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Abstract

In this paper, we prove the uniform boundedness of the pullback attractor of a non-autonomous SIR
(susceptible, infected, recovered) model from epidemiology considered in Anguiano and Kloeden [2]. We
prove two uniform bounds of this pullback attractor, firstly in the norm H1

0 , and later, under appropriate
additional assumptions, in the norm H2.
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1 Introduction and setting of the problem

Epidemiology is the study of the spread of diseases with the objective of tracing factors that are responsible
for or contribute to their occurrence. Mathematical models are used extensively in the study of epidemiological
phenomena. Most models for the transmission of infectious diseases (see for instance Anderson and May [1],
Brauer et al. [5]) descend from the classical SIR model of Kermack and McKendrick [8] established in 1927. Its
classical form involves a system of autonomous ordinary differential equations for three classes, the susceptibles
S, infectives I and recovereds R, of a constant total population.

There is a strong biological motivation to include time-dependent terms into epidemiological models, for
instance temporally varying forcing is typical of seasonal variation of a disease (see Keeling et al. [7], Stone et
al. [10]).

We consider the following model (1)-(3) below, a classical and well-known model from mathematical epidemi-
ology in the form of the SIR equations, with diffusion, in which a temporal forcing term is considered.

Several approaches have been used for this model, like the theory of non-autonomous dynamical systems.
Some questions addressed concerning this model are the existence of solution or the existence of a pullback
attractor, i.e. a family of time dependent compact sets which is invariant and pullback attracts autonomous
bounded sets. A important matter is why the attractor has to be unique. It is obvious that the attractor is
minimal with respect to set inclusion, and that is the only way to talk about uniqueness when dealing with a
universe of autonomous bounded sets, since the attractor is not an object of the universe and cannot be attracted
by itself.

In this sense, in Anguiano and Kloeden [2] we prove the existence and uniqueness of positive solutions of
(1)-(3) for initial data in L2, and we establish that, if the non-autonomous term takes positive bounded values,
the process associated to (1)-(3) has a unique pullback attractor A.

Recently, Tan and Ji [11] have proved the existence of pullback attractors in higher integrable spaces. In
particular, the authors show, for δ ≥ 0, the existence of a (L2, L2+δ) pullback attractor for (1)-(3) establishing
a priori estimates for the difference of solutions of (1)-(3) by a bootstrap argument.
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Another question is the study of regularity for this model. For instance, in Anguiano [3] we establish a
regularity result for the unique positive solution to problem (1)-(3), and we prove some regularity results for the
pullback attractor A obtained in [2]. This study motivated the investigation of the problem considered in this
paper. Moreover, as far as we know, there are no results in the literature concerning the uniform boundedness
of the pullback attractor A as we will consider in the present paper.

Let us introduce the model we will be involved with in this paper. Let Ω ⊂ Rd, where d ≥ 1, be a bounded
domain with a smooth boundary ∂Ω. We consider the following problem for a temporally-forced SIR (susceptible,
infected, recovered) model with diffusion

∂S

∂t
−∆S = aq(t)− aS + bI − γ SI

N
in Ω× (t0,+∞),

∂I

∂t
−∆I = −(a+ b+ c)I + γ

SI

N
in Ω× (t0,+∞),

∂R

∂t
−∆R = cI − aR in Ω× (t0,+∞),


(1)

where S(x, t), I(x, t), and R(x, t) denote the number of individuals at time t in susceptible class, infective class
and recovered class, respectively, N = S + I +R and t0 ∈ R. The parameter a is the per capita disease-induced
death rate, b is the excess per capita death rate of the infective class, c is the per capita recovery rate of the
infected individuals, and γ is the contact transmission rate.

We deal the problem with Dirichlet boundary condition

S(x, t) = I(x, t) = R(x, t) = 0 on ∂Ω× (t0,+∞) , (2)

and initial condition

S(x, t0) = S0(x), I(x, t0) = I0(x), R(x, t0) = R0(x) for x ∈ Ω. (3)

We assume that the parameters a, b, c and γ are positive constants such that γ + b
2 + c

2 < λ1, where λ1 > 0 is
the first eigenvalue of the negative Laplacian with zero Dirichlet boundary condition in Ω. The temporal forcing
term is given by a continuous function q : R → R taking positive bounded values, i.e. q(t) ∈ [q−, q+] for all t ∈
R where 0 < q− ≤ q+, such that q′ ∈ L2

loc

(
R;L2 (Ω)

)
and satisfies

sup
t0∈R

∫ t0+1

t0

|q′(s)|2L2(Ω) ds <∞. (4)

The choice of Dirichlet boundary conditions and the space L2(Ω) here are to facilitate the derivation of the
required estimates. Solutions in the space L1(Ω) are more typical in many biological situations, but due to the
special structure of the system (and its possible variants) we note that the solutions have stronger regularity, in
particular are also in the space L∞(Ω), and L1(Ω) ∩ L∞(Ω) is a subspace of L2(Ω).

The structure of the paper is as follows. In Section 2, we prove the uniform boundedness of the attractor A
in H1

0 (Ω)3. Then, under appropriate additional assumptions, the uniform boundedness in H2(Ω)3 of A is proved
in Section 3. A conclusion section is established in Section 4.

2 Uniform boundedness of the pullback attractor in H1
0(Ω)3

Let us introduce the functions spaces we will be used with in this paper. L2(Ω) denotes the space of square
integrable real valued functions defined on Ω with the norm |·|L2(Ω) corresponding to the scalar product defined
by

(u, v) =

∫
Ω

u · v dx ∀u, v ∈ L2(Ω),

while H1
0 (Ω) denotes the space of such functions satisfying the Dirichlet boundary condition that have square

integrable generalized derivatives with the scalar product

((u, v)) := (∇u,∇v) =

∫
Ω

∇u · ∇u dx ∀u, v ∈ H1
0 (Ω),
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and the norm
||u|| := |∇u|L2(Ω) ∀u ∈ H1

0 (Ω).

We will denote by 〈·, ·〉 the duality product between H−1 (Ω) and H1
0 (Ω).

In addition, X3 denotes the space of functions (u1, u2, u3) ∈ L2 (Ω)
3

with the scalar product

((u1, u2, u3), (v1, v2, v3)) = (u1, v1) + (u2, v2) + (u3, v3) ,

and norm
|(u1, u2, u3)|L2(Ω) = |u1|L2(Ω) + |u2|L2(Ω) + |u3|L2(Ω) ,

for all (u1, u2, u3),(v1, v2, v3) ∈ X3, while Y3 denotes the space of functions (u1, u2, u3) ∈ H1
0 (Ω)

3
with the scalar

product
(((u1, u2, u3), (v1, v2, v3))) = ((u1, v1)) + ((u2, v2)) + ((u3, v3)) ,

and norm
||(u1, u2, u3)|| = ||u1||+ ||u2||+ ||u3|| ,

for all (u1, u2, u3),(v1, v2, v3) ∈ Y3. Finally, let X+
3 be the subspace of non-negative functions in X3 and Y +

3 be
the subspace of non-negative functions in Y3.

The globally defined nonnegative solutions of (1)–(3) generate a process in the Banach space X+
3 (see An-

guiano and Kloeden [2] for more details), i.e., a family of mappings Ut,t0 : X+
3 → X+

3 with t ≥ t0 in R satisfying

Ut0,t0x = x, Ut,t0x = Ut,r ◦ Ur,t0x,

for all t0 ≤ r ≤ t and x ∈ X+
3 . In [2, Proposition 1] we established that the 2-parameter family of mappings

Ut,t0 : X+
3 → X+

3 , t0 ≤ t, given by

Ut,t0(S0, I0, R0) = (S(t), I(t), R(t)), (5)

where (S(t), I(t), R(t)) is the unique positive solution of (1)–(3) with the initial value (S0, I0, R0), defines a
continuous process on X+

3 .
Recall that a pullback attractor for the process Ut,t0 (e.g., cf. Crauel et al. [6]) in the space X+

3 is a family
A = {A(t), t ∈ R} of nonempty compact subsets of X+

3 , which is invariant in the sense that

Ut,t0A(t0) = A(t), for all t ≥ t0,

and pullback attracts bounded subsets D of X+
3 , i.e.,

distX+
3

(Ut,t0D,A(t))→ 0 as t0 → −∞,

where we denote by distX+
3

(·, ·) the Hausdorff semi-distance in X+
3 .

In [2, Theorem 6.2, Remark 6] we establish that the process associated to (1)–(3) has a unique pullback
attractor A, which satisfies

A(t) ⊂ Σ+
3 , for each t ∈ R, (6)

where Σ+
3 is a closed and bounded subset of X+

3 .

We recall a lemma (see Robinson [9] for more details) which is necessary for the proof of our results.

Lemma 1 Let X,Y be Banach spaces such that X is reflexive, and the inclusion X ⊂ Y is continuous. Assume
that {un} is a bounded sequence in L∞(t0, T ;X) such that un ⇀ u weakly in Lq(t0, T ;X) for some q ∈ [1,+∞)
and u ∈ C0([t0, T ];Y ). Then, u(t) ∈ X for all t ∈ [t0, T ] and

‖u(t)‖X ≤ sup
n≥1
‖un‖L∞(t0,T ;X) ∀t ∈ [t0, T ].
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Let A : H1
0 (Ω) → H−1(Ω) be the linear operator associated with the negative Laplacian. The operator A is

symmetric, coercive and continuous.
Since the space H1

0 (Ω) is included in L2(Ω) with compact injection, as a consequence of the Hilbert-Schmidt
Theorem there exists a nondecreasing sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues of A with zero Dirichlet boundary
condition in Ω, with limj→∞ λj = +∞ and there exists an orthonormal basis of Hilbert {wj : j ≥ 1} of L2(Ω)
and orthogonal in H1

0 (Ω) with Vn := span {wj : 1 ≤ j ≤ n} and {Vn : n ∈ N} densely embedded in H1
0 (Ω), such

that
Awj = λjwj for all j ≥ 1.

For each integer n ≥ 1, we denote by (Sn(t), In(t), Rn(t)) = (Sn(t; t0, S0), In(t; t0, I0), Rn(t; t0, R0)) the
Galerkin approximation of the solution (S(t; t0, S0), I(t; t0, I0), R(t; t0, R0)) of (1)-(3), which is given by

Sn(t) =

n∑
j=1

γ1
nj(t)wj , In(t) =

n∑
j=1

γ2
nj(t)wj , Rn(t) =

n∑
j=1

γ3
nj(t)wj ,

and is the solution of

d

dt
(Sn(t), wj) = 〈∆Sn(t), wj〉+ (f1(Sn(t), In(t), Rn(t), t), wj) ,

d

dt
(In(t), wj) = 〈∆In(t), wj〉+ (f2(Sn(t), In(t), Rn(t)), wj) ,

d

dt
(Rn(t), wj) = 〈∆Rn(t), wj〉+ (f3(Sn(t), In(t), Rn(t)), wj) ,

with initial data

(Sn(t0), wj) = (S0, wj) , (In(t0), wj) = (I0, wj) , (Rn(t0), wj) = (R0, wj) ,

for all wj ∈ Vn, where

γ1
nj(t) = (Sn(t), wj), γ2

nj(t) = (In(t), wj), γ3
nj(t) = (Rn(t), wj).

We denote

f1(Sn(t), In(t), Rn(t), t) := aq(t)− aSn(t) + bIn(t)− γ Sn(t)In(t)

Nn(t)
,

f2(Sn(t), In(t), Rn(t)) := −(a+ b+ c)In(t) + γ
Sn(t)In(t)

Nn(t)
,

f3(Sn(t), In(t), Rn(t)) := cIn(t)− aRn(t),

where
Nn(t) = Sn(t) + In(t) +Rn(t).

On the other hand, if we denote
D(A) =

{
v ∈ H1

0 (Ω) : Av ∈ L2(Ω)
}

,

with the scalar product
(v, w)D(A) = (Av,Aw) ∀v, w ∈ D(A),

then D(A) is a Hilbert space, and D(A) is included in H1
0 (Ω) with continuous and dense injection. Let D(A)+

be the subspace of non-negative functions in D(A).

Remark 2 We note that if Ω ⊂ Rd is a bounded C2 domain, then we have that D(A) = H2 (Ω) ∩H1
0 (Ω), and

moreover the norm induced by (·, ·)D(A) in D(A) and the norm of H2 (Ω) are equivalent.

Now, in our first main result, we prove the uniform boundedness of the attractor A(t) in H1
0 (Ω)3.
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Theorem 3 Suppose that Ω ⊂ Rd is a bounded C2 domain and assume that γ + b
2 + c

2 < λ1 where λ1 is the
first eigenvalue of the operator A on the domain Ω with Dirichlet boundary condition. Then A(t) is uniformly
bounded in t in H1

0 (Ω)3.

Proof. From the inequality (27) of [3], for any t ≥ t0 we have

|Sn(r)|2L2(Ω)+|In(r)|2L2(Ω)+|Rn(r)|2L2(Ω) +

∫ r

t0

(
‖Sn(s)‖2+‖In(s)‖2+‖Rn(s)‖2

)
ds

≤ C1

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)+(t− t0)

)
, (7)

for all r ∈ [t0, t], and all n ≥ 1, where C1 :=
max

{
1, a2 (q+)2 |Ω|

}
min

{
1, 2− λ−1

1 (b+ c+ 2γ)
} .

From (7) and (26) in [3] we now obtain that

(r − t0)
(
‖Sn(r)‖2 + ‖In(r)‖2 + ‖Rn(r)‖2

)
(8)

≤ C1

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω) + (t− t0)

)
+ (q+)2 |Ω| (t− t0)2(2a2+

a

2
k1C)

+ k1C
(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)

)
(t− t0),

for any t ≥ t0, all r ∈ [t0, t], and all n ≥ 1, where C := (2λ1 − b− c− 2γ)−1 and k1 is a positive constant.

In particular, from (8) we deduce

‖Sn(r)‖2 + ‖In(r)‖2 + ‖Rn(r)‖2≤C2

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω) + 1

)
, (9)

for all r ∈ [t0 + 1, t0 + 2] , and any n ≥ 1, where

C2 := max
{
C1 + 2k1C, 2C1 + 4(q+)2|Ω|

(
2a2 +

a

2
k1C

)}
.

Using Lemma 3 in [3], we have that (Sn(·), In(·), Rn(·)) = (Sn(·; t0, S0), In(·; t0, I0), Rn(·; t0, R0)) converges
weakly to the unique solution to (1)-(3) (S(·), I(·), R(·)) = (S(·; t0, S0), I(·; t0, I0), R(·; t0, R0)) in L2(t0, t; (Y +)3),
for all t > t0. Thus, from (9) and Lemma 1, we in particular obtain

‖S(t0+1)‖2+‖I(t0+1)‖2+‖R(t0+1)‖2≤C2

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)+1

)
,

which together with (6) imply that A(t) is uniformly bounded in t in H1
0 (Ω)3.

3 Uniform boundedness of the pullback attractor in H2(Ω)3

The aim of this section is to continue with the analysis of the model in the sense of proving that the attractor
A(t) is uniformly bounded in the space H2(Ω)3 provided some additional assumptions are fulfilled. Our second
main result is the following.

Theorem 4 In addition to the assumptions in Theorem 3, assume moreover that q′ ∈ L2
loc(R;L2 (Ω)), and

satisfies (4). Then A(t) is uniformly bounded in t in H2(Ω)3.

Proof. From inequality (35) in [3], taking t = t0 + 3 and ε = 2, we have

|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω) (10)

≤ (4k3 + 1)

∫ t0+3

t0+1

(
|S′n(θ)|2L2(Ω) + |I ′n(θ)|2L2(Ω) + |R′n(θ)|2L2(Ω)

)
dθ

+ a

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ,
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for all r ∈ [t0 + 2, t0 + 3], and any n ≥ 1, where k3 is a positive constant.
Analogously, and if we take s = t0 + 1 and r = t = t0 + 3 in inequality (25) of [3], we, in particular, have∫ t0+3

t0+1

(
|S′n(θ)|2L2(Ω) + |I ′n(θ)|2L2(Ω) + |R′n(θ)|2L2(Ω)

)
dθ (11)

≤ ‖Sn(t0 + 1)‖2 + ‖In(t0 + 1)‖2 + ‖Rn(t0 + 1)‖2

+ 3(q+)2 |Ω| (2a2 +
a

2
k1C)

+ k1C
(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)

)
,

for all n ≥ 1, where k1 is a positive constant and C := (2λ1 − b− c− 2γ)−1.
From (10) and (11), we obtain

|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω)

≤ (4k3 + 1)
(
‖Sn(t0 + 1)‖2 + ‖In(t0 + 1)‖2 + ‖Rn(t0 + 1)‖2

)
+ (4k3 + 1) 3(q+)2 |Ω| (2a2 +

a

2
k1C) + a

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ

+ (4k3 + 1) k1C
(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)

)
,

for all r ∈ [t0 + 2, t0 + 3], and any n ≥ 1.

Owing to this inequality and (9), there exists a constant C̃1 > 0 such that

|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω) (12)

≤ C̃1

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω) +

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ + 1

)
,

for all r ∈ [t0 + 2, t0 + 3], and any n ≥ 1.
From inequality (36) of [3], and thanks to (12), we have

|∆Sn(r)|2L2(Ω) + |∆In(r)|2L2(Ω) + |∆Rn(r)|2L2(Ω)

≤ 4C̃1

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω) +

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ + 1

)
+ 8a2(q+)2 |Ω|+ 4k2

(
|Sn(r)|2L2(Ω) + |In(r)|2L2(Ω) + |Rn(r)|2L2(Ω)

)
,

for all r ∈ [t0 + 2, t0 + 3], and any n ≥ 1, where k2 is a positive constant.

Therefore, by (7) we obtain that there exists a constant C̃2 > 0 such that

|∆Sn(r)|2L2(Ω) + |∆In(r)|2L2(Ω) + |∆Rn(r)|2L2(Ω) (13)

≤ C̃2

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω) +

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ + 1

)
,

for all r ∈ [t0 + 2, t0 + 3], and any n ≥ 1.

By Theorem 6 in [3], we have that (S(·; t0, S0), I(·; t0, I0), R(·; t0, R0)) ∈ C
(
[t0 + 2, t0 + 3];Y +

3

)
. On the other

hand, in the proof of Theorem 4 in [3], we proved that {(Sn(·; t0, S0), In(·; t0, I0), Rn(·; t0, R0))} is bounded in
L2(t0, t; (D(A)+)3) for all t > t0. Then, in particular, we have that (Sn(·), In(·), Rn(·)) = (Sn(·; t0, S0), In(·; t0, I0),
Rn(·; t0, R0)) converges weakly to the unique solution, (S(·), I(·), R(·)) = (S(·; t0, S0), I(·; t0, I0), R(·; t0, R0)), to
(1)-(3) in L2(t0 + 2, t0 + 3; (D(A)+)3).

6
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Then, by Lemma 1, inequality (13) and the equivalence of the norms |∆v|L2(Ω) and ‖v‖H2(Ω), we have that

there exists a constant C̃3 > 0 such that

‖(S(r; t0, S0), I(r; t0, I0), R(r; t0, R0))‖2H2(Ω)3 (14)

≤ C̃3

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω) +

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ + 1

)
,

for all r ∈ [t0 + 2, t0 + 3], any t0 ∈ R, and (S0, I0, R0) ∈ X+
3 .

Thus, from (14), and using (5), we deduce that there exists a constant C̃4 > 0 such that

‖Ut0+2,t0(S0, I0, R0)‖2H2(Ω)3 ≤ C̃4

(
|(S0, I0, R0)|2L2(Ω)+

∫ t0+3

t0+1

|q′(θ)|2L2(Ω) dθ+1

)
,

for all t0 ∈ R, (S0, I0, R0) ∈ X+
3 .

From this inequality, and the fact that A(t0) = Ut0,t0−2A(t0 − 2), we obtain

‖(v1, v2, v3)‖2H2(Ω)3 (15)

≤ C̃4

(
sup

(w1,w2,w3)∈A(t0−2)

|(w1, w2, w3)|2L2(Ω) +

∫ t0+1

t0−1

|q′(θ)|2L2(Ω) dθ+1

)
,

for all (v1, v2, v3) ∈ A(t0), and any t0 ∈ R.
Now, from (6) and (15), we have that there exists M > 0 such that(

sup
(v1,v2,v3)∈A(t0)

‖(v1, v2, v3)‖H2(Ω)3

)2

≤M +

∫ t0+1

t0−1

|q′(θ)|2L2(Ω) dθ,

for any t0 ∈ R. Finally, the assumption (4) implies the uniform boundedness of A(t) in H2(Ω)3.

4 Conclusions

An infectious disease is considered where all classes, susceptible, infective and recovered, diffuse in space with
the same diffusion constant. The model considered in this paper is more general than the typical SIR model
as it allows some infective individual to move directly back into the susceptible class rather than into the
recovered class. Moreover, the model considered is non-autonomous because there is seasonal recruitment into
the susceptible class.

In Anguiano and Kloeden [2], we prove that the process associated to this model has a unique pullback
attractor A = {A(t) : t ∈ R} in L2, which is obtained by pullback convergence that makes use of information
about the past of the non-autonomous dynamical system. It includes, and is perhaps most realistic, when the
nonautonomity arises from asymptotic autonomity or some sort of temporal recurrence such as periodicity or
almost periodicity.

In the present paper, we have proved that A = {A(t) : t ∈ R} is uniformly bounded in H2, i.e., ∪t∈RA(t)
is bounded in H2, which means the component subsets of pullback attractor are uniformly bounded, then the
pullback attractor is characterized by the bounded entire solutions of the process. In particular, Proposition
7.1 in Kloeden et al. [4] guarantees us that a uniformly bounded pullback attractor A admits the dynamical
characterization: for each t0 ∈ R

x0 ∈ A(t0)⇔ there exists a bounded entire solution (S, I,R) with (S(t0), I(t0), R(t0)) = x0.

Such a pullback attractor is therefore uniquely determinated in H2. Therefore, the pullback attractor give us
information about the state of the disease at a particular time provided the disease has started long enough ago.
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