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Abstract

One of the main issues in the statistical literature of extremes concerns the tail index estimation,
closely linked to the determination of a threshold above which a Generalized Pareto Distribution
(GPD) can be fitted. Approaches to this estimation may be classified into two classes, one using
standard Peak Over Threshold (POT) methods, in which the threshold to estimate the tail
is chosen graphically according to the problem, the other suggesting self-calibrating methods,
where the threshold is algorithmically determined. Our approach belongs to this second class
proposing a hybrid distribution for heavy tailed data modeling, which links a normal (or lognor-
mal) distribution to a GPD via an exponential distribution that bridges the gap between mean
and asymptotic behaviors. A new unsupervised algorithm is then developed for estimating the
parameters of this model. The effectiveness of our self-calibrating method is studied in terms
of goodness-of-fit on simulated data. Then, it is applied to real data from neuroscience and
finance, respectively. A comparison with other more standard extreme approaches follows.

Keywords: Algorithm; Extreme Value Theory; Gaussian distribution; Generalized Pareto Dis-
tribution; Heavy tailed data; Hybrid model; Least squares optimization; Levenberg Marquardt
algorithm; Neural data; S&P 500 index
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1 Introduction

Modeling non-homogeneous and multi-component data is a problem that challenges scientific re-
searchers in several fields, as e.g. in climatology, finance & insurance, meteorology, neuroscience,
... (see e.g. [10, 26, 31, 32, 46, 49, 51]). In general, it is not possible to find a simple and closed
form probabilistic model to describe such data. That is why one often resorts to non-parametric
approaches, such as e.g. kernel density estimation ones (see e.g. [23, 40, 54]) or non-parametric
Bayesian methods (see e.g. [2,39,53]), just to name a few. However, when the multiple components
are separable, parametric modeling becomes again tractable. Several hybrid models have been
proposed in such context, combining two or more densities (see e.g. [5, 25,27,31,32]).
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In this study, we tackle the general problem in a specific case, when data exhibit heavy tails.
Extreme behaviors that are described by heavy tail modeling, can be observed for a large number of
phenomena, natural (from the big Dutch floods of 1952 to the recent earthquake in Italy), financial
(e.g. the sub-prime crisis in North America or the Sovereign debt crisis in Europe), medical (e.g. the
avian influenza), technological (e.g. Fukushima) or others. One mathematical field, Extreme Value
Theory (EVT), which started with Tippett and Fisher (1928), is totally devoted to the analysis
and modeling of the extremes (see [1,8,15,20,29,47,48] for general references). Studies on extremes
were developed in many fields, as, for instance, in financial markets and actuarial mathematics (see
e.g. [16, 18, 35] ), in epidemiology (see e.g. [19] for the first introduction of EVT in epidemiologic
methods), in signal processing (see e.g. [4,17] when considering the general problem of false-alarms
probability determination, or [14] for the spike detection in neural signals in biomedicine, or [36]
for the detection of a binary signal in additive noise in telecommunication, or [56] for the damage
detection in machine diagnostics).

Introducing EVT helps managing the many catastrophes that our society is facing with, unfortu-
nately, an observed increasing trend of occurrence of extreme events since the beginning of the 20th
century (see [6]), but also helps improving the standard data processing by taking into account the
tail information.

Whereas EVT focuses on how to study and model extremes using the information in the tail of the
distribution only (which is the strength of this theory, even if sometimes also its weakness in practice
as tail data are scarce by definition), it is also very useful to combine it with standard statistics
developed for the main information given in the data. To extract the important information given by
extremes and to highlight as well the information contained in the entire underlying distribution,
it is natural to take into account the dissymmetry of the data weights above a high threshold
(tail) and below it (around the mean). Different methods have been proposed so far to do it (see
e.g. [5, 25,27,31,32,37]).

The main goal of this paper is to develop a self-calibrating method to model heavy tailed data,
the choice of this class of unsupervised procedures being clearly to ease practical implementations
(in particular when complexity burden and/or delay processing are critical) and to enlarge its
applicability. Indeed, the difficulty faced when applying standard methods of EVT as the Peaks
Over Threshold (POT) approach (first introduced by Davison and Smith in the 90’s; see [7]),
the Hill method (see [21]), or the QQ-estimator one (see [28]), is that they are graphical ad hoc
approaches.

This self-calibrating method may be seen as two-folds: when (i) looking for a full modeling for non-
homogeneous, multi-component and heavy tailed data, (ii) focusing on the tail and evaluating in an
unsupervised way the high threshold over which the tail will be modeled; it might then constitute
an alternative EVT method to standard ones as e.g. the POT approach.

In this paper, we introduce a hybrid model with several components including a Generalized Pareto
Distribution (GPD), to take into account the heavy tail present in the data. Without loss of
generality, we assume continuous and asymmetric right heavy tailed data, a similar treatment being
possible on the left tail (see [10]). How many components of the hybrid model to consider and how to
choose them? Since we are interested in fitting the whole distribution underlying asymmetric heavy
tailed data, the idea is to consider both the mean and tail behaviors, and to use limit theorems for
each one (as suggested and developed analytically in [27]), in order to make the model as general
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as possible. Therefore, we introduce a Gaussian distribution for the mean behavior, justified by
the Central Limit Theorem (CLT), and a GPD for the tail, since the Pickands theorem (see [41])
tells us that the tail of the distribution may be evaluated through a GPD above a high threshold.
To bridge the gap between mean and asymptotic behaviors, we use an exponential distribution.
A different weight has been assigned to each component in order to have a better handling of the
extremes. The resulting three-components hybrid model is called G-E-GPD model. Note that
the GPD is the fixed component of this heavy tailed model, but the two other components could
be chosen differently, depending on the data, and even reduced to one component (as developed
earlier in [11,12]). Indeed, specific treatment could be done to fit the exact distribution of the mean
behavior for which we have much data, if we would like to avoid the use of the limiting normal
distribution. For instance, when having skewed distribution near the mean, which is typical for
insurance claims data, the normal distribution should be replaced by a lognormal without loss of
generality (see e.g. [25]). It would not change the idea of the self-calibrating method. Concerning
the number of components, we point out that the model needs at least two-components, including
the GPD, for the method to be workable. Indeed, the threshold over which the GPD is fitted
(that we call the tail threshold), is determined in the algorithm as the junction point between the
GPD and another distribution. Contrary to standard EVT approaches, it means that we need
some information before the tail threshold to benefit from this self-calibrating method (further
investigation will be made to adapt the method when partial information is available before the
tail threshold).

Moreover, the intermediate distribution (here an exponential) is used as a leverage to give full
meaning of tail threshold to the last junction point between the GPD and its neighbour (the
intermediate distribution). The distance between two successive junction points will automatically
tend to 0 when introducing unuseful components.

An iterative unsupervised algorithm is developed for estimating the parameters of the three-
components hybrid model. It starts by enforcing the continuity and the differentiability of the
three components at the two junction points, then proceeds in an iterative way to determine suc-
cessive thresholds and parameters of the involved distributions. It provides a judicious weighting
of the three distributions as well as a good location for the junction points or thresholds, espe-
cially for the tail threshold that points out the presence of extremes. This algorithm is based, for
each iteration, on the resolution of numerical optimisation problems in least squares sense, using
the Levenberg Marquardt (LM) method (e.g. [30, 33]). We study its convergence analytically and
numerically.

The performance of this self-calibrating method is studied in terms of goodness-of-fit on simulated
data from G-E-GPD Monte-carlo simulations. Given the very good performance, we apply the
method on real data, considering neural data and the S&P500 log-returns. A comparison with
other existing graphical approaches is also given.

The paper is organized as follows. In section 2 we introduce our hybrid model. The method and
its unsupervised iterative algorithm are developed in Section 3. Simulation results are presented in
Section 4, and applications of the method on real data in Section 5. Results are discussed, in both
sections, accompanied with a comparison of those obtained via standard methods. Conclusions
follow in the last section.
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2 Hybrid three-components model

We consider a piecewise model where each component represents a different behavior of the data,
which might be heterogeneous or not. We assume that the data admit a continuous (non-degenerate)
distribution, and accordingly, we introduce a general hybrid probability density function (pdf),
with some smoothness constraints. Without any loss of generality, we consider a three-components
model. More precisely, the hybrid model we propose, links three different distributions to each other
at two junction points, denoted by u1 and u2: a Gaussian distribution to model the mean behavior
of the data, a GPD to represent the tail and an exponential distribution to bridge the gap between
these two behaviors. This model, denoted by G-E-GPD (Gaussian-Exponential-Generalized Pareto
Distribution), is characterized by its pdf h expressed as:

h(x; θ) =


γ1f(x;µ, σ) if x ≤ u1,
γ2e(x;λ) if u1 ≤ x ≤ u2,
γ3g(x− u2; ξ, β) if x ≥ u2,

The different parameters are gathered in the vector denoted by θ and are described hereafter. To
begin, γi, i = 1, 2, 3 stand for the weights associated to each component. The parameters µ ∈ R,
and σ ∈ R∗+ = R+\{0} represent, respectively, the mean and the standard deviation of the Gaussian

pdf f given by: f(x;µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , ∀x ∈ R. The parameters ξ ∈ R and β ∈ R∗+ denote,

respectively, the tail index and the shape parameter of the GPD pdf g, defined by:

g(x; ξ, β) =


1

β
(1 + ξ x/β)

−1− 1
ξ if ξ 6= 0

1

β
e
− x
β if ξ = 0

, ∀x ∈ D(ξ, β),

where

D(ξ, β) =

{
[0,∞) if ξ ≥ 0

[0,−β
ξ ] if ξ < 0

.

Finally, λ ∈ R∗+ indicates the intensity parameter of the exponential pdf e defined by

e(x;λ) = λe−λx, ∀x > 0.

In the sequel, we consider that the transitions from one behavior to another are smooth. As a
consequence, we constraint the resulting hybrid pdf h to be C1-regular. Note that by combining
this constraint and the assumption of heavy tailed data, the number of free parameters and hence
the size of θ will be reduced. Let us present these assumptions.

Assumptions of the model

The first two assumptions are part of the construction of the G-E-GPD model.

(i) First we assume, by construction, that the data distribution admits a pdf h. This means that

h is non-negative and satisfies

∫
RRR
h(x; θ)dx = 1, i.e.

γ1F (u1;µ, σ) + γ2
(
e−λu1 − e−λu2

)
+ γ3 = 1, (2.1)
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where F denotes the cumulative distribution function (cdf) of the Gaussian distribution.

(ii) We focus on heavy tailed data. This implies that h belongs to the Fréchet maximum domain
of attraction (ξ > 0) and therefore β = ξu2 (see e.g. [15], p. 159).

The main constraint is to require a smooth pdf and to further reduce the number of free-parameters,
that is why we have imposed h to be of class C1;
(iii) h is continuous and differentiable at the two junctions points u1 and u2.

Assumptions (i)-(iii) give rise to six equations relating all model parameters:
β = ξ u2; γ1 = γ2

e(u1;λ)
f(u1;µ,σ)

;

λ = 1+ξ
β ; γ2 =

[
(λβ − 1) e−λu2 +

(
1 + λ F (u1;µ,σ)

f(u1;µ,σ)

)
e−λu1

]−1
;

u1 = µ+ λσ2; γ3 = β γ2 e(u2;λ).

(2.2)

Consequently, the parameter vector θ retains only the free parameters and we set θ = [µ, σ, u2, ξ].
It is then straightforward to deduce from h the expression of the cdf and quantile function associated
with the G-E-GPD model. The G-E-GPD cdf, denoted H, is given by:

H(x; θ) =


γ1F (x;µ, σ) if x ≤ u1,
γ1F (u1;µ, σ) + γ2

(
e−λu1 − e−λx

)
if u1 ≤ x ≤ u2,

1− γ3
(
1 + ξ

β (x− u2)
)− 1

ξ if x ≥ u2,
(2.3)

and the corresponding quantile function by:

H−1
(
p; θ
)

=



F−1
(
p

γ1
;µ, σ

)
if p ≤ p1 := γ1F (u1;µ, σ),

λ−1 log

(
γ2

p1 − p+ γ2e−λu1

)
if p1 ≤ p ≤ p2 := 1− γ3,

β

ξ

((
1− p− p2

γ3

)−ξ
− 1

)
+ u2 if p ≥ p2,

where the notation Λ−1 denotes the inverse function of the function Λ.

A classical problem that arises when dealing with parametric models concerns how to estimate the
model parameters. To answer this problem, we develop an iterative algorithm for estimating the
parameters vector θ. This algorithm is an extension of the one built in [9,11,13]. For each iteration,
it is based on the numerical resolution of optimization problems in least squares sense, using the
Levenberg Marquardt (LM) method (see [30,33]). We describe it and study its convergence in the
next session.

3 Iterative algorithm for hybrid model parameters estimation

Here we describe the iterative algorithm suggested to estimate the G-E-GPD model parameters,
which self-calibrates the model, in particular the threshold above which a Fréchet distribution fits
the extremes. This algorithm follows the same logic as the one developed for two-components
in [9,11,13]. We will recall it in the appendix when studying its convergence. For each iteration, it
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breaks down the problem of the parameters vector θ estimation into two nested subproblems; the
parameters p = [µ, σ, u2] and ξ are estimated alternatively. Indeed, for each iteration, we estimate
the parameters vector p by minimizing the Squared Error (SE) between the empirical cdf and the
estimated one, when considering the estimate of ξ of the previous iteration. Thereafter, ξ will be
estimated again, as well, by minimizing the SE between the empirical cdf and the estimated one,
using, this time, the estimated p vector. Evidently, this procedure starts by fixing initial parameters
and ends when a stop condition is satisfied. Small modifications on the parameters vector, the data
scale, and the stop condition, are provided when going from the two- to the three-components
algorithm, and will be detailed later on. These modifications have no influence on the functional
principle of the algorithm, neither on how to study its convergence. In this convergence study, given
in the appendix, we prove analytically the existence of a stationary point, then show numerically
that the stationary point is attractive and unique. This last part is still an open analytical question.

Let us describe this iterative algorithm. First, we consider an n-sample X = (Xi)1≤i≤n with a
G-E-GPD parent distribution. We denote by x = (xi)1≤i≤n an associated given realization. For
the rest of this work, ã(0) and ã(k) denote the initialization and the estimate of the parameter a at
the kth iteration, respectively.

To start its iterative process, the three-components algorithm needs the knowledge of ξ̃(0), the
initialization of ξ. However, the only information we have about ξ is that it is positive, which

makes its initialization difficult. For that reason, we start initializing p̃(0) = [µ̃(0), σ̃(0), ũ
(0)
2 ]. To

do so, we chose µ̃(0) as the mode of the data, according to the fact that about 16% of Gaussian
observations are bellow µ−σ, we took σ̃(0) = µ̃(0)+q

16%
, where q

16%
represents the quantile of order

16% associated to H, and ũ2
(0) as a quantile of order sufficiently high (above 80%, for this work).

Then we use this initialization p̃(0) to determine ξ̃(0), minimizing the SE between the hybrid cdf
given p = p̃(0) (fixed), and the empirical cdf Hn associated to the sample X = (Xi)1≤i≤n, defined,

for all t ∈ R, by Hn(t) =
1

n

n∑
i=1

1(Xi≤t). To do so, we do not evaluate this SE on the realizations

xi only (as there might be only a few observations in the tail), but on a generated sequence of
synthetic increasing data y = (yj)1≤j≤m, of size m (m can be different from n), with a logarithmic
step, in order to increase the number of points above u2. More precisely, for any 1 ≤ j ≤ m, yj is
expressed as:

yj = min(xi)
1≤i≤n

+ (max(xi)
1≤i≤n

−min(xi)
1≤i≤n

) log10

(
1 +

9(j − 1)

m− 1

)
. (3.1)

Notice that the introduction of new points between the observations of X has an impact on H by
evaluating it on more points, but not on the step function Hn.

Hence ξ̃(0) is now determined by solving the following minimization problem using the LM algorithm
(see [30,33]):

ξ̃(0) ← argmin
ξ>0

∥∥∥H(y; θ | p̃(0))−Hn(y)
∥∥∥2
2
,

where θ | p̃(0) represents θ for p = p̃(0).

Note that this initialization step is the first modification we have introduced, compared with the
two-components algorithm.

Once ξ̃(0) is determined, we can, thereafter, proceed iteratively. For all k ≥ 1, the kth iteration is
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splitted into two main minimization problems, which are solved alternatively, as described hereafter.

Step 1: Determination of p̃(k) = [µ̃(k), σ̃(k), ũ
(k)
2 ], minimizing the SE between the hybrid cdf given

ξ̃(k−1), and the empirical one, as follows:

p̃(k) ← argmin
(µ,σ)∈R×R∗+

u2∈R+

∥∥∥H(y; θ | ξ̃(k−1))−Hn(y)
∥∥∥2
2

where θ | ξ̃(k−1) denotes θ for ξ = ξ̃(k−1) (fixed).
This minimization problem is as well numerically resolved using the LM algorithm.

Step 2: Determination of ξ̃(k), minimizing the SE between the hybrid cdf given p̃(k), and the
empirical one, i.e. by solving the following minimization problem via the LM algorithm:

ξ̃(k) ← argmin
ξ>0

∥∥∥H(y; θ | p̃(k))−Hn(y)
∥∥∥2
2
,

where θ | p̃(k), represents θ for p = p̃(k) (fixed).

Stop condition: The algorithm iterates until it satisfies the following stop condition:d(H(y; θ(k)), Hn(y)
)
< ε︸ ︷︷ ︸

Condition C1

and d
(
H(yqα ; θ(k)), Hn(yqα )

)
< ε︸ ︷︷ ︸

Condition C2

 or k = kmax︸ ︷︷ ︸
Condition C3

where d(a, b) denotes the distance between a and b, chosen in this study as the Mean Squared Error
(MSE), α ∈ [0, 1], and yqα represents the observations above the quantile qα of order α associated
with H.

The second modification with respect to the two-components algorithm initially developed, lies at
the stop condition. Indeed, to ensure a reliable fit of data not only for the main behavior but also
for the tail, we force the algorithm to stop only when the MSE between the hybrid cdf and the
empirical one is small enough (ε = 10−12, for this work), using on one hand all data (Condition
C1), on the other hand only extreme order statistics above a desired qα (Condition C2). Otherwise,
the algorithm stops when a fixed number kmax of iterations (kmax = 103, for this work) is reached
(Condition C3).

Remark 3.1 Note that this algorithm can be adapted to different hybrid models according to the
nature and the number of its components (if larger than 2), without any influence on the convergence
study of the adapted algorithm. We point out that in this method, it is important to have at least
two-components, among which a GPD to describe the extremes behavior, to be able to determine in
an automatic way the threshold above which the GPD is fitted. For simplicity, we focus on the right
tail, but it is straightforward to repeat the same procedure to consider the left tail too. The algorithm
has been extended in an example of this type, when considering both tails (see [10]). We just follow
the same logic: breaking down the problem of parameters estimation into two subproblems and then
resolving them alternatively.

To summarize, let us provide a pseudo-code of our algorithm.
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Algorithm 1 Iterative and unsupervised algorithm for the G-E-GPD parameters estimation

1: Initialization of p̃(0), α, ε > 0, and kmax, then initialization of ξ̃(0):

ξ̃(0) ← argmin
ξ>0

∥∥∥H(y; θ | p̃(0))−Hn(y)
∥∥∥2
2
,

where Hn is the empirical cdf of X. We note that this distance is computed on the points
y = (yj)1≤j≤m defined in (3.1).

2: Iterative process:
• k ← 1

Step 1 - Estimation of p̃(k):

p̃(k) ← argmin
(µ,σ)∈R×R∗+

u2∈R+

∥∥∥H(y; θ | ξ̃(k−1))−Hn(y)
∥∥∥2
2

Step 2 - Estimation of ξ̃(k):

ξ̃(k) ← argmin
ξ>0

∥∥∥H(y; θ | p̃(k))−Hn(y)
∥∥∥2
2
,

• k ← k + 1
until

(
d(H(y; θ(k)), Hn(y)) < ε and d(H(yqα ; θ(k)), Hn(yqα )) < ε

)
or
(
k = kmax

)
.

3: Return θ(k) =
[
µ̃(k), σ̃(k), ũ

(k)
2 , ξ̃(k)

]
.

4 Simulation results and discussion

To study the performance of the algorithm to self-calibrate the G-E-GPD model, we build on
Monte-Carlo simulations. To do so, we proceed in 4 steps:

Step 1: We consider N training sets {xq = (xqp)1≤p≤n}1≤q≤N , of length n and N test sets
{yq = (yqp)1≤p≤l}1≤q≤N , of length l, with a G-E-GPD parent distribution admitting a fixed
parameters vector θ.

Step 2: On each training set xq, 1 ≤ q ≤ N , we estimate θ, say θ̃q = [µ̃q, σ̃q, ũ2
q, ξ̃q], using the

algorithm given in the previous section. We denote by ãq the estimation of the parameter a
relative to the qth training set.

Step 3: We compute the empirical mean and variance of estimates of each parameter over the N
training sets. For any parameter a, we denote by ã and S̃a its empirical mean and variance,

respectively, defined as: ã =
1

N

N∑
q=1

ãq and S̃
a

N =
1

N − 1

N∑
q=1

(ãq − ã)2. We can check the

relevance of ã using two criterions:

1. The MSE expressed for any parameter a as: MSEa =
1

N

N∑
q=1

(ãq − a)2. A small value of
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MSE highlights the reliability of parameters estimation using the presented algorithm.

2. Test on the mean (with unknown variance) :

∣∣∣∣ H0 : ã = a
H1 : ã 6= a

.

For N > 30, we can use a normal test (instead of a t-test) of size α, with a rejection
region of H0 at level α described by

(
|Tã| > Φ−1(1− α)

)
, where the statistics Tã is given

by Tã =

√
N

S̃
a

N

(ã − a), and Φ−1(1 − α) is the quantile of order 1 − α of the standard

normal distribution.

Step 4: We compare the hybrid pdf h given θ with the pdf h̃ estimated on each test set yq, given θ̃q.
To do so, we compute the average of the log-likelihood ratio D of h(yq; θ̃q) by h(yq; θ), over
the N simulations:

D =
1

Nl

N∑
q=1

l∑
p=1

log

(
h(yqp; θ)

h̃(yqp; θ̃q)

)
. (4.1)

It is obvious that the smallest the value of D is, the most trustworthy is the algorithm.

We present in Table 1 the results obtained when taking θ = [2, 1, 5, 0.5], N = 100, l = n and α = 5%.
Different values of n have been considered to study its impact on the parameters estimation. The
reliability of the three-components algorithm, in terms of goodness-of-fit, is pointed out through
the two criterions described above, as well as via the average of the log-likelihood ratio. First, for
each estimated parameter, we notice a small MSE whenever the data size is large enough, with
a variance of order 1/n (except for u2, where it is much larger). This order being larger than
standard ones (1/n2, as e.g. for the the Hill and QQ estimators), we resort to a statistical test
as an additional criterion. For the N training sets, we compute the test statistics denoted Tã,N
and the corresponding p-value pTã,N = 2(1− Φ(|Tã,N |)), with respect to the parameter a. For any
n ∈ {103, 104, 105} and for any parameter a ∈ {µ, σ, u2, σ}, we obtain |Tã,N | < Φ−1(0.95) = 1.6448,

and pTã,N >
α

2
= 2.5% (it even remains greater than 50%), which reveals a high acceptance (95%

level) of H0 (ã = a) i.e. a very high level of similarity between the values obtained via the algorithm
and the fixed ones (even for α = 1%). Finally, the accuracy of the parameters estimation is also
highlighted via the average log-likelihood ratio. For the three different values of n, this average is
lower than 10−2, involving a good self-calibration of the G-E-GPD hybrid model.

A remaining question, which might be the object of another paper, is the study of the convergence
rate of this algorithm. Here, to have an idea of how fast it works, we indicate in Table 1 the average
execution time and the average iterations number (the floor function) over the N simulations. As
shown in this table, they both increase with the data size, as expected. We notice that the average
execution time is still small, even for n = 105, indicating a fast convergence of the algorithm. It
could be even reduced by converting our programs from the R programming language to the C++
one.

Besides the reliable estimation of the parameters, we show in Table 2, via the MSE, that our
algorithm enhances the GPD parameters estimation when compared with the Maximum Likelihood
(ML) method and the Probability Weighted Moments (PWM) (see [22]). We mention that the
threshold we select for the comparison is the one obtained by the algorithm.
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Table 1: Monte-Carlo simulations results for θ = [2, 1, 5, 0.5], N = 100, α = 5%, and
l = n ∈ {103, 104, 105} .

n = 103 n = 104 n = 105

P
a
ra

m
et

er
s

µ = 2

µ̃ 1.9981 1.9994 1.9994

S̃
µ

N 6.8722 10−3 8.9157 10−4 7.6821 10−5

MSEµ 6.8071 10−3 8.8295 10−4 7.6143 10−5

Tµ̃,N −0.2285 −0.1829 −0.3434

σ = 1

pTµ̃,N 0.8192 0.8548 0.7312

σ̃ 1.0013 1.0007 0.9999

S̃
σ

N 4.739 10−3 4.8821 10−4 5.231 10−5

MSEσ 4.6934 10−3 4.8386 10−4 5.1791 10−5

Tσ̃,N 0.1926 0.3307 −0.083

u2 = 5

pTσ̃,N 0.8472 0.7408 0.9338

ũ2 4.9904 4.9896 4.9964

S̃
u
2
N 5.4904 10−1 4.9062 10−2 3.4532 10−3

MSEu2 5.4364 10−1 4.8678 10−2 3.4311 10−3

Tũ2,N −0.1288 −0.4669 −0.5996

ξ = 0.5

pTũ2,N 0.8975 0.6405 0.5487

ξ̃ 0.4975 0.5005 5.0018

S̃
ξ

N 1.6698 10−3 1.4635 10−4 1.113 10−5

MSEξ 1.6594 10−3 1.452 10−4 1.1053 10−5

T
ξ̃,N

−0.6102 0.4592 0.5478

pT
ξ̃,N

0.5416 0.646 0.5837

Average execution time (seconds) 3.831 13.2048 245.6802

Average iterations number 45 48 50

D 2.9858 10−3 2.6957 10−4 2.9898 10−5

Table 2: GPD parameters estimation, using Algorithm 1, for the same example (θ = [2, 1, 5, 0.5], N = 100,
and β = 2.5) and for n = 105 : comparison with the ML and the PWM methods.

Algorithm 1 ML PWM

ξ = 0.5

ξ̃ 5.0018 0.5003 0.5025

β = 2.5

MSEξ 1.1053 10−5 1.7312 10−4 5.0868 10−4

β̃ 2.499 2.5003 2.4968

MSEβ 4.0818 10−4 1.3788 10−3 2.3523 10−3
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5 Application of the self-calibrating method on real data

Once the performance of the algorithm is validated on generated data, we apply it on real data,
considering two different domains: neuroscience and finance. Those data are essentially symmetric
around the mean. However, in the case of skewed data, as in insurance claims, the normal com-
ponent would be replaced by a lognormal one, to account for this skewness (as e.g. in [25]). To
underline the unsupervised aspect of the self-calibrating method, for each application we compare,
in terms of goodness-of-fit of extremes, the results obtained with this method to those provided by
three standard EVT approaches: the graphical Mean Excess Plot (MEP) (see [15]), Hill (see [21])
and QQ (see [28]) methods.

5.1 Neuroscience: neural data

Here we consider the data corresponding to twenty seconds, equivalent to n = 3 105 observations,
of real extracellular recording of neurons activities, available in [42] and measured on the antennal
lobe of an adult locust (see [43]). We represent one second of the considered data in Figure 1.
The information to be extracted from these data (spikes or action potentials; see [34]) lies on the
extreme behaviors (left and right) of the data.

0.0 0.2 0.4 0.6 0.8 1.0

−5
0

5
10

Time in second

Am
pli

tud
e

Figure 1: One second of neural data, extracellularly recorded.

Since the neural data can be considered as symmetric, it is sufficient to evaluate the right side of
the distribution with respect to its mode. We compare in the following the obtained results of
neural data fitting (only the right side of the data) using our self-calibrating method, the MEP, the
Hill and the QQ ones.

• Application of our self-calibrating method

Applying the algorithm of this method on the neural data set to model its right side, we
obtain the following estimate of θ: θ̃ = [−0.0681, 0.6297, 0.5398, 1.0301]. In Figure 2 (1st
row), we can see well, on a log-scale, the good fit of the estimated hybrid cdf compared to
the empirical one (see plot (a)), but also that of the right tail distribution (see plot (b)). We
observe here that the exponential distribution is not needed for a good modeling of the data.
Indeed, the two junction points overlap: ũ1 and ũ2, the estimates of u1 and u2, respectively,
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are very close to each other (with a distance equal to 4.3268 10−5) (see plot (a)). It is what
has already been observed in [12].

• Application of the MEP method

We draw the Mean Excess Plot (MEP) (see plot (d)) to manually determine the threshold
above which data are GPD distributed (that we refer as the GPD threshold). We look from
which threshold (high enough to match the theory, but not too high to have enough obser-
vations) the MEP behaves linearly. Then, we estimate the corresponding GPD parameters
using, for instance, the PMW method (see [22]). Several values of the threshold have been
selected. We choose the one offering the smallest MSE between the empirical tail distribution
and the estimated GPD (see the zoomed part of plot (c), where the linear behavior of the
MEP is pointed out). The reliability of this graphical method, in terms of goodness-of-fit of
extremes above the selected threshold, is illustrated in plot (d).

• Application of the Hill method

In a similar way, we determine the GPD threshold graphically from the Hill plot (see plot
(e)), representing the Hill estimator of the GPD tail index as a function of the number of
the upper order statistics. After several tests, we select the number of upper order statistics
above which we observe a stability of the Hill plot (see plot (e)); the associated threshold
minimizes the MSE between the estimated and the empirical tail cdf. We note that once
the number of upper order statistics is selected, the associated threshold and tail index are
determined, and the scale parameter is estimated as the product of this threshold by the tail
index. We draw in plot (f) the empirical tail distribution and the estimated GPD.

• Application of the QQ-method

We provide not only the Hill estimator but also the QQ one, as it is easier to detect the
threshold with the QQ method than with the Hill plot, which may sometimes present an
erratic behavior difficult to interpret, as can be observed in the corresponding zoomed plots.
As well as for the Hill method, we select graphically the number of upper oder statistics
above which the plot of the QQ-estimator of the tail index (see plot (g)) behaves this time
linearly. We then select the one such that the MSE between the empirical tail distribution
and the estimated GPD is minimum (see the zoomed part of plot (g)). As for the Hill method,
the scale parameter is estimated as the product of the threshold by the tail index. Plot (h)
illustrates the reliability of the obtained tail fit.

• Comparison of the results obtained via the various methods

In Table 3, we present the results we obtained with the self-calibrating method, the MEP,
Hill and QQ methods. Since the three graphical approaches fit only the tail distribution,
the comparison of the methods will focus on the goodness-of-fit of the GPD component. As
observed in this table, the MSE between the estimated cdf and the empirical one, using only
data above the selected threshold is small enough for the four methods to ensure a reliable
modeling of extremes. The GPD threshold and the estimated tail index are of the same order
of magnitude for all methods; it confirms that our algorithm works in the right direction.
We can also notice the good performance of these methods through Figure 3, where we plot
the empirical quantile function and the estimated ones using the self-calibrating method and
the various graphical ones. However, the advantage of our method is that it is unsupervised,
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(c) Mean Excess Plot
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(e) Hill plot
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(g) QQ-estimator plot
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Figure 2: Extremes modeling using different methods. For each plot, the blue continuous curve is empirical
(even for zoomed curves), while the red dashed curve and vertical line represent the estimated GPD and
threshold, respectively, using the associated method.
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i.e. it does not need the intervention of the user to select the threshold manually. Moreover
it provides a good fit between the hybrid cdf estimated on the entire data sample and the
empirical cdf, with a MSE of order 10−5.

Table 3: Comparison between the self-calibrating method and the three graphical methods: MEP, Hill and
QQ ones. Nu2

represents the number of observations above u2. The distance gives the MSE between the
empirical (tail or full respectively) distribution and the estimated one from a given model (GPD or hybrid
G-E-GPD respectively). The neural data sample size is n = 3 105.

Model tail index threshold Nu2 distance distance
(ξ) (u2) (tail distr.) (full distr.)

GPD MEP (PWM): 0.3326 1.0855 = q
93.64%

19260 4.0663 10−6

GPD Hill-estimator: 0.599 1.0855 = q
93.64%

19260 2.0797 10−6

GPD QQ-estimator: 0.5104 1.0671 = q
93.47%

19871 1.2685 10−5

G-E-GPD Self-calibrating method: 0.5398 1.0301 = q
92.9%

21272 7.7903 10−6 9.3168 10−5
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Figure 3: Neural data: Comparison between the empirical quantile function and the estimated ones, the
self-calibrating methods and the graphical methods.

5.2 Finance: S&P500 absolute log-returns

The second application considered in this work concerns the S&P500 absolute log-returns from
January 2, 1987 to February 29, 2016, corresponding to n = 7349 observations, available in the
tseries package (see [52]) of the R programming language (see [44]). We check whether these data,
represented in Figure 4, exhibit a heavy tail or not. Note that we could have looked at each tail of
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the log-returns (it is known that they have a slight different tail index from one to the other) but
decided instead to look at their absolute value.
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Figure 4: S&P500 absolute daily log-returns from January 2, 1987 to February 29, 2016

As for the neural data, we apply our self-calibrating method, and the graphical ones (MEP and
QQ) for comparison. Note that we display only the plots associated with the QQ-method and not
the Hill one, since the QQ-threshold is easier to detect, as already commented. Nevertheless, we
provide the numerical results for both Hill and QQ methods, using the

√
n upper order statistics to

compute the Hill estimator, since this selected threshold has been empirically shown to be relevant
for financial data in [3].

The results are illustrated in Figure 5. In plot (a), we draw (on a log-scale) the empirical cdf
and the hybrid cdf obtained via our self-calibrating method, where the two vertical dashed lines
represent the two junction points of the hybrid model. The corresponding right tail fit is given in
plot (b).

The MEP and the selected threshold are given in plot (c) (the zoomed part shows the MEP linear
behavior above the selected threshold), while the corresponding extremes fit is given in plot (d).
The GPD parameters being estimated by the PWM method.

Finally, the QQ-estimator plot and the selected number of upper order statistics are represented in
plot (e), with a zoom illustrating the linear behavior of the QQ-estimator plot above the selected
number of upper order statistics. The corresponding extremes fit is shown in plot (f).

Table 4: Comparison between the self-calibrating method and the three graphical methods: MEP, Hill and
QQ ones. The &P 500 absolute log-returns data sample size is n = 7349.

Model tail index threshold Nu distance distance
(ξ) (u2) (tail distr.) (full distr.)

GPD MEP: 0.3025 0.0282 = q
97.21%

206 1.7811 10−7

GPD Hill-estimator: 0.3094 0.0382 = q
98.85%

85 4.4953 10−8

GPD QQ-estimator: 0.3288 0.0323 = q
98.14%

137 6.0505 10−8

G-E-GPD Self-calibrating method: 0.3332 0.0289 = q
97.49%

184 1.9553 10−7 1.0635 10−5

The numerical results obtained for the threshold and tail index, as well as for the MSE between
the empirical tail distribution and the estimated GPD using the four methods respectively, are
reported in Table 4. We can notice that all methods offer a good fit of the tail distribution, with
a slightly overestimation for the G-E-GDP and QQ methods compared with the MEP and Hill
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ones. In Figure 6, we also give a comparison of the estimated quantile function using the G-E-GPD
method and the graphical (MEP, Hill and QQ) ones.
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(e) QQ-estimator plot
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Figure 5: Extremes modeling using different methods. For each plot, the blue continuous curve is empirical
(even for zoomed curves), while the red dashed curve and vertical line represent the estimated GPD and
threshold, respectively, using the associated method.
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Figure 6: S&P 500 absolute log-returns data: Comparison between the empirical quantile function and the
estimated ones, the self-calibrating methods and the graphical methods.

In Table 4 and Figure 6, we observe once again similar results for the various methods. It confirms
the good performance of the self-calibrating method to estimate the tail distribution. As already
said, this latter method also provides a good modeling for the entire cdf.

Conclusion

In this paper, we propose a self-calibrating method to model heavy tailed data that may be non-
homogeneous and multi-components. We develop it introducing a general non-degenerate hybrid
C1 distribution for heavy tailed data modeling, which links a normal distribution to a GPD via an
exponential distribution that bridges the gap between mean and asymptotic behaviors. The three
distributions are connected to each other at junction points estimated by an iterative algorithm,
as are the other parameters of the model. The convergence of the algorithm is studied analytically
for one part and numerically for the other. The performance of the method is studied on simulated
data. Based on those results, we observe that the proposed unsupervised algorithm offers a judicious
fit of the asymmetric right heavy tailed data with an accurate determination of the tail threshold
indicating the presence of extremes, as well as of the parameters of the GPD that fits the extremes
over this threshold. Several applications of the method have been done on real data, in particular
on insurance data. We give two of them on data coming from very different fields, neural data and
financial ones (S&P500). A comparison follows with other existing methods.
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Note that this method has been developed when considering asymmetric right heavy tailed data;
it can of course be applied in the same way when having the asymmetry on the left side, or when
having a heavy tail on each side (without requiring a symmetry).

This method has many advantages and should become of great use in practice. The main advantage
is to be unsupervised, avoiding the somehow arbitrary resort, when fitting the tail, to standard
graphical methods (e.g. MEP, Hill, QQ methods) in EVT. A second advantage is to fit with the same
iterative algorithm the full distribution of observed heavy tailed data, of any type whenever smooth
enough (C1-distribution), providing an accurate estimation of the parameters for the mean and
extreme behaviors. It certainly answers a big concern encountered by practitioners. Moreover the
method is quite general: besides the GPD needed when fitting the heavy tail, the other components
might be chosen differently, not using limit behavior (CLT) but distributions chosen specifically for
the data that are worked out (as e.g. lognormal for insurance claims). It would not change at all
the structure of the algorithm.

It should be emphasized that determining in a unsupervised way the threshold over which we have
extremes, requires to have information before the threshold. We suggest here an approach that
avoids traditional graphical methods when fitting the entire distribution. Further investigation will
follow in order to make this method also available as a pure EVT tool (i.e. to fit the tail only). It
means to determine the minimum information required to determine the neighbor distribution of
the GPD to have a robust estimation for the tail threshold and the GPD parameters estimation.

Moreover, we plan also to tackle the analytical study of the convergence rate of the algorithm as a
function of sample size.

Finally, a R package should appear soon online. Meantime, the R codes are available upon request.
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[15] Embrechts, P., Klüppelberg, C., and Mikosch, T. Modelling Extremal Events for
Insurance and Finance. Springer-Verlag, 1997.

[16] Feldman, R., and Taqqu, M. A Practical Guide to Heavy Tails: Statistical Techniques and
Applications. Springer Science & Business Media, 1998.

[17] Fine, T., and Levin, M. Extreme-value theory applied to false-alarm probabilities (corresp.).
IRE Transactions on Information Theory 8, 3 (1962), 259–260.
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APPENDIX: STUDY OF THE ALGORITHM CONVERGENCE

As already commented, the algorithm convergence does not depend on the number (≥ 2) of com-
ponents. Therefore, we develop its analysis when considering two-components (i.e. u1 = u2; no
exponential component), with a unique weight associated to each one. In the following, we denote
by u the junction point connecting the Gaussian distribution to the GPD. We mention that for this
two-components hybrid model, named G-GPD, the constraint β = ξu can be relaxed. The parame-
ters vector of the G-GPD model is θ = [µ, σ, u]. The two-components algorithm (see [11]) estimates
the parameters p = [µ, σ] and u alternatively. Let us give its pseudo-code for more clarity.

Algorithm 2 Iterative and unsupervised algorithm for the G-GPD parameters estimation

1: Initialization of ũ(0), ε > 0, and kmax.
2: Determination of the empirical cdf Hn associated with our sample x = (xi)1≤i≤n.
3: Iterative process:

• k ← 1
Step 1 - Estimation of p̃(k) = [µ̃(k), σ̃(k)]:

p̃(k) ← argmin
p∈Dp

∥∥∥H(x; θ | ũ(k−1))−Hn(x)
∥∥∥2
2
,

where θ | ũ(k−1) represents θ for a fixed u = ũ(k−1), and Dp is the domain of p for
the realization x.

Step 2 - Estimation of ũ(k):

ũ(k) ← argmin
u∈Du

∥∥∥H(x; θ | p̃(k))−Hn(x)
∥∥∥2
2
,

where θ | p̃(k) means θ for p = p̃(k) (fixed), and Du is the domain of u according to
x.

• k ← k + 1
until (|ũ(k) − ũ(k−1)| < ε) or (k = kmax).

4: Return θ(k) =
[
ũ(k), µ̃(k), σ̃(k)

]
.

The convergence study is in two main steps. The first one gives the analytical proof of the existence
of stationary points. Indeed the algorithm, which consists of a sequence of minimization, does not
rely on the optimization of a cost function by seeking a trajectory to reach an extremum of an error
surface. As a consequence, the existence of a stationary point, even the convergence towards such
one, is not guaranteed, and has to be proved (see Appendix A). The second step consists in checking
that the algorithm converges to a unique stationary point. It is done numerically, performing various
simulations changing each time the initialization (see Appendix B). We observe that, whatever the
initialization, the algorithm converges to the same stationary point. The analytical proof of this
second step is still an open problem.

A Existence of stationary points

We start this section by presenting the theoretical framework in which the existence of stationary
points has been proved. For a given realization x = (xi)1≤i≤n and given parameters κ, τ ∈ {p, u}
with κ 6= τ , we consider the function:
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ϕκ : Dτ → Dκ
τ 7→ ϕκ(τ ;x) = argmin

κ∈Dκ
Sτ (κ;x),

where for θ | τ denoting, as previously, θ for a given τ , Sτ is defined by:
Sτ : Dκ → R

κ 7→ Sτ (κ;x) =
n∑
i=1

(
H(xi; θ | τ)−Hn(xi)

)2
To check that ϕκ is a map, it is enough to show that Sτ admits a unique minimum, for any
τ ∈ {p, u}, with p = [µ, σ] ∈ R × R∗+ and u ∈ R+. Since the expression of the hybrid cdf H with
respect to (w.r.t.) τ (see (A.1)) is rather complicated, we proceed via simulations. Fixing τ , for
instance τ = p (it would be the same for τ = u), we draw, for a given sample (xi)1≤i≤n, Sp as a
function of u (i.e. κ = u), observing if it admits a unique minimum. Take the example of a G-GPD
sample (xi)1≤i≤n with n = 103, generated with µ = 0, σ = 1 and u = 0.5221, and consider different
scenarios varying the value of the Gaussian parameter p. In Figure 7, we present the different
curves of Sp depending on p, which all exhibit a unique minimum. Note that for p = [0, 1] which
corresponds to the parameter of the generated sample, the minimum of Sp (see the green curve of
the right plot) coincides with the exact threshold u = 0.5221 of the data (represented by a vertical
red dashed line in both plots of Figure 7), as expected.

H(x; θ) =
[ F (x;µ, σ)

1 + F (u;µ, σ)

]
1{x≤u} +

[
1−

(
1 +

(
u−µ
σ2 − f(u;µ, σ)

)
(x− u)

)
1 + F (u;µ, σ)

− f(u;µ,σ)
u−µ
σ2

−f(u;µ,σ) ]
1{x≥u}. (A.1)
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Figure 7: Sp as a function of the threshold u ( x, µ and σ are fixed)

.
Using ϕu : Dp → Du and ϕp : Du → Dp, the two steps of the first iteration of the algorithm can
be given, for a fixed ũ(0), by the following relations:{

p̃(1) = ϕp(ũ
(0);x),

ũ(1) = ϕu(p̃(1);x) = ϕu(ϕp(ũ
(0);x);x).

More generally, for any k ≥ 1, we can write

ũ(k) = φ(ũ(k−1);x), (A.2)

where the function φ is defined from Du to Du by: φ(u;x) = ϕu(ϕp(u;x);x).

Consequently, the algorithm can also be expressed as:
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Algorithm 3 Iterative and unsupervised algorithm for the G-GPD parameters estimation
(version 2)

1: Initialization of ũ(0), ε > 0, and kmax.
2: Determination of the empirical cdf Hn according to x.
3: Iterative process:
k ← 1

ũ(k) = φ(ũ(k−1);x)

k ← k + 1
while |ũ(k) − ũ(k−1)| ≥ ε and k < kmax.

4: Return ũ(k).

A way to prove the existence of stationary points of Algorithm 3 is to demonstrate the existence
of fixed-points of the function φ. To do so, we build on the fixed-point theorem. Several versions
of this theorem exist in the literature e.g. the version of Banach (see [57]), or of Markov-Kakutani
(ses [55]), or of Schauder (see [38]), or of Brouwer (see [24]). In this work, we consider the latter
one, as its hypotheses are, in our case, more straightforward to check. This theorem states that
every continuous function from a closed ball of a Euclidean space into itself has a fixed point. It
implies that the functional φ admits at least one fixed point if the following two conditions, (C1)
and (C2), are satisfied:

(C1) : Du is a closed ball of a Euclidean space.

(C2) : φ is continuous on Du.

The conditions (C1) is clearly satisfied: for a realization x, Du = [0,max(x)] is a closed ball of R
that is a Euclidian space.

Now, to verify (C2), we prove that ϕu and ϕp are both continuous on their domains (since φ is the
composite function: φ = ϕu ◦ ϕp) using the Heine-Cantor theorem (see e.g. [50]) and the Ramsay
et al.’s one that we recall here.

Theorem ( [45])
Let X and Y be metric spaces with X closed and bounded. Let

g : X × Y → R
(x, α) → g(x, α)

be uniformly continuous in x and α, such that x(α) = argmin
x∈X

g(x, α) is well defined for all α ∈ Y.

Then the function x(α) : Y → X is continuous.

The proof of the continuity of the two functions ϕp and ϕu being the same, let us consider for
instance the function ϕp. Using Ramsay’s theorem, we need to check that Dp is a compact and
that Su is uniformly continuous on Dp, to conclude to the continuity of ϕp. The first condition, Dp
is a compact of R2, is satisfied when noticing that we are working with a Gaussian density, with
finite mean and variance, hence which is bounded.

Now, as Dp is a compact, it is sufficient to show that Su is continuous on Dp to deduce, by the

Heine-Cantor theorem, its uniform continuity. Since Su(p;x) =
n∑
i=1

(
H(xi; θ | u) − Hn(xi)

)2
, we
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just need to study the continuity of H w.r.t. p to deduce the continuity of Su w.r.t. p. We recall
here that, by construction, H is continuous w.r.t. x and not to its parameters. Hence, its continuity
according to p remains to be proved. Since H is composed of two functions (see (2.3) for u1 = u2),
the Gaussian cdf and the GPD, we will study the continuity of each one w.r.t. p. The continuity
of the Gaussian cdf F as a function of p is immediate since it means to look at the continuity of
its likelihood w.r.t. p = [µ, σ]. Now, for the GPD G, its parameters ξ and β are expressed as

fonctions of p: β(p) =
1

f(u; p)
, and ξ(p) =

u− µ
σ2

β(p)− 1, and are both continuous in p. Hence G

is continuous in p as the composition of continuous functions w.r.t. p.

Finally, we can deduce the continuity of the function Su on Dp as a composition, sum and products,
of continuous functions on Dp, from which we conclude to the continuity of ϕp on Du.

Conclusion: We can conclude that the functional φ is continuous on Du as a composition of two
continuous functions: ϕp and ϕu. Hence the existence of at least one fixed-point according to the
Brouwer fixed-point theorem. Consequently, the algorithm admits at least one stationary point.
Since the method does not follow a path on an error surface, it is free from local minima traps as
are the classical gradient search based methods. In the next section, we perform simulations to
check if the algorithm converges to a unique stationary point regardless to the initialization.

B Numerical study of the algorithm convergence

To study numerically the convergence of the algorithm to a unique attractive stationary point,
we consider the recurrent sequence {ũ(k+1) = φ(ũ(k))}k∈N∗ , obtained when applying Algorithm 2
on a generated G-GPD distributed data with a fixed parameter θ. Different initial values of this
sequence are considered and for each one we represent graphically the associated recurrent sequence.
To ensure the algorithm to be on the right track, all initial values are selected in the interval to
which u belongs, namely I = [q

25%
, q

50%
] (see [12]). For illustration, we report here two examples

among all those performed to test the convergence.
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Figure 8: Study of the convergence of the recurrent sequence {ũ(k+1) = φ(ũ(k))}k∈N∗ regarding the initial
value ũ(0). Example 1 for θ = [0, 1, 0.4354] and u∗ = 0.4354q

39.42%
.
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For θ = [0, 1, 0.4354] with ξ = 0.2 and β = 2.7558, we present in Figure 8 the recurrent sequence
{ũ(k+1) = φ(ũ(k))}k∈N∗ , where the initial value ũ(0) ∈ {q

35%
, q

37.5%
, q

40%
, q

42.5%
, q

45%
, q

47.5%
}. As

shown in this figure, regardless the choice of ũ(0) in I, the algorithm converges to the fixed value
of u = 0.4354 (represented by a continuous horizontal line), denoted by u∗. We observe that:

1. If ũ(0) < u∗, the associated recurrent sequence is non decreasing, as for instance for the gray
cercles curve with ũ(0) = q

35%
and the red triangles (upwards oriented) one with ũ(0) = q

37.5%
;

2. If ũ(0) > u∗, the associated recurrent sequence is non increasing, e.g. the blue diamonds curve
for ũ(0) = q

45%
and the pink triangles (downwards oriented) curve for ũ(0) = q

47.5%
.

Consequently, based on Figure 8, regardless the choice of ũ(0) ∈ I, the recurrent sequence
{ũ(k+1) = φ(ũ(k))}k∈N∗ is monotone on Du and converges to a unique attractive stationary point
that corresponds to u∗.

Another example now for θ = [3, 2, 4.0443] with ξ = 0.5 and β = 5.7454 is illustrated in Figure 9
and leads to the same observations.
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Figure 9: Study of the convergence of the recurrent sequence {ũ(k+1) = φ(ũ(k))}k∈N∗ regarding the initial
value ũ(0). Example 2 for θ = [3, 2, 4.0443] and u∗ = 4.0443 = q

41.18%

An additional remark concerns the number of iterations. We could observe in the simulation study
that the closest to u∗ is ũ(0), the fastest is the convergence, as expected. It appears clearly on the
two reported examples (see the green ’+’ marks curve in both figures).

To conclude, let us comment that extending this convergence study to three-components is straight-
forward and follows the same logic as for two components. The estimation of θ is also broken down
into the estimation of p and ξ alternately. The associated algorithm can be, as well as for the
two-components model, represented by a functional of ξ. Hence, we can prove as previously that
this functional is continuous on a closed ball of a Euclidean space, according to the Brouwer the-
orem, to infer the existence of stationary points of Algorithm 1. The difference between the two-
and three-components algorithms concerns only the data scale, the stop condition, and the con-
dition on ξ to be positive (Fréchet distribution), so does not interfere in the convergence of the
three-components algorithm. These three conditions have only been introduced to enhance the
parameters estimation.
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