the landscape to provide suitable breeding sites when it rains.  422 

Model Parametrization 423 

The model was run by using the regularization parameter values and background set size 424 

recommended by Phillips and Dudík (2008), instead of those determined from specific experiments, 425 

as suggested by Merow et al. (2013). Phillips and Dudík (2008) tested a set of regularization 426 

parameter values with 48 species datasets that contained 11 to 13 environmental variables and a 427 

small number of categorical variables (1-3, as they considered discrete ordinal variables to be 428 

categorical). Nine of these datasets contained between 30 and 60 occurrences. The characteristics of 429 

the dataset exploited in our study (39 occurrence records; 13 and seven environmental variables 430 

including three categorical ones) are assumed to be quite similar of those of the datasets used by 431 

Phillips and Dudík (2008). We thus assumed that the pseudo-optimal parameters proposed by 432 

Phillips and Dudík (2008) could be confidently used in our study. Similarly, the background size 433 

was set to 10,000 based on the tests realized by Phillips and Dudík (2008), with 226 species and a 434 

median number of 57 presence sites. Better prediction performance may have been obtained by 435 

tuning the regularization values and background size and adding input environmental variables and 436 

features. However, the risk would have been to favor overfitting to the detriment of the bio-437 

ecological interpretation of the model (see for example Merow et al., 2013). According to the 438 

entomologists who participated in the study, the model appears to be a good compromise between 439 

overfitting (that would have predicted suitable areas near occurrence points only) and being too 440 

general (that would have predicted suitable areas in too many environmental contexts for which the 441 

specialists have no species presence evidence). 442 

Correction of the sampling bias effect 443 

In this study, the effect of sampling bias was corrected by selecting background points with the 444 

same environmental bias as the sampled points. This approach appeared to be useful when applied 445 

to An. darlingi in French Guiana. Without a bias effect correction, the model predicted very high 446 
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HSI values in highly urbanized areas whereas these areas are known to be unsuitable for this vector 447 

(see above). The biased background set is more concentrated around the sampled points (in the 448 

environmental space) than the uniform random background, and is not likely to include 449 

environmental conditions that are highly dissimilar to those encountered at the sampled points. As a 450 

result, environmental conditions highly dissimilar to those of the sampled points can be subjected to 451 

extrapolation, which may lead to erroneous habitat suitability predictions and bio-ecological 452 

interpretations. This justifies not using the extrapolation option for modeling. The predicted HSI 453 

map from the model with a biased background contains several excluded areas, whereas that of the 454 

model with a uniform random background does not. Excluded areas correspond to high altitude 455 

areas which are unsuitable for An. darlingi (Mouchet 2004). 456 

When using a uniform random background, the three most contributive variables (cumulative 457 

contribution equal to 85.5%) were all directly linked to human presence and territory accessibility 458 

(ROADS: 38.1%, PER_URB_NEIGH: 34.9%, and HA_MAX: 12.5%). Thus, apart from urban areas, 459 

high HSI values were associated with high HA_MAX and ROADS values. However, when 460 

correcting the sampling bias effect, the Landscape (LS) variable was the second most contributive 461 

variable (14.1%), the ROADS variable contribution increased to 62.6%, and the 462 

PER_URB_NEIGH variable contribution decreased to 11.1% (see Table 3). 463 

From a quantitative point of view, the two approaches (with and without applying the correction of 464 

the sampling bias effect) resulted in identical AUC and partial AUC ratios. However, the regularized 465 

gain and the CBI were lower without correction, with values equal to 2.81 (vs. 3.18) and 0.284 (vs. 466 

0.421), respectively. 467 

Thus, correction of the sampling bias effect gave better results: both more consistent with 468 

knowledge from the field and more accurate in terms of prediction. The fact that the contributions 469 

of the LS and HA_MAX variables respectively increased and decreased with the use of the biased 470 

background, tends to show that the correction method actually manages to counterbalance the over-471 
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representation of inhabited areas (cities, villages, and gold mining areas) in the sampled data. 472 

However, the very high contribution of the variable ROADS may be a residual effect of sampling 473 

bias, as sampling is essentially performed in the vicinity of accessible roads and tracks. Further 474 

studies are necessary to objectively and quantitatively assess the actual performance of the proposed 475 

methodology for correcting the effect of sampling bias. 476 

Habitat Suitability and Malaria in French Guiana 477 

Alimi et al. (2015) highlighted the utility of SDMs for gaining a better understanding of the 478 

geographical range and distribution of vectors for eliminating malaria and preventing outbreaks. 479 

The coastal strip in French Guiana is generally malaria free, although some cases resulting from 480 

local transmission are regularly diagnosed (Ardillon et al. 2015). This study, as well as that of 481 

Vezenegho et al. (2015), shows that the savanna in French Guiana may be highly suitable for An. 482 

darlingi. In the forest, Pommier de Santi et al. (2016c) found a link between mining, malaria cases, 483 

and the presence of An. darlingi. Indeed, >74% of malaria cases in French army soldiers were 484 

associated with operations to counteract illegal gold mining (Pommier de Santi et al. 2016a). 485 

According to the results of the present study, some areas associated with intense gold mining 486 

activity, known to be malaria transmission foci, are not necessarily associated with very high HSI 487 

values. In the village of Camopi, the annual malaria prevalence was 70% for children younger than 488 

seven years of age between 2000 and 2002 (Carme et al. 2005), reaching 100% in 2006 (Hustache 489 

et al. 2007). However, only some pixels on the border of the Camopi and Oyapock rivers have high 490 

values on the HSI map (area G in Figure 4). This is consistent with the study of Girod et al. (2011), 491 

which showed that the number of An. darlingi caught in this village was very low relative to the 492 

incidence of malaria cases. These findings collectively highlight two important points. First, the 493 

HSI map shown in Figure 4 does not correspond to a map of malaria transmission risk. 494 

Transmission risk depends on many factors that were not taken into account here, such as the 495 

parasitic charge and immunological status of the local population, compositional and 496 
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configurational features of the landscape (Stefani et al, 2013; Li et al, 2016), and behavioral factors. 497 

Second, this highlights that malaria transmission can occur in areas where there is a very low 498 

density of An. darlingi. This may be due to the presence of other Anopheles species such as An. 499 

(Nys.) nuneztovari Galbaldón, An. (Nys.) oswaldoi Peryassú, An. (Nys.) intermedius Peryassú, An. 500 

(Nys.) marajoara Galvão and Damasceno, or An. (Nys.) ininii Sénevet and Abonnenc (Diptera: 501 

Culicidae), already known to be naturally infected with Plasmodium species and/or described as 502 

efficient secondary malaria vectors (Dusfour et al. 2012, Pommier de Santi et al, 2016c).  503 

Environmental Characterization 504 

A significant limitation of this study was the spatial resolution of the environmental data. Capture 505 

campaigns are generally carried out at a local scale (villages or camps; Vezenegho et al. 2015, 506 

Dusfour et al. 2013). The spatial resolution of the study was not sufficient to take into account the 507 

heterogeneity of the environment at the capture scale. The use of environmental data with higher 508 

spatial resolution, such as the canopy height estimation from Fayad et al. (2014) or finer 509 

characterization of the land cover could improve future studies. However, these data are not 510 

consistently available across the entire territory.  511 

 512 

In conclusion, the results of this study help to complete our knowledge on the spatial distribution of 513 

the principal malaria vector in this Amazonian region, and to identify the main factors that favor its 514 

presence. These results can be exploited to define the necessary targeted vector control strategies in 515 

a malaria pre-elimination context, and to extrapolate the acquired knowledge to other Amazonian 516 

contexts. They also suggest areas that need to be targeted to complete the field knowledge, validate 517 

the prediction and strengthen the model. Eventually, these proposed methodological developments 518 

can be applied to other species, including other disease vectors.  519 
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Figure 1. Culicidae capture points and Anopheles darlingi presence points (from 2000 to 2013). 
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Figure 2. Response curves of categorical environmental variables. 

 



Moua et al. The habitat suitability of An. darlingi in French Guiana 

34 

 

 
Figure 3. Response curves of numerical environmental variables. Dashed lines show the mean 

values and the grey regions represent the interval between the maximum and minimum values.  
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Figure 4. Habitat suitability index map. Six main areas with a high habitat suitability index (A to F) 

and Camopi village (G) are circumscribed by the red circles and rectangles. 
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Figure 5. Zoom of urban areas. a, d, and g: habitat suitability index maps. 

b, e, and h: landscape type. c, f, and i:  percentage urbanization of neighbor pixels. Rectangles 

correspond to highly urbanized areas (LS class is Urban and PER_URB_NEIGH  ≥ 50%). Cayenne 

and Kourou include highly urbanized areas, but Saint-Laurent-du-Maroni does not. 
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Table 1. Raw environmental data and derived variables used to build the model. 

Number of 

input 

variable 

Producer, reference Raw environmental 

data 

Derived from 

(information 

source) 

Date(s) Original spatial 

resolution or 

interpretation 

scale 

Derived SDM input 

variable(s) 

Type of feature 

extraction for each 

1x1 km pixel 

Classes or 

range of 

values and 

units 

Environment 

types 2 

 

A priori effect on An. 

darlingi presence 3  

and bibliographic 

references 

Input 

variable(s) 

type 

1 Forest National Office 

(ONF), (Guitet et al. 

2013) 

Geomorphological 

landscape (GLS) 

SRTM 2000 ≥ 5000 m Geomorphological 

landscape (GLS) 

Majority class 12 classes Natural 

environment 

( / ) 

Smith et al. (2013) 

Categorical 

2 Forest National Office 

(ONF), (Guitet et al. 

2013) 

Geomorphological 

landform (GLF) 

SRTM 2000 ≥ 200 m Geomorphological 

landform (GLF) 

Majority class 15 classes Natural 

environment 

( / ) 

Smith et al. (2013) 

Categorical 

3 Agricultural Research 

Centre for International 

Development (CIRAD),  

(Gond et al. 2011) 

Landscape types (LS) 

  

Spot-

Vegetation 

2000 1000 m Landscape types (LS) Correction of pixels 

corresponding to 

urban areas and 

mangroves 

14 classes Natural 

environment 

and 

urbanization 

( / ) 

Stefani et al. (2013) 

Girod et al. (2011) 

Zeilhofer et al. (2007) 

Rozendaal (1992) 

Hiwat et al. (2010) 

Vittor et al. (2006) 

Vittor et al. (2009) 

Categorical 

4, 5, 6 National Aeronautics 

and Space 

Administration (NASA) 

Altitude (ALT) 

 

SRTM 2000 30 m Altitude 

- minimum (ALT_MIN),  

- maximum (ALT_MAX)  

- median (ALT_MED) 

Statistical 

computation 

0 – 832 m Natural 

environment 

( - ) 

Zeilhofer et al. (2007) 

Continuous 
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Number of 

input 

variable 

Producer, reference Raw environmental 

data 

Derived from 

(information 

source) 

Date(s) Original spatial 

resolution or 

interpretation 

scale 

Derived SDM input 

variable(s) 

Type of feature 

extraction for each 

1x1 km pixel 

Classes or 

range of 

values and 

units 

Environment 

types 2 

 

A priori effect on An. 

darlingi presence 3  

and bibliographic 

references 

Input 

variable(s) 

type 

7 National Institute of 

Geographic and Forestry 

Information (IGN) 

Road and track 

network 

BD TOPO® 

 

2011 ≥ 1000 m Length of roads and tracks 

outside of urban areas 

(ROADS) 

Computation of 

road/track lengths 

0 – 12545 m Non-permanent 

anthropogenic 

changes 

( + ) 

Singer and Castro 

(2001) 

Continuous 

8 Association Kwata 

'Study and Conservation 

of French Guianan 

Wildlife ' (de Thoisy et 

al. 2010) 

Human footprint 

(HFP) 

From various 

sources a 

2005 ≥ 1000 m Percentage of urbanization 

of neighboring pixels 

(PER_URB_NEIGH) 

Percentage of 

urbanization within 

the eight neighbor 

cells 

0-100% Urbanization ( - ) 

Stefani et al. (2013) 

Continuous 

9, 10, 11 Association Kwata 

'Study and Conservation 

of French Guianan 

Wildlife ' (de Thoisy et 

al. 2010) 

Human footprint 

(HFP) 

From various 

sources a 

2005 ≥ 1000m Human activities which 

non-permanently alter 

natural environment (HA) 

- minimum (HA_MIN) 

- maximum (HA_MAX) 

- median (HA_MED) 

Statistical 

computation 

0-30 Non-permanent 

anthropogenic 

changes 

( + ) 

Vittor et al. (2009) 

 

Continuous 

a French Institute for Statistical and Economic studies (INSEE); Regional Departments for Food, Agriculture and the Forest (DAAF); ONF; Regional Equipment, Habitat and Planning Authority (DDE) and Hammond et al. (2007). 

b See the section on environmental variables in Materials and Methods.   

c A priori effect on An. darlingi presence: (+) favorable; (-) unfavorable; (/) depends on categorical variable values. 
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Table 2. Mean contributions and jackknife results of the eleven input environmental variables. 

Environmental variables Contribution (%) Cumulative contribution (%) Gain with the variable only Decrease of the gain without the 

variable (%) 

ROADS 51.45 51.45 2.20 -7.98 

PER_URB_NEIGH 17.17 68.62 1.86 -0.41 

LS 15.32 83.94 2.23 -4.67 

HA 7.43  

(min: 0.35;  

median: 0.24; 

max: 6.84) 

91.37 min: 0.02 

median: 0.15 

max: 0.43 

min:-0.06 

median: -0.22 

max: -2.10 

GLS 5.35 96.72 1.40 -2.59 

ALT 2.09 

(min: 1.34;  

median: 0.69;  

max: 0.06) 

98.81 min: 1.12 

median: 1.04 

max: 0.76 

min: - 1.04 

median: -0.39 

max:  -0.03 

GLF 1.19 100 0.80 -0.21 
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Table 3. Mean contributions and jackknife results of the seven input environmental variables of the simpler model. 

Environmental variables Contribution (%) Cumulative contribution (%) Gain with the variable only Decrease of the gain without the 

variable (%) 

ROADS 62.61 62.61 2.31 -8.61 

LS 14.10 76.71 2.35 -6.23 

PER_URB_NEIGH 11.15 87.86 2.05 -0.58 

HA_MAX 5.39 93.25 0.37 -1.74 

GLS 3.84 97.09 1.44 -1.90 

GLF 2.1 99.19 1.01 -0.32 

ALT_MIN 0.88 100 1.27 -1.29 
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Table 4. Characterization of areas with a high HSI 

ns. signifies that the high HSI of the concerned area was not driven by that environmental variable, (+) signifies that when the value of the variable increases, the HSI also increases 

also, (-) signifies that when the value of the variable decreases, the HSI increases, and cells with classes name signifies that the presence of the given class implies a high HSI. 

Area ROADS LS classes PER_URB_NEIGH HA_MAX GLS classes GLF classes ALT 

A (+) 

 

- Woodland savanna / Dry forest 

- Mixed high and open forest 

(-) (+) 

 

- Coastal plain with low relief 

- Plain with residual reliefs (back 

coastal) 

- Small size and flat wetland 

- Large flattened and wet relief 

- Wet hillock (low base-level) 

(-) 

B (+) 

 

- Open forest 

- Mixed high and open forest 

ns. (+) 

 

- Peneplain with moderate hills -Wet hillock (low base-level) 

- Large flattened relief 

(-) 

C ns. - Open forest ns. ns. - Coastal flat plain - Large flattened and wet relief (-) 

D (+) - Mixed high and open forest ns. (+) ns. ns. (-) 

E (+) - Mixed high and open forest ns. (+) - Peneplain with moderate hills - Large flattened relief (-) 

F ns. - Open forest ns. ns. - Peneplain with moderate hills - Lowered half-orange (-) 

G (+) Mixed high and open forest ns. (+) ns. ns. (-) 
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S1. Coordinates of Anopheles darlingi presence sites (Coordinate system: RGFG95/UTM22N) 

Number of 

sites 

Locality Longitude Latitude 

1 Cayodé 175866.785122426 374453.1653833 

2 Taluène 162884.684665956 372648.888139721 

3 Cacao 336895.086300153 505521.800163598 

4 Midenangalanti 121041.015986301 557342.72581239 

5 Grand Santi 124374.105534813 473261.338110987 

6 Bois Martin 118927.138507594 552587.496776593 

7 Flavien Campou 126212.611562883 477960.065899793 

8 Régina 374698.048396995 476928.730177523 

9 Camopi 352395.046055802 350764.216480451 

10 Alikéné 322929.978284572 360135.527835386 

11 Mine Boulanger 343189.582357019 504590.723307373 

12 Carbet Légion crique Sikini 359046.553479 361996.097871 

13 Cogneau - 23. Lot. Aquavilla 354091.053713437 538837.801956188 

14 41. rue des Ixoras - Lot. Cogneau 

Larivot 

351322.960529913 541116.10235073 

15 Attila Cabassou 354987.967015231 540678.87835953 

16 La Chaumière 347961.540051952 539402.864452834 

17 1228. Ch. de La Chaumière 349626.610158034 540136.658859129 

18 Saint-Georges 411052.118458134 429833.606330522 

19 Quartier Espérance - Saint-Georges 411113.960068634 430709.665437749 

20 Village Martin - Saint-Georges 411519.804866871 432628.481492214 

21 Boulangerie – Saül 254644.262333224 400558.641871421 

22 Chemin Mogès 352032.329517247 529456.717653458 

23 Dorlin 216742.863044 415732.862195 

24 Maripasoula 163199.637191727 403271.422431979 

25 Repentir 234327.380239 427769.677349 
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Number of 

sites 

Locality Longitude Latitude 

26 Stoupan 352127.057631364 527017.037636427 

27 Camp Pararé – Nouragues 311267.546406115 446010.858172732 

28 Village Blondin - Saint-Georges 409492.529993713 428392.815435875 

29 Quartier Adimo - Saint-Georges 410525.149504269 430989.662548913 

30 Camp Bernet/ Légion étrangère 410437.343147834 429860.701524782 

31 La ferme de Lait-Quateur  332757.212761399 552628.404024885 

32 Grand Usine 288898.531939378 372330.073251345 

33 Dagobert 226797.35968 438864.200286 

34 Cacao 336515.199831583 505801.969900718 

35 Saut-Maripa – Camp militaire 401579.145107468 420354.782186144 

36 Eau-Claire 213145.824694 398626.838699 

37 Cacao 336956.199791048 504651.969979654 

38 Cacao 337909.199733996 506008.969874801 

39 Cacao 336576.199808207 503413.970071365 

40 Cacao 336555.199807874 503184.970087929 

41 Impasse de la rafinerie – Cogneau 354091.053713437 538837.801956188 

42 Quartier Bambou 411277.041477492 430178.275876772 

43 Quartier Maripa - Saint-Georges 410252.974346512 430188.463058511 

44 Quartier Savane - Saint-Georges 411024.737954334 430940.054473617 

45 Cacao 336826.199809151 505764.969900894 

46 Cacao 337091.199787723 505441.969921949 

47 Cacao 336186.199848992 505049.969957266 

48 Quartier Onozo- Saint-Georges 411339.040785181 430641.896115415 
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S2. Creation of the relative sampling effort map 

Capture data of Culicidae (74 capture sites) were used to estimate the sampling effort of An. 

darlingi.  The collection methods were identical and the sampling bias for the family was assumed 

to be representative of that for the focal species. 

The sampling bias was defined as the relative sampling effort in the environmental space. For a 

pixel i, it corresponds to the ratio of the number of sampled pixels over the total number of pixels, 

within the environmental neighborhood of i. 

First, all pixels of the study area were represented in the environmental variable space. This was 

accomplished by performing a Factorial Analysis of Mixed Data (FAMD) (Pagès, 2004). This 

analysis jointly takes into account numerical and categorical variables and makes it possible to 

represent the pixels within an Euclidean, orthonormal space defined from the whole set of 

environmental variables.   

The membership degree of a pixel j to the neighborhood of pixel i, denoted wij, was defined by a 

Gaussian-like membership function: 

 
 2/

0.5 minij
d

ij

D
=w    (1) 

with dij the euclidean distance between i and j in the factorial space, and Dmin the threshold distance 

over which j does not significantly belong to the environmental neighborhood of i, i.e. over which 

0.5ijw . The membership degree wij has the following properties: 

- ]1,0]ijw ; 

- 1=wij  if 0ijd ; 

- 0.5<wij  if minDdij  . 
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The parameter Dmin was set from a priori knowledge of An. darlingi bio-ecology. As highly 

urbanized areas are not suitable for An. darlingi (see § I.3), we stated that a pixel associated with 

An. darlingi presence cannot belong to a highly urbanized pixel. Reciprocally, a pixel considered to 

be highly urbanized cannot belong to the environmental neighborhood of a pixel where An. darlingi 

was observed. 

Consequently, given P, the set of pixels where the species was observed and U, the set of pixels 

belonging to highly urbanized areas, Dmin was defined as follows: 

  
UuP,ppumin dmin=D


   (2) 

A pixel is considered to be highly urbanized if it belongs to the LC class Urban and if its eight 

neighboring pixels present an average urbanization percentage (PER_URB_NEIGH) higher than or 

equal to 50%.  

The concepts of environmental space and neighborhood, as well as the key method parameters are 

schematically represented in Figure S1. 

Given X, the set of pixels of the study area, and  
Xiic=c


, a vector such that 1=ci   if i is sampled 

and 0=ci  otherwise, the relative sampling effort at pixel i, zi, is then defined as: 





Xj

ij

Xj

iji wcw=z /   (3) 

The relative sampling effort was computed for each pixel of the study area. The resulting map was 

used to bias the random selection of background points. Consequently, for a given pixel, the greater 

the relative sampling effort, the higher the chance of selecting the pixel as a background point. 

Reference 

Pagès, J. 2014. Multiple Factor Analysis by Example Using R. Chapman & Hall, CRC Press.  
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Figure S1. Neighborhood of a pixel i in the environmental space represented by the first and second 

factorial axes. The environmental neighborhood of point i is represented by the Gaussian function. 

The blue lines define the limit of the neighborhood of i. Only point j is situated above these lines. 

Thus j is in the neighborhood of i in the first factorial plane. 

 


