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Omnidirectional humanoid navigation in cluttered environments
based on optical flow information

Marco Ferro1 Antonio Paolillo2 Andrea Cherubini2 Marilena Vendittelli1

Abstract— In this paper, we address the problem of humanoid
navigation in a priori unknown environments, cluttered by
obstacles. The robot task is to move within the environment
without colliding with obstacles and using only ordinary on-
board sensors, like monocular cameras and encoders. The
proposed approach relies on: (i) optical flow information, to
construct a local representation of the environment obstacles
and free space; (ii) visual servoing techniques, to achieve safe
motion within the environment while regulating appropriate
visual features and the robot internal configuration. In case of
navigation in a straight corridor, it can be formally proved that
the robot converges to the corridor bisector. With respect to
previous works, the algorithm proposed here does not make
use of any information about the environment, and exploits
the humanoid omnidirectional walking capability to achieve
safe navigation in narrow passages. The approach is validated
through simulations and experiments with NAO.

I. INTRODUCTION

In recent years, the interest of the robotics community has
turned to humanoids, with the ultimate goal of deploying
them in partially unknown environments where they must
accomplish tasks while avoiding obstacles.

Sensor-based humanoid navigation in unknown environ-
ments is, however, still at its dawn. Among the not so
rich literature on the subject it is worth citing sensor-based
localization and navigation techniques, historically developed
for wheeled robots, that have been transferred to humanoids.
For instance, in [1], humanoid localization and path planning
are realized, for a tour guide robot, by relying on potential
fields. The authors of [2] present a learning-based approach,
achieving navigation among obstacles through a pair of
cameras and a laser range finder.

The specificities of humanoids have required in some cases
adaptations of the original methods. For example, in [3] the
robot footstep generator is based on visual feedback to obtain
a dynamically stable walking. Furthemore cameras are often
the most popular choice in humanoids rather than lidars or
other range sensors used in wheeled mobile robots. Visual
SLAM algorithm relying on depth information provided by
a kinect sensor is used in [4], while a monocular camera
is sufficient in [5] to achieve humanoid navigation using
a view-based approach [6]. The drawback of view-based
approaches is that they require the environment to be visited
beforehand by the robot, to record a sequence of reference
images. Instead, in [7], a humanoid navigates in networks
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of unknown corridors, connected through curves and junc-
tions, using a visual servoing technique and images from a
monocular camera. Similarly, in [8], autonomous navigation
in a featureless maze is achieved through classification of
image regions, and subsequent topological map construction.
This approach does not allow a real-time performance as the
robot must regularly stop walking to process the images and
distinguish walls and floors.

In most navigation works, humanoid motion is modelled as
that of a unicycle, with the linear velocity constrained to lay
on the sagittal plane. While this approach proves suitable for
modeling human motion [9] and for long distance navigation
in uncluttered environments, it does not take advantage of the
omnidirectional walk capability of humanoids.

In this paper we do not take any hypothesis on the
environment geometry, nor assume any a priori information
about the environment, except that the robot moves on a
flat floor, and allow for ominidirectional walk when this
is needed to cross narrow passages among obstacles. In
addition, differently from [7], there is no need to introduce
a logic when navigating in maze-like environments.

The paper is organized as follows. Sect. II presents the
problem formulation. Our perception and control methods
are outlined respectively in Sect. III and IV. Simulation
and experimental results are presented in Sect. V, and we
conclude in Sect. VI.

II. PROBLEM DESCRIPTION AND PROPOSED APPROACH

The problem approached in this paper is the avoidance
of workspace obstacles during navigation of a humanoid
robot, without any a priori knowledge of the environment
geometry and relying on encoders and visual information
from a monocular camera.

Given these working conditions, the most direct approach
would be to steer the robot toward regions of maximum
clearance from image obstacles. This, however, does not
guarantee avoidance of obstacles in the workspace unless
the robot footprint is somehow taken into account. In some
situations, for example, crossing of narrow passages by a
humanoid is only possible if the robot body is oriented so
as to reduce the lateral encumbrance.

We propose in this work an approach that allows the
navigation of humanoids in a priori unknown environments,
populated by obstacles of any shape, possibly with narrow
passages, that require appropriate robot body reorientation.

The main ingredients of our approach are: (i) processing
of visual information to distinguish the plane where the
robot can safely walk from the obstacles’ images; (ii) visual
servoing techniques to regulate a suitable visual feature to
a desired value which maximizes the averaged distance of
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(a) Optical flow. (b) Planar flow. (c) Domimant plane.

Fig. 1. Main steps of the image processing algorithm.

obstacles images to the image plane ordinate axis; (iii)
omnidirectional walking to cross narrow passages.

To allow proper orientation of the robot body in the
workspace while performing the visual task we control the
camera orientation with respect to the robot body and enforce
a nonholonomic constraint on the camera motion that aligns
the direction of motion with the robot gaze. In other words,
the robot always moves toward the direction it is looking at.

Note that maximizing the distance of obstacles to the
image center does not imply that the robot is moving with the
maximum clearance to all the workspace obstacles. However,
in case of navigation along a corridor, convergence to the
corridor bisector can be formally proven, similarly to [7].
With respect to [7], the approach proposed here does not
rely on geometric assumptions about the environment and it
allows for the presence of obstacles of any shape and uses
omnidirectional walk to cross narrow passages.

III. PERCEPTION

The perception algorithm extracts from the camera frames
the information necessary to compute the visual feature used
to control the robot navigation, as described in Sec. IV.
In particular, pixels belonging to a dominant plane are
discriminated from those that are outside this plane. Under
the assumption that the ground plane occupies at least 50%
of the image, all pixels outside this dominant plane are
considered as obstacles.

The main steps of the adopted algorithm, fully described
in [10], are shown in Fig. 1 and summarized here. At each
instant of time t, compute (i) the optical flow fo(u, v, t), and
(ii) the planar flow fp(u, v, t) for each pixel with coordinates
(u, v)T belonging to a ROI of the original image. The optical
flow (red arrows in Fig. 1a) is the apparent motion of the
features. Instead, the planar flow, shown with cyan arrows
in Fig. 1b, and computed using a RANSAC-based method,
is the motion of the features obtained by assuming that they
belong to the same dominant plane (the ground).

The thresholded difference between fo and fp

d(u, v, t) =

{
0, if ‖fo(u, v, t)− fp(u, v, t)‖ < ε,

1, otherwise,
(1)

determines the dominant plane, and is represented as a binary
image (black pixels correspond to the ground). The features
satisfying the first condition in (1) are considered inliers for
the next iteration of the RANSAC-based method, to robustly
estimate the homography underlying the computation of the
planar flow. Erosion and dilation operators are further applied
to d, to remove salt-and-pepper noise and obtain the final
image in Fig. 1c.

Pixels outside the dominant plane belonging to a same
connected region form image obstacles Oi. For each of these
obstacles we compute the centroid abscissa xic in normalized
image coordinates. Then, we take the average of the centroids
abscissae on the left, and on the right, respectively as:

xlc = 1
nl

∑nl

i=1 xic , xic < 0

xrc = 1
nr

∑nr

i=1 xic , xic > 0,
(2)

where nl (res. nr) is the number of obstacle centroids with
negative (res. positive) abscissa. If no obstacle is detected
or present on the image plane, the value of xlc (xrc ) is set
equal to −wi/2 (wi/2), where wi is the width of the image
plane. A low-pass frequency filter eliminates noise and sway
motion effect on xlc and xrc (shown as red dots in Fig. 1c).

Finally, the visual feature used to control the robot motion
is chosen as the middle point between xlc and xrc :

xm =
1

2
(xlc + xrc). (3)

Figure 2 illustrates the position of the obstacle centroids
and of xm in the example case of a corridor with an obstacle.

IV. VISION-BASED CONTROL

Consider a humanoid robot, like NAO, as depicted in Fig. 3.
The frames of interest for our work are: (i) Fw, a world
inertial frame; (ii) the robot frame Fr, placed in the middle
of the robot feet; (iii) the camera frame Fc, with origin
in the optical center of the camera and the z-axis aligned
with the focal axis. The camera pan angle is qp (positive
clockwise, see Fig. 3), and the orientation of the robot frame
with respect to the world frame is denoted with θ. Hence,
the projection of the camera pose on the ground is defined
by (x, y, θc)

T , with x and y the optical center world frame
coordinates, and θc = θ + qp the orientation of the optical
axis with respect to the world frame axis yw.

The cartesian task consists of making the humanoid safely
walk among obstacles (for example, the walls of a corridor).
This may require that the robot body properly aligns with the
direction of maximum clearance to the obstacles to allow
crossing of narrow passages without collisions, while the
robot gaze and the linear velocity direction are kept aligned.

To achieve this task, we first determine in Sect. IV-A the
relationship between the velocity of the visual feature xm
and the robot velocity input available for control. Then, we
derive a controller in Sect, IV-B that, using this visual infor-
mation, steers the robot among the environment obstacles.
In particular, the defined control law guarantees exponential
convergence of the camera frame to the center of a corridor
with the optical axis aligned with the corridor bisector. Based
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Fig. 2. Example of image plane obstacles during robot navigation.

on the size of the traversable space, the robot body is oriented
so as to reduce its transversal encumbrance. This behaviour
is obtained by exploiting the humanoid omnidirectional walk
allowing robot velocity directions outside its sagittal plane.

A. Dynamics of the centroid abscissa
The dynamics of the middle point xm can be related to

vc, the 6-D velocity of the camera, expressed in the camera
frame, by the 1× 6 row interaction matrix Lm [11]:

ẋm = Lmvc. (4)

To derive Lm, we must first compute the interaction matrix
Lis of a generic obstacle centroid abscissa xis (s = {l, r},
depending on the side of the image that is considered). This
can be obtained using image moments [12]:

Lis =
1

Ni,s

Ni,s∑
j=1

(
− 1

zc,j
0

xj
zc,j

xjyj −1− x2j yj

)
,

(5)
with Ni,s the obstacle area in pixels, (xj , yj) the normalized
image coordinates of the obstacle points and zc,j the depth
of the j-th point in the camera frame. Ideally, to obtain a
good approximation of Lm, all the zc,j should be precisely
estimated. However, this requires a 3D reconstruction algo-
rithm that is out of scope in this work. Instead, here, we
have decided to overestimate the pixel depths, by projecting
them on the ground plane. To this end, the ground plane
position in the camera frame is derived from the robot pro-
prioception. In the experimental section, we will show that
this approximation provides satisfactory results. A second
approximation underlying (5), is that the obstacle is always
entirely visible. In fact, when this is not the case, the visible
centroid will not always correspond to the 3D centroid of the
same object. However, when the dynamics of both camera
and environment are slow with respect to the control rate (as
in this case), this approximation will not affect the system
performance.

To get Lm from the Lis , we plug (2) into (3) and derive:

Lm =
1

2

(
1

nl

nl∑
il=1

Lil +
1

nr

nr∑
ir=1

Lir

)
, (6)

with indices il and ir accounting respectively for left and
right centroids.
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Fig. 3. NAO frames and variables of interest to the navigation algorithm.

The dynamics of the visual feature (4) can now be related
to the robot 6-D velocity vr = (vx, vy, vz, ωx, ωy, ωz)

T via

ẋm = Lm
cW r vr = Jvr, (7)

with cW r the twist velocity transformation matrix:

cW r =

(
cRr

cSr
cRr

0 cRr

)
, (8)

cRr the rotation matrix expressing the robot frame with
respect to the camera frame, and cSr the skew matrix
associated to the translation of the robot frame with respect
to the camera frame. Both cRr and cSr can be deduced from
the robot proprioception.

Assuming a planar motion of robot and camera and filter-
ing out the lateral motion due to walking (sway motion)1, we
can consider vx and vy as the the component of the averaged
velocity of the robot frame Fr in the plane. Together with ωz
this is a velocity input usually available for control in most
humanoid robots. In addition, to allow independent align-
ment of optical axis and robot sagittal plane, we consider
as control input also the neck joint yaw velocity q̇p which
controls the pan angle.

In summary, the robot velocity inputs available for control
affect the middle point dynamics as follows:

ẋm = Jxvxvx + Jxvyvy + Jxωz
ωz + Jpq̇p (9)

with Jxvx , Jxvy , and Jxωz
the first, second and sixth entry of

the row matrix J . Note that the effect of q̇p on the feature
velocity is identical to that of ωz under the assumption that
camera pan and robot rotation axes are aligned. Taking this
assumption, we consider Jp = Jxωz

in the derivations that
follow.

B. Controller

1) Definition of the error: The objective of this section
is to define a controller that orients the robot body along
the direction of maximum clearance to the environment
obstacles, while keeping the robot velocity direction aligned
with its gaze, i.e., moving the robot toward the traversable
space perceived through visual information.

1The effect of camera motion due to walking on the visual feature
dynamics is filtered at the image processing level, as mentioned in Sect. III.

77



This behavior is obtained by regulating qp, the relative
angle between the head and the robot sagittal plane, to a
desired value q∗p and a properly defined visual error to zero.
In defining the visual error a reasonable choice would be to
keep the obstacles symmetrical with respect to the vertical
axis of the image plane. The error vector is then defined as
e = (xm, qp − q∗p)T , where xm is defined by (3).

The following proposition states the relationship between
the visual error regulation and the robot workspace paths
with reference to a corridor navigation scenario.

Proposition 1: Assuming navigation along a straight cor-
ridor without obstacles, regulation of the visual feature xm
to zero implies convergence of the camera position and
orientation along the corridor bisector.

Proof: Placing the origin of the world reference frame Fw
at the center of the corridor, the proposition claim is formally
expressed through the following implication

xm → 0⇒ (x, θc)
T → (0, 0)

T
, (10)

where θc = θ + qp is the orientation of the optical axis of
the camera with respect to the corridor bisector.

The corridor guidelines, i.e., the lines at the intersection
between the floor and the walls, are represented through
the world frame homogeneous coordinates of two points
belonging to each line:

r̃1 = (−1, 0,−d)T and r̃2 = (−1, 0, d)T

where d is the semidistance between the two guidelines.
These lines project on the image plane as:

r̂1 = P−T r̃1 = (a1, b1, c1)
T , r̂2 = P−T r̃1 = (a2, b2, c2)

T

where P is the projection matrix relating 3-D points of the
cartesian space with 2-D points of the image plane [13]:

P =

 Sucθc −Susθc −Suxcθc
−Svsγsθc −Svcθcsγ Sv(hcγ + xsγsθc)
cγsθc cγcθc hsγ − xcγsθc

 .

(11)
with γ the camera tilt angle around xc (for their sign, refer to
Fig. 3) and Su, Sv the focal lengths in pixel along the image
plane axes. For the sake of brevity, in (11) we have used c(·)
and s(·) as abbreviations of cos(·) and sin(·), respectively.
The ordinate y of camera position has been omitted since
it is irrelevant for the considered control problem (i.e., only
the distance to the bisector is controlled and not the position
along the corridor as the robot goal is to move forward). For
details on the computation of P , refer to [7].

Under the considered working conditions, the corridor
walls appear on the image plane as two triangles (see in
Fig. 2), with vertexes V i, i = 1, . . . , 3 and V j , j = 4, . . . , 6.
Computed xlc and xrc respectively as the averaged abscissa
of each of the two triangles, using the equation of the
projected lines, we have:

xm =
1

2
(xlc + xrc) = k1

x

cθc
+ k2 tan θc, (12)

with k1 = Su/6h(hicγ/Sv − 2sγ), k2 = −Su/6(hisγ/Sv +
2cγ) constants depending on the camera intrinsic and extrin-
sic parameters, and on the height of the image plane hi.

Fig. 4. Distance computation between left and right obstacles. Green
curves highlight the contours of the detected obstacles. Blue dots are the
corresponding centroids, red dots are the filtered centroids with abscissae
xlc and xrc . The purple dot is the middle point with abscissa xm. The
horizontal component dx,min of the minimum distance (cyan line) between
left and right obstacles is computed on each frame to automatically generate
the reference value q∗p .

From (12) it follows that xm = 0 implies x = −k2/k1sθc .
Of the locus of points described by this last equation only
(x, θc) = (0, 0) is a stable equilibrium point. In fact, the
visual task xm = 0 is satisfied at all times only if the camera
is aligned with the corridor bisector due to the enforced
mobility model of the camera that keeps the optical axis
always aligned with the direction of motion (see eq. (15) in
next Sect. IV-B.2). In other words, if the robot does not move
along the bisector the camera will move toward one of the
two corridor walls. This will perturb the symmetric position
of the obstacles centroids in the image plane provided that

k2/k1 > 0⇒ tan γ >
hi
2Sv

, (13)

i.e., the robot camera is sufficiently tilted toward the floor, a
condition satisfied by our operational setup. Equation (13) is
derived from geometric reasoning, omitted here for brevity.
�

2) Modeling the error dynamics: Using eq. (9), the error
dynamics can be written as{

ẋm = Jxvxvx + Jxvyvy + Jxωz
ωz + Jxp up,

q̇p = up.
(14)

Aligning the robot linear velocity with the robot gaze:

vx = v sin qp
vy = v cos qp

(15)

and assigning to the robot speed v =
√
v2x + v2y a positive

constant value, the remaining inputs available for the visual
task and the regulation of the camera orientation with respect
to the robot are ωz and up.

A simple control guaranteeing exponential convergence of
the error to zero is:

ωz = (Jxωz
)−1(−kmxm − Jxvxvx − J

x
vyvy)− up

up = −kp(qp − q∗p),
(16)

where we have set Jp = Jxωz
and used km and kp to denote

positive control gains. The analisys of the singularities of the
above control law is quite complicated and is not presented
in this work. However, during validation the algorithm never
incurred in a singularity. Future work includes this analysis.

Note that eq. (15) represents the robot velocity in the
robot frame and is aligned with the camera optical axis. With
respect to the world reference frame we have that the velocity
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Fig. 5. Snapshot from the simulation of a curve negotiation.

vector is oriented as θc = θ + qp resulting in the following
(averaged) planar motion of the camera

ẋ = v sin θc
ẏ = v cos θc

(17)

according to which the camera orientation is always tangent
to its cartesian path (with sway motion filtered out). This is
the argument used in the proof of Proposition 1.

V. SETUP AND VALIDATION

For the validation of the proposed navigation algorithm, we
used the small humanoid NAO. This robot is equipped with
two cameras, mounted on the top and bottom of the forehead.
Since the robot shoulder could occlude the field of view of
the bottom camera when NAO turns the head, we chose to
use the top camera. The tilt angle was set to the constant
γ = 0.22 rad. This angle allows a proper view on the
scene, and also free motion of the pan angle qp without
risking collisions between the head and the shoulders. The
images were acquired with a resolution of 320× 240 pixels.
The image processing described in Sect. III were performed
on a ROI of 320 × 120 pixels placed at the bottom of
the image. The optical flow has been computed through
the Lucas-Kanade implementation available in the OpenCV
open-source library. NAO is also equipped with a built-in
walking engine by which it is possible to send to the robot
the linear and angular velocity command. The desired pan
angle of the head q∗p has been set according to horizontal
component of the minimum distance dx,min (see Fig. 4)
between the images of left and right obstacles:

q∗p =


qp,max, if dx,min < tl
0, if dx,min > th

qp,max − (
dx,min−tl
th−tl ) ∗ qp,max, if tl < dx,min < th

(18)
where tl =

{
t−l , t

+
l

}
and th =

{
t−h , t

+
h

}
, experimentally

found, are evaluated through an hysteresis thresholding, to
get a measurement of dx,min robust to the image noise, and
such that tl < th.

In order to validate the method, we performed both sim-
ulations, using NAO model in the V-REP environment, and
experiments with the real robot.

A. Simulations
A maze-like environment has been built tailored to the size
of NAO. In all the presented simulations, the robot speed and

(a) (b) (c)

Fig. 6. NAO navigates along a straight corridor and avoids an obstacle by
walking sideways.

the controller gains values are respectively v = 0.0952 m/s,
km = 0.4, kp = 0.05, while in the estimation of the dominant
plane it was set ε = 0.15.

With a first set of simulations, we validated the effective-
ness of the approach to make NAO navigate at the center
of (not necessarily straight) corridors, negotiate a curve and
turning a T-junction. In these cases, no obstacles other than
the walls are considered, and the navigation algorithm is run
with the camera aligned with the torso (q∗p = 0).

Of the four simulations documented in the video clip
accompanying the paper, we report here snapshots of two
significant cases: curve negotiation and avoidance of obsta-
cles in a corridor.

Figure 5 reports a snapshot from the simulation environ-
ment. In this snapshot, the robot is at the end of a curve
negotiation task execution. The path followed by the robot
is reported in yellow. In the upper left corner the output of
the image processing and critical control signals for online
monitoring. In the upper right corner a top view of the scene.
As can be appreciated from the video clip accompanying the
paper, NAO first detects only the corridor walls as obstacles
and converges to the corridor center. When it is close to the
curve one of the two walls disappears from the image, the
front wall enters in the camera view and the resulting single
obstacle has a centroid shifted on the right, causing the robot
to turn in the right direction.

The accompanying video also shows the robot turning at
a T-junction. Note that, differently from [7], no logic is used
to classify the visited places (i.e., straight corridor, curve,
T-junction,...) since the robot motion only depends on the
position of the image obstacles. At the T-junction a direction
of motion could of course be commanded if a specific task
would require the robot to move in a preferred direction.

In the second simulation, we tested the effectiveness of the
navigation algorithm when obstacles other than a corridor
walls are present in the environment. In particular, we put
a plant in the middle of a corridor with non-parallel walls,
to create a narrow passage that the robot has to cross by
maximizing the clearance to the obstacles. The reference pan
angle q∗p is computed in accordance to eq. (18), where we
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(a) (b) (c) (d)

Fig. 7. Experiment with a real NAO. Top: snapshots of the robot moving in the corridor. Bottom: corresponding image procesisng. In the first snapshot
a narrow passage is detected and used to set the desired value of q∗p for camera rotation. When the camera orientation is equal to the desired value, the
robot reaches the passage, as shown in the second snapshot. The third and the fourth snapshots show the robot re-aligning the camera with the sagittal
plane, in correspondence of a wider free space.

set tl = {90, 130}, tr = {110, 140}. Snapshots of this last
simulation are shown in Fig. 6. The robot starts walking off
the corridor center, but it quickly converges to its bisector.
Next, when the plant becomes visible in the image plane, the
minimum distance dx,min between left and right obstacles
decreases and drops below tl.

The camera changes orientation with respect to the torso
of the robot, that rotates to reduce the visual error, according
the control law (16). This induces the robot to walk sideways
reducing the lateral encumbrance while traversing the narrow
passage. When the obstacle disappears from the image, the
minimum distance dx,min exceeds th and the robot aligns the
camera again with the torso, restoring the standard walking.

B. Experiments

Our approach has been validated on a real NAO in an
environment similar to the virtual scenarios and adapted to
its size. The parameter values used in the experiment are
v = 0.07 m/s, kw = 0.5, kp = 0.05, tl = {110, 120},
th = {125, 130}. Snapshots of the experiment and the
corresponding processed images are shown in Fig. 7. A
narrow passage is created at the beginning of the corridor, so
the camera rotates to the desired value q∗p = 90◦ when the
robot begins to move. The direction of the gaze determines
the direction of the driving velocity, so the robot moves
sideways when the walls are closer. When the space between
walls becomes wider the camera rotates to reach the desired
value of q∗p = 0◦ and realigns with the robot sagittal plane.

VI. CONCLUSIONS

In this paper we addressed the problem of humanoid navi-
gation in environments populated by obstacles. The proposed
approach is effective for humanoid navigation in corridors
with curves and T-junctions, and obstacles placed along
the corridors. The method uses optical flow information to
reconstruct a local representation of the obstacles. A visual
controller provides the robot velocity command for safe
navigation, and the angle command to turn the body for
passing through narrow passages. To validate the approach,

we performed both simulation and experiments with the
humanoid robot NAO. Future work will aim at: improving
the image processing to make it more robust to environmental
conditions, analysing the robusteness of the approach with
respect to actuation inaccuracies and unmodeled phenomena
induced by impact dynamics, extension to non-flat terrain
and dynamic obstacles.
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