Interpreting crop and animal management strategies at Neolithic Kouphovouno, Sparti, Greece: integrating information from plant and animal isotopes, micro wear analysis and archer-botanical and -zoological studies.

Petra Vaiglova, Florent Rivals, A. Bogaard, Rebecca Fraser, William Cavanagh, C. Mee, J. Renard, A. Lamb, Armelle Gardeisen

To cite this version:
Petra Vaiglova, Florent Rivals, A. Bogaard, Rebecca Fraser, William Cavanagh, et al.. Interpreting crop and animal management strategies at Neolithic Kouphovouno, Sparti, Greece: integrating information from plant and animal isotopes, micro wear analysis and archer-botanical and -zoological studies.. Actes de la 14e rencontre égéenne internationale, Dec 2012, Paris, France. pp.287-296. hal-01424251

HAL Id: hal-01424251
https://hal.archives-ouvertes.fr/hal-01424251
Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AEGAEUM 37
Annales liégeoises et PASPiennes d’archéologie égéeenne

PHYSIS
L’ENVIRONNEMENT NATUREL ET LA RELATION HOMME-MILIEU DANS LE MONDE ÉGÉEN PROTOHISTORIQUE

Edités par Gilles TOUCHAIS,
Robert LAFFINEUR
et Françoise ROUGEMONT

PEETERS
LEUVEN - LIEGE
2014
SOMMAIRE

Préface 11

A. Cadre naturel :

Georgia KOURTESSI-PHILIPPAKIS,
Local vs exogène ? L’impact du milieu naturel sur la composition des assemblages lithiques néolithiques en Grèce 15

Georgia STRATOULI, Anaya SARPAKI, Maria NTINOU, Eleni KOTJABOPPOULOU, Tatiana THEODOROPOULOU, Vasilios MELFO, Niels H. ANDREASEN, Panagiotis KARKANAS,
Dialogues Between Bioarchaeological, Geoarchaeological and Archaeological Data: Approaches to Understanding the Neolithic Use of Drakaina Cave, Kephalonia Island, Western Greece 23

Erika WEIBERG,
Timing, Perception and Response. Human Dimensions of Erosion and Sedimentation in the Greek Bronze Age 33

Evangelia STEFANI, Nikos MEROUSSIS,
Living on the Edge. People and Physis in Prehistoric Imathia, Macedonia, Greece 41

Mimoza SIDIROPOULOU, Eric FOUACHE, Kosmas PAVLOPOULOS, Maria TRIANTAPHYLLOU, Konstantinos VOUVALIDIS, George SYRIDES, Emanuele GRECO,
Geomorphological Evolution and Paleoenvironment Reconstruction in the Northeastern Part of Lemnos Island (North Aegean Sea) 49

Thomas F. STRASSER, Anne P. CHAPIN,
Geological Formations in the Flotilla Fresco from Akrotiri 57

B. Ressources naturelles :

Katerina ATHANASAKI,
A Serpentine Quarry-Scene in Gonies, North-Central Crete 67

Gerald CADOGAN,
Water Worries and Water Works in Bronze Age Southern Crete 73

Jonathan M. FLOOD, Jeffrey S. SOLES,
Water Management in Neopalatial Crete and the Development of the Mediterranean Dry-Season 79

Nagia SGOURITSA, Eleni SALAVOURA,
The Exploitation of Inland Natural Resources on an Island Environment: The Case of the Mycenaean Settlement at Lazarides and the South/Southeast Aegina 85

Thomas G. PALAIMA,
Harnessing Physis: The Ideology of Control and Exploitation of the Natural World as Reflected in Terminology in the Linear B Texts Derived from Indo-European *bheh₂-tu- ‘Grow, Arise, Be’ and *h₂eg-ro- ‘The Uncultivated Wild Field’ and Other Roots Related to the Natural Environs 93
C. Paysage et climat :

Miriam G. CLINTON, Sarah C. MURRAY, Thomas F. TARTARON,
Gis in Action: Analyzing an Early Bronze Age Coastal Landscape on the Saronic Gulf 103

Peter PAVUK, Magda PIENIĄŻEK, Simone RIEHL,
Troy and the Troad in the Second Millennium: Changing Patterns in Landscape Use 111

Fritz BLAKOLMER,
Meaningful Landscapes: Minoan “Landscape Rooms” and Peak Sanctuaries 121

Vincenzo AMATO, Fausto LONGO, Maria BREDAKI, Amedeo ROSSI,
Matthieu GHILARDI, David PSOMIADIS, Maxime COLLEU, Laetitia SINIBALDI,
Doriana DELANGHE-SABATIER, François DEMORY, Christophe PETIT,
Geoarchaeological and Palaeoenvironmental Researches in the Area of Ancient Phaistos (Crete, Greece): Preliminary Results 129

Christos DOUMAS,
Le paysage côtier de la région d’Akrotiri, Théra, avant l’éruption volcanique du Bronze récent 141

Anne P. CHAPIN, Brent DAVIS, Louise A. HITCHCOCK, Emilia BANOU,
The Vapheio Tholos Tomb and the Construction of a Symbolic Landscape in Laconia, Greece 145

Athanasia KRAHTOPOULOU, Rena VEROPOLIDOU,
Linking Inland and Coastal Records: Landscape and Human Histories in Pieria, Macedonia, Greece 153

Assaf YASUR-LANDAU, Nurith GOSHEN,
The Reformed Mountains: Political and Religious Landscapes in the Aegean and the Levant 159

Georgios FERENTINOS, Maria GKIONI, Maria GERAGA, Georgios PAPATHEODOROU,
Neanderthal and Anatomically Modern Human Seafarers in the Aegean Archipelago, Mediterranean Sea 165

D. Iconographie :

Fragoula GEORMA, Artemis KARNAVA, Irene NIKOLAKOPOULOU,
The Natural World and its Representations: A View from Akrotiri, Thera 175

Andreas VLACHOPOULOS, Lefteris ZORZOS,
Physios and Techne on Thera: Reconstructing Bronze Age Environment and Land-Use Based on New Evidence from Phytoliths and the Akrotiri Wall-Paintings 183

Elsa PAPATSAROUCHA,
Minoan Landscapes: Plant Communities and their Artistic Representations 199

John G. YOUNGER,
The “World of People”: Nature and Narrative in Minoan Art 211

Karen Polinger FOSTER,
Fur and Feathers in Aegean Art 217

E. Agriculture :

Georgia KOTZAMANI, Alexandra LIVARDA,
Plant Resource Availability and Management in Palaeolithic and Mesolithic Greece 229
Harriet BLITZER,

Preliminary Notes on Olive Domestication and Cultivation in the Prehistoric Aegean 239

Orestes DECAVALLAS,

Plant Oils from Neolithic Aegean Pottery: Chemical Proof of the Exploitation of Oleaginous Plants and the Question of “Early” Oil Production 245

Leonidas VOKOTOPOULOS, Gerhard PLATH, Floyd W. McCoy,

Robert Angus K. SMITH, Mary K. DABNEY, Georgia KOTZAMANI, Alexandra LIVARDA, Georgia TSARTSIDOU, James C. WRIGHT,

Plant Use in Mycenaean Mortuary Practice 265

Evi MARGARITIS, Katie DEMAKOPOULOU, Ann-Louise SCHALLIN,

The Archaeobotanical Samples from Midea: Agricultural Choices in the Mycenaean Argolid 271

Evi MARGARITIS,

Petra VAIGLOVA, Florent RIVALS, Amy BOGAARD, Rebecca FRASER, Arnelle GARDEISEN, William CAVANAGH, Christopher MEE, Josette RENARD, Angela LAMB,

Interpreting Ancient Crop and Animal Management Strategies at Neolithic Kouphovouno, Southern Greece: Results of Integrating Crop and Animal Stable Isotopes and Dental Micro-And Mesowear 287

Jörg WEILHARTNER,

The Influence of Aegean Iconography on the Design of the Linear B Logograms for Animals, Plants and Agricultural Products 297

Marianna NIKOLAIDOU, Ernestine S. ELTER,

Hunting, Fishing and Gathering at Sitagroi and Beyond: Strategies of Wild Resource Use in the Neolithic and Early Bronze Age 305

F. Ressources animales:

Pietro MILITELLO,

Wool Production in Neolithic and Early Bronze Age Aegean 317

Stavroula APOSTOLAKOU, Philip BETANCOURT, Thomas BROGAN, Dimitra MYLONA, Chrysa SOFIANOU,

Tritons Revisited 325

Alexandra KARETSOU, Robert B. KOEHL,

The Minoan Mastiffs of Juktas 333

Olga KRZYszKOWSKA,

Cutting to the Chase: Hunting in Minoan Crete 341

Anna Lucia D’AGATA, Sara DE ANGELIS,

Minoan Beehives. Reconstructing the Practice of Beekeeping in Bronze Age Crete 349

Tatiana THEODOROPOULOU,

Excavating the Sea: Recent Advances in Marine Zooarchaeology of the Prehistoric Aegean 359
Nancy R. THOMAS,
A Lion’s Eye View of the Greek Bronze Age 375

Ruth PALMER,
Managing the Wild: Deer and Agrimia in the Late Bronze Age Aegean 391

Cyrille RIEAU, Armelle GARDEISEN, Florent RIVALS,
Alimentation des troupeaux durant l’âge du Bronze à travers l’analyse des micro-usures dentaires, les exemples d’Angelohori et Archontiko (Macédoine, Grèce) 401

Aurélien CREUZIEUX, Armelle GARDEISEN, Evangelia STEFANI,
L’exploitation du monde animal en Grèce septentrionale durant le Bronze récent : l’exemple d’Angelochori 409

Rena VEROPOULEDOU,
Molluscan Exploitation in the Neolithic and Bronze Age Communities at the Former Thermaic Gulf, North Aegean 415

G. Peuplement et population :

Pascal DARCQUE, Haïdo KOUKOULI-CHRYSSANTHAKI, Dimitra MALAMIDOU, Zoï TSIRTSONÏ, Laurent LESPEZ, Cécile GERMAIN-VALLÉE,
The Impact of Environmental Changes on the Neolithic Settlement of Dikili Tash (Northern Greece) 425

Sylvie MÜLLER CELKA, Dario PUGLISI, Frédéric BENDALI,
Settlement Pattern Dynamics and Natural Resources in MM-LM I Crete: The Case of Malia 431

Gert Jan VAN WIJNGAARDEN, Pavlos AVRAMIDIS, Nikolaos KONTOPoulos,
Dealing with Extreme Dynamics. Prehistoric Landscapes of Zakynthos 441

Michael L. GALATY, William A. PARKINSON, Daniel J. PULLEN, Rebecca M. SEIFRIED,
Mycenaean -Scapes: Geography, Political Economy, and the Eastern Mediterranean World-System 449

H. Posters :

Marcus J. BAJEMA,
Mycenaean Snail-Lovers? 457

Dora CONSTANTINIDIS,
Physis and Space: Aegean Bronze Age Depictions and their Architectural Context 459

Janice L. CROWLEY,
Images of the Earth in Aegean Art 465

Mary K. DABNEY,
Representations of Fig Cultivation in Aegean Art 469

Bryan FEUER,
Environmental Aspects of the Northern Mycenaean Border in Thessaly 473

Walter L. FRIEDRICH, Annette HØJEN SØRENSEN, Samson KATSIPIS,
Santorini Before the Minoan Eruption: The Ship Fresco from Akrotiri - A Geological and Archaeological Approach 475

Mercourios GEORGIADIS,
The Physical Environment and the Beliefs at Leska, a New Peak Sanctuary on Kythera 481
Effie GEMI-IORDANOU,
The Meaning of Flowers: Symbolism and Interpretation of Flower Iconography in Minoan Art 485

Angelos GKOTSINAS, Angeliki KARATHANOU, Maria-Fotini PAPAKONSTANTINOU, Georgios SYRIDES, Konstantinos VOUVALIDIS,
Approaching Human Activity and Interaction with the Natural Environment Through the Archaeobotanical and Zooarchaeological Remains from Middle Helladic Agia Paraskevi, Central Greece 487

Bernice R. JONES,
Revisiting the Figures and Landscapes on the Frescoes at Hagia Triada 493

Dimitra KRIKA,
Flora and Fauna Iconography on Strainers and Kymbai at Akrotiri: Theran Ceramic Vessels of Special Use and Special Iconography 499

Florence LIARD,
Mineral Resources, Potting Techniques and Social Identities in Late Bronze Age Sissi, Crete 505

Stefanos LIGKOVALNIS,
The Exploitation of the Thesprotian Wetlands (NW Greece) During the Middle and Early Upper Palaeolithic; Different Hominins yet ‘Similar’ Strategies? Reflections from the Material World 509

Joanne M.A. MURPHY,
The Wealth of Nature and the Nature of Wealth: Aspects of Pylian Ideologies 513

Heleni PALAIOLOLOGOU,
Water Management, Climatic, Social Changes and Agriculture in the Plain of Mycenae during the 13th C. B.C. and Later: The Case of Chania 517

Christina PAPOULIA,
Confronting the Sea: Navigation Skills in Pre-Modern Human Societies 521

Vassilis P. PETRAKIS,
The Religious Significance of Insects in the Aegean Bronze Age: Three Notes 525

Anna PHILIPPA-TOUCHAIS, Gilles TOUCHAIS, Oreste DECAVALLAS, Armelle GARDEISEN, Matthieu GHILARDI, Evi MARGARITIS, Odysseas METAXAS Sevi TRIANTAPHYLLOU, Efī TSIOLAKI,
Environnement, alimentation, hygiène et mode de vie dans la Grèce mésohelladique : le cas de l’Aspis d’Argos 531

Maria ROUSSAKI,
New Evidence in Minoan Pictorial Wall Painting: ‘The Swallows Fresco’ from the Knossos Area 539

Alessandro SANAVIA,
How to Improve on Nature: Some Middle Minoan Triton Shells from Phaistos (Crete) 543

Robert SCHON,
The Political Ecology of the Pylian State 547

Andrew SHAPLAND,
After Naturalism: Human-Animal Relations in LMII-III Crete 555
Giorgos VAVOURANAKIS,
The Changing Significance of Nature within Minoan Society 559

I. En guise de conclusion ...

Thomas G. PALAIMA,
The Linear-B-Inscribed Triton PAR Ph 2012 and its Lessons about Phusis 563
INTERPRETING ANCIENT CROP AND ANIMAL MANAGEMENT STRATEGIES
AT NEOLITHIC KOUPHOVOUNO, SOUTHERN GREECE:
RESULTS OF INTEGRATING CROP AND ANIMAL STABLE ISOTOPES
AND DENTAL MICRO- AND MESOWEAR*

Introduction

In this case study, we analyze stable isotope signatures of ancient charred plant and
faunal bone remains from Middle-Late Neolithic Kouphovouno in order to investigate the crop
cultivation and animal husbandry practices employed by the early farmers. Previous work on
the nature of Neolithic agriculture has shed light on the symbiotic relationship in which plant
and animal husbandry strategies may function. For example, the by-product of crop cultivation
can be used as fodder to feed the animals and the by-product of the animals, dung, can be used
to fertilize the soils in which the crops are grown.1 But just how this inter-dependent strategy
was maintained remains to be investigated on a case-by-case basis. Our aim is to use isotopic
evidence to address questions of how intensively the cereal and pulse crops were managed,
what the diets of the livestock were and how the farmers at Kouphovouno made use of the
surrounding landscape for the grazing of animals. These results are interpreted in light of
dental micro- and mesowear analysis carried out on the same faunal assemblage. Together, the
two strands of information enable us to make inferences about which foods the animals may
and which they may not have consumed.2

Stable isotope analysis

Stable isotope analysis is based on the principle that all organisms in the ecosystem are
made up of tissues - hair, bones, muscles, etc. - which get constantly remodeled during the life
times of those organisms. This means that old atoms and molecules which make up the tissues
get constantly replaced by new atoms and molecules which come directly from the food that
the organisms consume. Food has distinctive chemical signatures depending on what type
of environment it is derived from and what biochemical processes it has undergone during
digestion. These signatures then get locked into the tissue chemistry of the organisms and
when measured, enable us to make inferences about the nature of the organisms’ diet.

The chemistry that we are interested in here consists of the ratios of the heavier and lighter
These values, expressed as $\delta^{13}C$ and $\delta^{15}N$, are measured in comparison to internationally set
standards in units of parts per mille, ‰.

Plants which grow in soils with a high organic content (such as fields that receive manure)
have higher $\delta^{15}N$ than plants which grow in ^{15}N-depleted soils. This is because the organic
substrate loses the lighter ^{14}N in the form of ammonia through volatilization, leaving behind a

* Acknowledgements:
This study was made possible by the financial support of the Natural Environment Research Council (standard
grant NE/E003761/1, PI Bogaard), the British School at Athens, the French Ministry of Foreign Affairs, the
Centre National de la Recherche Scientifique and the French School at Athens. The authors would also like
to thank Peter James, Jean Cantuel, Richard Pope and Michael Wallace for very helpful discussion.

1 A. BOGAARD, “‘Garden agriculture’ and the nature of early farming in Europe and the Near East”, World
Archaeology 37 (2005) 177-196.
2 See P. VAIGLOVA, A. BOGAARD, M. COLLINS, W. CAVANAGH, C. MEE, J. RENARD, A. LAMB, A.
GARDEISEN and R. FRASER, “An integrated stable isotope study of plants and animals from Kouphovouno,
detailed discussion of the isotope study, and F. RIVALS, A. GARDEISEN and J. CANTUEL, “Domestic and
wild ungulate dietary traits at Kouphovouno (Sparta, Greece): implications for livestock management and
calaeoenviroment in the Neolithic,” Journal of Archaeological Science 38 (2011) 528-537 for full publication of
the dental wear study.
higher concentration of the heavier 15N. Crops cultivated in wetter soils have more negative δ^{13}C values than crops grown in more arid conditions due to the differing degrees to which the lighter 12C is replenished during photosynthesis. Animal tissues reflect the isotopic composition of their dietary N plus an enrichment factor. The value of this factor is continually debated but generally accepted to be around 3-5‰. In this way, the higher on the food chain that an animal is situated, the higher its δ^{15}N relative to organisms below it.

Dental wear analysis

Tooth mesowear analysis, first introduced by Fortelius and Solounias, is a method of categorizing the gross dental wear of ungulate molars by evaluating the relief and sharpness of cusp apices in ways that are correlated with the relative amounts of attritive and abrasive dental wear. Mesowear is scored macroscopically from the buccal side of upper molars, preferably the paracone of M2. Among taxa with the appropriate masticatory apparatus, a diet with low levels of abrasion maintains sharpened apices on the buccal cusps as the tooth wears. In contrast, high levels of abrasion, associated with a diet of siliceous grass and/or a high rate of soil or dust particle ingestion, results in more rounded and blunted buccal cusp apices. Cusp sharpness is sensitive to ontogenetic age among young individuals and among dentally senescent individuals. However, for intermediate age groups, which typically include the majority of individuals in a fossil collection, mesowear was found to be less sensitive to age and more strongly related to diet. Tooth microwear analysis corresponds to the observation of microscopic scars left by food items on the surfaces of the teeth.

8 Supra n. 7.

Study site

Kouphovouno is located in the Laconia region of the Peloponnesian peninsula in southern Greece, 3km southwest of Sparta (see Pl. LXXXIa). The time-period of our interest is the Middle Neolithic (c. 5950 - 5450 cal BC) to Late Neolithic (c. 5450 - 4500 cal BC) (following the chronology of southern Greece). Many of the samples chosen for this analysis were AMS radiocarbon dated and place the group of samples into a narrower window between 5800 - 5000 cal BC. The onset of the Late Neolithic brought changes that are reflected in the nature of the architectural features and material remains. The extent of the site remained the same, i.e. the village did not seem to have changed in size, but the structures became more ephemeral, the pottery assemblage became less homogenous (now consisting of coarse ware sherds and more numerous storage vessels) and archaeozoological and archaeobotanical remains became sparser (this is not a result of the excavation/sampling strategy). Given these changes, it is our aim to consider potential chronological shifts in agricultural management strategies. Unfortunately, the Late Neolithic is not very well represented in the present dataset. Out of all the animals and crops analyzed, the only species where chronological comparisons can be made are the sheep and goats.

A key characteristic of the environment surrounding Kouphovouno is that it was well drained. The river Eurotas was located just 2.5km east of the site, and a stream originating in the westerly alluvial fans borders the northern edge of the tell. Agricultural fields may have been established either in floodplain surrounding the site, on the alluvial fans lying 300m to the west of the site or on (unoccupied) parts of the tell site itself. Livestock may have been allowed to graze in the floodplain, in the hills rising up above the basin to the southeast or on the nearby Taygetos mountain range.

Materials and methods

In this study, we analyzed 12 samples of free-threshing wheat grain (*Triticum aestivum* L./*Triticum durum* Desf.), 7 samples of hulled barley grain (*Hordeum vulgare* L.), 7 samples of common pea (*Pisum sativum* L.), and 1 sample of lentil (*Lens culinaris* Medik.). There was enough lentil sample to get only one carbon measurement and no nitrogen measurement. Animals of both the wild and domestic variety were targeted and include 16 samples of domestic cattle (*Bos taurus* L.), 7 samples of dog (*Canis lupus familiaris* L.), 14 samples of domestic sheep (*Ovis aries* L.), 7 samples of domestic goat (*Capra hircus* L.), 25 samples of domestic pig (*Sus scrofa domesticus* E.), 2 samples of wild boar (*Sus scrofa scrofa* L.), 2 samples of hare (*Lepus europaeus* P.), 1 sample of bear (*Ursus arctos* L.) and 1 sample of wild goat (*Capra aegagrus* E./*Capra ibex* L.). The samples were obtained from areas B, C, G, and H. Sheep and goat bones were differentiated using ZooMS analysis by Matthew Collins at the University of York. To correct for the c.+1‰ “charring effect” observed in experimental studies, 1‰ was subtracted from all δ15N plant measurements.

10 C. MEE, W. CAVANAGH and J. RENARD, “The Middle-Late Neolithic transition at Kouphovouno” (Paper submitted to the BSA).
13 Peter James, pers. comm.
Collagen was extracted from the animal bones using a modified Longin protocol. Plant measurements were taken on bulk samples of homogenized grain and seeds (containing between 3 and 25 items of grain/seed fragments), which underwent acid-base-acid washing pre-treatment. Measurement of the $\delta^{13}C$ and $\delta^{15}N$ of all the samples was performed using a mass spectrometer at the NERC Isotope Geosciences Laboratory at the British Geological Survey.

Microwear features of dental enamel were examined following the protocol developed by Solounias and Semprebon and Semprebon et al. Microwear scars (i.e., elongated scratches and rounded pits) were quantified on a taphonomically unaltered enamel region on the enamel of the molars. Scratch and pit densities obtained on the archaeological samples were compared to a database constructed from extant ungulate taxa. Using this information, it was possible to discriminate between the dietary categories of browser (i.e., eating woody and non-woody dicotyledonous plants) versus grazer (i.e., eating grass) using average scratch and pit densities.

Results

The plant and animal isotope results are plotted in Pl. LXXXIb. All the plants have lower $\delta^{13}C$ compared to the animals, which can be explained by carbon enrichment between diet (i.e., plant foods) and whole body isotope composition of the consumers. The plants cluster more tightly by species and there is almost no overlap between the plant species, except for two barley samples which lie in the pea region. The free-threshing wheat samples have considerably higher $\delta^{15}N$ than the barley samples. The peas show a noticeable enrichment over their source of nitrogen — AIR, which is defined as 0‰. The faunal results do not separate out by species as distinctly as the plant results, but there are still statistically significant differences between some of the faunal species clusters. The dog and pig values are more enriched over the rest of the animals in terms of their $\delta^{15}N$, which reflects their more omnivorous dietary adaptation. The diets of the sheep and goats vary isotopically, and this difference shifts between the Middle and Late Neolithic (see Pl. LXXXIV discussed later).

In this paper, we focus on four trends in the stable isotope results: 1) the distinct $\delta^{15}N$ signatures of the free-threshing wheat and the barley, 2) the elevated $\delta^{15}N$ of the peas, 3) the projected values of the crop chaff and 4) diachronic changes in the sheep and goat diets.

Cereals and their growing conditions

Pl. LXXXIb shows that there is a c. 3‰ difference between the average $\delta^{15}N$ of the two cereals (mean free-threshing wheat $\delta^{15}N = 5.9 \pm 0.7$‰; mean hulled barley $\delta^{15}N = 2.7 \pm 1.2$‰). This indicates that the wheat was grown in soils that were markedly more enriched in ^{15}N than the soils in which the barley grew. There are several possible reasons for this contrast. ^{15}N-enrichment in soils can be caused by climatic factors such as aridity, soil salinity and seaspray effect, but these factors are likely to have affected the landscape around Kouphovouno.

17 FRASER et al. (supra n. 3).

18 For a more complete description of the techniques, information about the lab protocols used and measures used to assess the reliability of the data, please refer to VAIGLOVA et al. (supra n. 2).

21 SOLOUNIAS and SEMPREBON (supra n. 19).

because the surrounding soils were well-drained and the site was not situated next to the coast. Anthopogenic causes of soil enrichment involve the addition of organic substances to the soil, in the form of farmyard manure and/or midden material. In experimental studies on the effects of manuring on crop stable isotope ratios, wheats and barleys which were intensively manured had values of around 6‰ or higher, while crops which were manured at lower rates (representing either long-term cultivation with low-level manuring, residual effects after a period of intensive manuring or early years of a new intensive cultivation regime) had values between c. 2.5-6‰; crops grown over a long period of time without manuring had values below 2.5‰. Comparatively, the measurements of Neolithic Kouphovouno cereals ranged from intensively manured to unmanured, with free-threshing wheat exhibiting a distinctly higher manuring signature than hulled barley. This suggests that the Kouphovouno farmers: 1) made a distinction between the two different cereals and did not grow them in one field as maslin (mixed crops) like modern farmers do on the island of Amorgos, for example, and 2) they treated the two cereals at different levels of intensity and did not grow them in rotation on the same piece of land.

Pulses and their growing conditions

The findings show that peas were also being manured intensively. Peas are nitrogen fixers — types of plants that take most of their N straight from the atmosphere, and thus have δ⁰¹⁵N close to 0‰, which is the value of AIR. Based on experimental findings, Fraser et al. argue that small amounts of manure cause δ¹⁵N enrichment in pulses which is almost indistinguishable from measurement error, and that when we do see noticeable enrichment, it is likely a result of intensive manuring. Pl. LXXXIb shows that the peas cultivated in Kouphovouno show such a noticeable enrichment over AIR (mean δ¹⁵N = 1.3 ± 0.3‰). A similar example of a small-scale farming situation where pulses are significantly enriched in δ¹⁵N is the modern farming collection in Evvia, Greece.

Crop water status

One of the phenomena that isotopes can help us understand is the watering status of crops. To do this, δ¹³C values have to be converted into Δ¹³C values; the conversion accounts for the changes in δ¹³C of atmospheric CO₂ through time and thus allows us to compare carbon isotopic values across time.
Pl. LXXXIIa shows the $\Delta^{13}C$ of the crop samples in relation to watering ‘bands’ established by Wallace et al.32 based on crops grown under experimentally controlled watering conditions. The bands show the isotope ranges of “moderately watered” plants representing wheat, barley and peas, with the corresponding “poorly watered” plants lying below the indicated range and “well watered” ones lying above it. The data show that wheat and barley grown at Kouphovouno had similar water status, as they both fall into the moderately watered band. The peas and lentil, on the other hand, are situated in the well-watered region. Pulses have been found to be more sensitive to wetness conditions (i.e. when the conditions are drier, their $\Delta^{13}C$ looks more distinctively dry and when the conditions are wetter, their $\Delta^{18}C$ looks distinctively wet). Therefore, a significant enrichment in the $\Delta^{13}C$ of the pulses suggests that these crops were being artificially watered. The peas also exhibit higher variability in $\Delta^{13}C$ (also see $\delta^{13}C$ in Pl. LXXXIIb), which resemble, isotopically, broad beans grown under less standardized, small-scale ‘traditional farming’ conditions in central Eivvia, Greece.33 It is likely that this variability reflects the practice of hand watering, as has been suggested for the Bronze Age/Early Iron Age site of Assiros Toumba.34

Question of fodder use

One of the advantages of measuring the stable isotopes of the actual archaeological remains of crops is that we can use the results to try to infer which plants/parts may have contributed to the animal diets and exclude those which did not.35

Dental micro- and mesowear analyses show that the diets of the Neolithic pigs in Kouphovouno were intermediate between mixed feeders, frugivorous ungulates and omnivores. In Pl. LXXXIIb, they lie above the cattle and ovi-caprids, which plot between modern leaf browsers and grazers. The only place where they would be able to obtain this diet was in or around the village.36 Stable isotopes can help us untangle which of the cultivated crops may have been on the pig menu.

The cereals that were measured in this study were all samples of grain. Experimental studies have shown that there is a consistent offset of about -2.4‰ in nitrogen between the grain and the chaff of cereal plants; for carbon, the offset is -1.9‰ for wheat and -1.7‰ for barley.37 Using these offsets, Pl. LXXXIIIa shows the projected values of the chaff of the cereals cultivated at Kouphovouno.

The average $\delta^{15}N$ of the pigs is 5.9 ± 0.9‰ and subtracting their trophic level enrichment of 3-5‰ (see above), the $\delta^{15}N$ value of their diet is situated around 0.9-2.9‰. This means that the pigs may have consumed a combination of the free-threshing wheat chaff, hulled barley chaff, hulled barley grain, pulse product and by-product, or other food items with similar isotopic composition. What they could not have been consuming in significant amounts is the free-threshing grain. In light of this, it is possible that wheat was grown exclusively for human consumption.

Sheep and goat diets

In the case of sheep and goats, dental micro- and mesowear analysis did not show any significant dietary differences between the two species (see Pl. LXXXIIIb), but the distinction was based on morphological identification of teeth, which may be problematic. Overall, the dental results indicate that all the Middle and Late Neolithic sheep and goats had variable diets.

The stable isotopes can be used to untangle part of this variability. The $\delta^{13}C$ and $\delta^{15}N$ values show differences in the diets of the ovi-caprids, but these differences change between

\begin{itemize}
 \item WALLACE \textit{et al.} (supra n. 31).
 \item WALLACE \textit{et al.} (supra n. 31).
 \item BOGAARD \textit{et al.} (supra n. 3); FRASER \textit{et al.} (supra n. 3).
 \item RIVALS \textit{et al.} (supra n. 2).
 \item BOGAARD \textit{et al.} (supra n. 3); FRASER \textit{et al.} (supra n. 3); WALLACE \textit{et al.} (supra n. 31).
\end{itemize}
the Middle and the Late Neolithic. In the Middle Neolithic, the distinction lies in the carbon, while in the Late Neolithic, the difference is in the nitrogen (see Pl. LXXXIV). Middle Neolithic sheep have significantly lower $\delta^{13}C$ values compared to the Late Neolithic sheep and all of the goats (mean $\delta^{13}C$ of MN sheep = $-20.9 \pm 0.3\%$; mean $\delta^{13}C$ of LN sheep = $-20.3 \pm 0.4\%$; mean $\delta^{13}C$ of all goats = $-20.1 \pm 0.2\%$). Late Neolithic sheep have the highest $\delta^{15}N$ of all the ovicaprids in both phases (mean $\delta^{15}N$ of LN sheep = $5.3 \pm 0.7\%$; mean $\delta^{15}N$ of LN goats = $4.2 \pm 0.9\%$; mean $\delta^{15}N$ of MN sheep = $4.9 \pm 0.5\%$; mean $\delta^{15}N$ of MN goats = $5.0 \pm 1.0\%$). Note that the sample sizes are quite small but the chronological differences are statistically significant (when comparing the $\delta^{13}C$ means of MN sheep and goats, $p = 0.0041$; when comparing the $\delta^{15}N$ means of LN sheep and goats, $p = 0.0041$).

There are various feeding habits that sheep and goats can adopt that will influence their stable isotopic values. Sheep can be used for preventative grazing, which is a way of controlling excessive growth of cultivated cereals on highly fertile soils. Excessive growth can lead to problems with vulnerability to late frosts and unpredictable spring rains, 'lodging' (when crops grow too tall too quickly and may break under heavy rain) or competition with weeds whose growth is also promoted for the same reasons of higher soil fertility. Foddering (of cultivated crop product/by-product or collected vegetation) is another way of introducing different food items into the animal diets. However, both preventative grazing and foddering are short-term feeding strategies (livestock generally feeds on fodder only during harsh winters and preventative grazing as a one-off event when excessive cereal growth is taking place). For these reasons, it is unlikely that the adoption of these practices would have a significant influence on the stable isotopic values of the animals.

Still, the chronological differences in the carbon and nitrogen remain to be explained and we can consider questions of habitat and forage to try to tease out the dietary distinctions: either the sheep and the goats were grazing/browsing in different parts of the landscape or they were consuming different plants/plant parts in the same landscape. In the Middle Neolithic, the sheep have more depleted $\delta^{13}C$ values, which may be a result of 1) grazing in areas that are wetter or 2) grazing in more forested areas — a result of the so called "canopy effect", which, some argue, causes depleted carbon isotope values. As sheep generally prefer to graze in more open areas than in forests, the former explanation seems more likely.

The nitrogen differences between the Late Neolithic sheep and goats are unlikely to be the result of any of the environmental factors causing $\delta^{15}N$ enrichment in soils (such as aridity, soil salinity and denitrification, discussed above) for the same reasons that the free-threshing wheat is unlikely to have been independently affected by them. Thus, it seems plausible that the higher $\delta^{15}N$ in the LN sheep is a result of anthropogenic causes. Sheep, which are obligate grazers, may have been given access to grazing on arable lands (fallow fields or vegetation growing on the edges of fields), whereas goats may have been left to browse on vegetation or woody parts of plants in unmanaged fields (and therefore would not have been affected by the manuring effect). Regardless of the causes of the distinctions in the diets, what we can comfortably infer is that the sheep and goats were managed in different ways and that their management changed between the Middle and the Late Neolithic. The management revolved around exploitation of different parts of the landscape and may have been linked with issues of land ownership and the social meaning of food.

39 As per WALLACE et al. (supra n. 31).
41 HALSTEAD (supra n. 38).
Discussion

The findings presented herein suggest that, in the Middle and Late Neolithic, Kouphovouno farmers cultivated wheat and pulses at high intensity (probably in relatively close proximity to the settled area) and hulled barley at low intensity (probably at a greater distance from the houses). The labor-intensive cultivation of the wheat and pulses may have been carried out in garden plots on the tell itself, but the archaeology suggests that open spaces inside the village were likely not used for cultivation, but rather for firing pottery, preparing food, waste disposal and as pathways or lanes. Thus, the structure of the settlement seems to be one where the gardens were located adjacent to and not dispersed within the nucleated village. It is possible that the village was organized into neighborhoods, the inhabitants of which made use of adjacent land for gardening, but the extent of archaeology that was uncovered is insufficient to corroborate this claim.

The fact that the farmers were 1) distinguishing between the two different cereals and 2) managing them at different intensities, suggests that from the early stages of the site’s occupation, the farmers were already familiar with the growing needs of the different cereal species (such as the fact that barley can survive in more marginal conditions). Pigs, which would have subsisted in or around the village, may have consumed a combination of the hulled barley grain and by-product, by-product of the wheat, any part of the pulses and any other isotopically similar dietary components, which were not measured in this study. They could not have consumed significant amounts of the free-threshing wheat grain. This leads us to believe that the cereal which the farmers consciously selected to grow with higher labor inputs was cultivated for the purpose of human consumption.

The water status of the crops does not enable us to differentiate between the watering management of the two cereals. The most we can say is that these two crops had similar water status, but whether that was a result of natural water being supplied by rain or artificial watering achieved by irrigation is unclear. The high watering signatures of the pulses indicate that these crops received additional water and the wide distribution of their carbon signatures suggests that they were being hand watered, the variability reflecting significant differences between watering strategies of individual farmers, years and/or plots.

The diets of the domestic animals reflect the browsing and grazing nature of sheep, goats and cows, and the more omnivorous nature of the pigs and dogs. The one sample of wild goat fits into the isotopic cluster of the domestic sheep and goats, but has a lower $\delta^{15}N$ than the domestic individuals. The most likely explanation for this is that the wild goat is unlikely to have consumed any types of plants that may have been affected by manuring, such as graze in fallow fields and cereals which have to be preventatively grazed.

The change in the sheep and goat management in the Late Neolithic was accompanied by changes in the handling of, and perhaps the symbolic significance of, food. As opposed to the Middle Neolithic, where the pottery assemblage was quite homogenous, the ceramics from the Late Neolithic represent a wider range of wares and include a greater amount of storage vessels. The fact that the shift in food processing coincided with the change in the sheep and goat management strategy shows just how closely interlinked the spheres of settlement organization and subsistence strategy were.

Conclusions

The stable isotopes of faunal and crop remains from Kouphovouno provide us with critical insight for understanding the nature of the crop and animal management at the Neolithic site of Kouphovouno. They enable us to infer that different types of cereals were grown under distinct growing conditions and that intensive crop cultivation, of both cereals and pulses, was already well established at the start of the Neolithic occupation of the site. Management of the sheep and the goats changed between the Middle and the Late Neolithic, which had an effect on their diets. The nature of the change was most likely exploitation of different

42 MEE et al. (supra n. 10).
parts of the arable and natural surrounding landscape. Future oxygen isotopic work on sheep teeth planned by the authors may help us track the movement of these animals across the wider (topographically diverse) landscape and thus better understand their seasonal behavior. Other future work will involve the study of other Neolithic sites in Greece, which will enable us to understand more thoroughly how the mechanisms of early farming worked in different settings and shaped communities in different regions.

Petra VAIGLOVA
Florent RIVALS
Amy BOGAARD
Rebecca FRASER
Armelle GARDEISEN
William CAVANAGH
Christopher MEE
Josette RENARD
Angela LAMB
LIST OF ILLUSTRATIONS

Pl. LXXXIa Map of the Peloponnesian peninsula, southern Greece, indicating the location of Neolithic Kouphovouno (map prepared by Jean Cantuel, from RIVALS et al. [supra n. 2]).

Pl. LXXXIb \(\delta^{13}C \) and \(\delta^{13}N \) of all Neolithic plants and animals analyzed in this study.

Pl. LXXXIIa \(\Delta^{13}C \) values of all crops measured in this study compared to watering bands established through experimental studies (WALLACE et al. [supra n. 4]).

Pl. LXXXIIb Microwear bivariate graph for the domestic ungulates from Kouphovouno. Ellipses indicate Gaussian confidence ellipses (p=0.95) on the centroid of the samples from Kouphovouno and the extant grazer and browser samples adjusted by sample size.

Pl. LXXXIIIa Projected values of cereal chaff (free-threshing wheat and hulled barley) based on the measured values of the archaeological cereal grains from Kouphovouno. The offset used was -2.4‰ for nitrogen (as per FRASER et al. [supra n. 3]) and -1.9‰ for carbon of wheat and -1.7‰ for carbon of hulled barley (as per WALLACE et al. [supra n. 4]).

Pl. LXXXIIIb Results of sheep and goat microwear analysis measurements.

Pl. LXXXIV \(\delta^{13}C \) and \(\delta^{15}N \) of Middle Neolithic (MN) and Late Neolithic (LN) sheep and goats from Kouphovouno.