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Abstract Most clustering and classi�cation methods are based on the assumption that the ob-
jects to be clustered are independent. However, in more and more modern applications, data are
structured in a way that makes this assumption not realistic and potentially misleading. A typi-
cal example that can be viewed as a clustering task is image segmentation where the objects are
the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are
geographically located, it is of interest to cluster data with an underlying dependence structure
accounting for some spatial localisation. These spatial interactions can be naturally encoded via
a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random
�elds and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic
graphical models are tools that can be used to represent and manipulate data in a structured way
while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of
probabilistic graphical models are considered: Bayesian networks and Markov networks. The key
concept of conditional independence and its link to Markov properties is presented. The main prob-
lems that can be solved with such tools are described. Some illustrations are given associated with
some practical work.

1 Introduction

Graphical models are used in various domains including machine learning and arti�cial intelligence,
computational biology, statistical signal and image processing, communication and information the-
ory, and statistical physics to name a few. Probabilistic graphical models refer to a set of tools
based on correspondences between graph theory and probability theory and that aim at solving
mainly two types of important but di�cult problems, namely 1) the computation of likelihoods,
marginal distributions and modes of distributions in non trivial settings and 2) the estimation of
model parameters and model structures from noisy data. In this task, the role of the graphs is to
provide a graphical representation of a probability distribution of interest and this with the objec-
tive of providing an easier way to deal with this distribution. The graphical representation can help
in visualizing the structure of a model and can provide better insights into the model properties.
It allows for instance an immediate visualization of conditional independences by inspection of the
graph. More generally, complex computations required to perform inference and learning in sophis-
ticated models can be expressed in terms of graphical manipulations. In addition, the framework is
quite general in that a number of standard statistical models such as Kalman �lters, hidden Markov
models, Potts models, can be described as graphical models. The combination of graph theory and
probability theory is not providing new models per se but the diagrammatic representation can help
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in designing and motivating new probabilistic models and also in designing graph based algorithms
for their estimation.

In this chapter, we will review the main concepts of probabilistic graphical models. For a more
detailed treatment, the interested readers are referred to better and more complete monographs on
the subject [Koller and Friedman 2009, Murphy 2012]. A number of good tutorials are also available
on the web, e.g.
- http://www.di.ens.fr/~fbach/courses/fall2014/,
- http://cs.nyu.edu/~dsontag/courses/inference15/slides/lecture1.pdf
- http://www.cedar.buffalo.edu/~srihari/CSE574/
as well as recent Moocs: https://class.coursera.org/pgm/lecture/preview.

In section 2, we recall the main useful probability notation and concepts. In the sequel, two
main classes of probabilistic graphical models are introduced. Section 3 presents the class of directed
graphs also referred to as Bayesian networks in which the links have directional meaning. The key
concept of conditional independence and its link with Markov properties is presented in section 4.
Then the second class of undirected graphical models which contains the famous Markov random
�elds is presented in section 5. Mixed directed and undirected graphs (e.g. chain graphs) will not be
covered here. Section 6 presents the main problems that can be solved with such tools considering
inference and learning issues. Some illustrations are given with practical work proposed in section
7.

2 Elements of probability theory

Probability theory plays a central part in modern pattern recognition. It can be expressed in
terms of two simple equations corresponding to the sum rule and the product rule below. All of
the probabilistic inference and learning manipulations amount to repeated application of these two
equations.

Let us �rst recall some notation. Let X1; X2; : : : ; Xn be random variables with distribution:

P(X1 = x1; X2 = x2; : : : ; Xn = xn) = pX(x1; : : : ; xn) = p(x) (1)

where x stands for (x1; : : : ; xn). p is also called the probability density function (pdf) of X. Given
A � f1; : : : ; ng, we denote the marginal distribution of xA by:

p(xA) =
X

x2Ac
p(xA; xAc): (2)

Note that the above equation is written for discrete variables but the extension to continuous
variables is straightforward using integrals instead of sums. With this notation we can write the
conditional distribution as:

p(xAjxAc) =
p(xA; xAc)
p(xAc)

(3)

The sum rule links the marginal probability distribution function (pdf) of some variable X to the
joint probability distribution of (Y;X):

Sum rule : p(x) =
X

y
p(x; y) ;
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while the product rule expressed the joint pdf as a product of conditional and marginal pdfs:

Product rule : p(x; y) = p(xjy)p(y) :

From these two equations, we can derive Bayes’ theorem:

Bayes’ theorem : p(yjx) =
p(xjy)p(y)

p(x)
;

where we can also write p(x) =
P

y p(xjy)p(y).
We also recall the so-called chain rule which can be derived from a repeated application of the

product rule :

p(x1; : : : ; xn) = p(x1)p(x2jx1)p(x3jx2; x1) : : : p(xnjx1; : : : ; xn�1) : (4)

3 Directed graphs and Bayesian networks

Bayesian networks also called belief networks or causal networks are based on directed graphs.
The nodes of the graph are the random variables and the edges correspond intuitively to direct
in�uence of a node on another. The graph can be seen as a compact representation of a probability
distribution. Let us show how this can be done by considering a �rst simple example with 3 variables.
The chain rule leads to:

p(x; y; z) = p(x)p(yjx)p(zjx; y) (5)

in which we observe 3 factors that involve separately only parts of the variables. The underlying
directed graph semantics is to associate each variable to a node and to draw an arrow from X to Y
whenever X is in a conditioning term for Y . This leads to the graph in Figure 1.

Figure 1: A general 3 variable DAG representing the pdf in (5).

In the general case, as an arbitrary joint distribution can always be decomposed using the chain
rule (4) above, the corresponding graphical representation would correspond to a fully connected
graph with n nodes and where each node is linked by an edge to all lower-numbered nodes. It appears
that useful information about the speci�city of a joint distribution is not so much in the edges but
rather relies in the absence of links between variables. This idea leads to the concept of Directed
Acyclic Graphs (DAG) also called Bayesian networks. The general factorization property can then
be stated as follows. Let X1; : : : ; Xn be n random variables with distribution p(x) = pX(x1; : : : ; xn).

De�nition 3.1 Let G = (V;E) be a DAG with V = f1; : : : ; ng. We say that p(x) factorizes in G,
denoted p(x) 2 L(G) i� p(x) is of the form:

8x; p(x) =
nY

i=1

p(xijpai) (6)

3



where pai stands for the set of parents of the vertex i in G.

We can then observe that a missing link in G implies conditional independence between the corre-
sponding variables. The graph can be used to impose or to account for constraints on the random
vector i.e. on its distribution p.

Example 3.1 Some DAGs

� Trivial Graphs : Assume E = ;, i.e. there is no edges. Then we have p(x) =
Qn
i=1 p(xi),

implying the random variables X1; : : : ; Xn are independent. Hence variables are independent
if they factorize in the empty graph.

� Complete Graphs : As already mentioned, the chain rule leads to p(x) =
Qn
i=1 p(xijx1; : : : ; xi�1)

which is always true, corresponds to a complete graph with n(n�1)=2 edges as we need acyclic-
ity for it to be a DAG. Every random process factorizes in the complete graph.

� 7 node graph example : As an illustration, let us consider a 7-dimensional vector (x1; : : : ; x7).
If p admits the following decomposition

p(x1 : : : x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)
(7)

it can be translated into the graph in Figure 2 (a).

(a) (b)

Figure 2: (a): 7 node DAG with independence constraints corresponding to factorization (7). (b) :
same model with only part of the variables observed.

Example 3.2 Hidden variables: Variables may be hidden (latent) or visible (observed). In Figure
2 (b), some of the nodes correspond to missing variables which may have a speci�c interpretation
or may be introduced to permit a richer class of distributions.

� Mixture of Gaussians: A typical hidden variable model is that of mixtures of Gaussians. A mix-
ture of Gaussians is a linear combination of K Gaussians whose pdf is denoted by N (y;�k; �2

k).
The mixture pdf is p(y) =

PK
k=1 �kN (y;�k; �2

k) with
PK

k=1 �k = 1 and �k 2 [0; 1]. We can
recover this model by adopting a latent variable viewpoint. Let X be a discrete latent variable
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(a) (b)

Figure 3: (a): Mixture model. (b): Hidden Markov Chain.

that takes values in f1; : : : ;Kg and that describes which component of the mixture generated
data point y. Let us consider the model de�ned by:

Conditional distribution of the observed variable: p(yjX = k) = N (y;�k; �2
k)

Prior distribution of the latent variable: p(X = k) = �k :

Marginalizing over the latent variable X, we recover:

p(y) =
KX

k=1

�kN (y;�k; �2
k):

In terms of graphical model this corresponds to the simple graph of Figure 3 (a).

� Hidden Markov Chain : Another example is that of state space models also referred to as
Hidden Markov chains or Kalman Filters whose graphical representation is given in Figure
3 (b). In such a setting, frequently the goal is to solve the problem of computing p(xijy1; : : : yn)
where the yi’s are the observed variables and xi one of the hidden ones.

At last, let us say a word about an important but subtile concept of causality. Indeed directed
graphs can naturally express causal relationships. Often child variables are observed and the goal
is to infer the posterior distribution of parent variables as illustrated in the example of Figure 4
where the result of a blood test is hoped to inform on the presence of a disease. However, note
that often statistical analysis leads to the determination of correlation which is a symmetric notion
while causality is a directional notion and his therefore much more di�cult to infer in a reliable
manner. In this chapter we will not address further this issue. Last, it is important to note that
not every relationships can be expressed in terms of graphical modes. As a counter-example take
three random variables that are pairwise independent, but not fully independent.

Figure 4: Inferring causal structure from data.
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4 Conditional independence and Markov properties

Conditional independence is a key concept in practical applications as we can rarely work with a
general joint distribution. The conditional independence between X and Y given a third variable
Z is denoted by X ??Y j Z and is characterized by two equivalent formulations:

X ??Y j Z , p (x; yjz) = p (xjz) p (yjz)

, p (xjy; z) = p (xjz) =
p (x; yjz)
p (yjz)

:

To comment on the di�erence between dependence and conditional dependence, consider the
Tra�c jams and snowmen example of Figure 5. In case of heavy snowfalls, tra�c jams and snow-
men may occur simultaneously and we have no trouble understanding the possible causal relations
between snow and tra�c jams and between snow and snowmen. However, ignoring this common
cause, one may conclude that tra�c jams and snowmen are correlated. But conditionally on snow
falls, the size of the tra�c jams and the number of snowmen are independent. In other words, the
whole link between snowmen and tra�c jams is included in the occurrence of snow falls. The con-
cept of conditional independence is more suited than dependence to capture "direct" dependencies
between variables because it potentially remove common e�ects that are by no means causal.

Figure 5: Tra�c jams and snowmen are correlated.

Then a natural question is whether we can determine the conditional independence properties
of a distribution directly from its graph. The answer is "yes" via the notion of "d-separation"
that stands for directed separation. This extended notion of separation is necessary to account for
one subtlety due to the presence of so called head-to-head nodes and the explaining away e�ect as
detailed in the next section.

4.1 Reading conditional independence

Conditional independences are readable from a directed graph by inspecting edges as illustrated in
the following 3-node examples. Besides the empty graph, leading to independence, and the complete
graph that gives no further information than the chain rule, 3 di�erent con�gurations of 3 nodes
are possible.
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� Tail-to-head node: it corresponds to the DAG showed in Figure 6. In this con�guration we
show that we have:

p(zjy; x) =
p(x; y; z)
p(x; y)

=
p(x; y; z)P
z0 p(z0; x; y)

=
p(x)p(yjx)p(zjy)P
z0 p(x)p(yjx)p(z0jy)

= p(zjy) ; (8)

which means that X and Z are independent conditionally to Y : X ??Z j Y: In the graph, we
observe that Y separates X from Z in the sense that the path from X to Z is blocked by Y .

Y ZX

Figure 6: Tail-to-head node: an observed Y separates X from Z.

� Tail-to-tail node: it corresponds to the DAG given in Figure 7. We show that:

p(x; yjz)
p(x; y; z)
p(z)

=
p(z)p(yjz)p(xjz)

p(z)
= p(xjz)p(yjz); (9)

which means that X ??Y j Z and an observed Z separates X from Y in the sense that the
path from X to Y is blocked by Z.

X Z Y

Figure 7: Tail-to-tail node: an observed Z separates X from Y .

In these two �rst examples, conditional independence is easy to check on the graph as it
corresponds to removing the conditioning node and observe whether or not the remaining
nodes are connected. However this simple visual rule does not hold in the third case below.

� V-structure or Explaining away: it corresponds to the DAG represented in Figure 8. We can
show for this type of graph that:

p(x; y) =
X

z
p(x; y; z) = p(x)p(y)

X

z
p(z) = p(x)p(y) (10)

that is X and Y are independent. But conditionally to Z, we can check that this is not true
anymore as p(x; yjz) 6= p(xjz)p(yjz), and we say that an observed Z connects X and Y .

X Z Y

Figure 8: Explaining away: an observed Z connects X to Y .

More generally, we want to answer queries such as, given three subsetsA;B and C, isXA??XBjXc
true? As illustrated above, the notion of separation is not enough in a directed graph and needs to
be generalized to that of d-separation as de�ned in the next section.
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4.2 d-separation

De�nition 4.1 Let a; b 2 V , a chain from a to b is a sequence of nodes, say (v1; : : : ; vn) such that
v1 = a and vn = b and 8j; (vj ; vj+1) 2 E or (vj ; vj+1) 2 E.

We can notice that a chain is hence a path in the symmetrized graph, i.e. in the graph where
if the relation ! is true then $ is true as well. Assume C is a set that is observed. We want to
de�ne a notion of being ’blocked’ by this set C.

De�nition 4.2 d-separation

1. A chain from a et b is blocked in d if:

� either d 2 C and (vi�1; vi; vi+1) is not a V-structure;
� or d =2 C and (vi�1; vi; vi+1) is a V-structure and no descendant of d is in C.

2. A chain from a to b is blocked if and only if it is blocked at any nodes.

3. A and B are said to be d-separated by C if and only if all chains that go from a 2 A to b 2 B
are blocked.

Note that in other words, the d-separation de�nition implies that a variable and its non-
descendants are conditionally independent given its parents.

Example 4.1 Markov properties.
For a Markov chain whose DAG is shown in Figure 9, d-separation gives a direct proof of the

Markov property that states that the future is independent on the past given the present.

Figure 9: DAG corresponding to a Markov chain

5 Undirected graphs and Markov Random Fields

The second major class of probabilistic graphical models corresponds to undirected graphs. They
include Markov random �elds also called Markov networks. In this class the graph speci�es factor-
izations of distributions and sets of conditional independence relations which correspond to Markov
properties.

5.1 Factorization

De�nition 5.1 Let G = (V;E) be an undirected graph. We denote by C a set of cliques of G i.e.
a set of sets of fully connected vertices. We say that a probability distribution p factorizes in G and
denote p 2 L(G) if p(x) is of the form:

p(x) =
1
Z

Y

C2C

 C(xC) with  C � 0; Z =
X

x

Y

C2C

 C(xC): (11)
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The functions  C are not probability distributions like in the directed graphical models. They
are called potentials. With the normalization by Z of this expression, we see that the function  C
are de�ned up to a multiplicative constant.

Remark 5.1 The factorization is not unique. We may restrict C to Cmax, the set of maximal
cliques.

5.2 Trivial con�gurations

� No edges:

We consider G = (V;E) with E = ;. For p 2 L(G), we get:

p(x) =
nY

i=1

 i(xi) as C = ffig 2 V g (12)

This gives us that X1; :::; Xn are mutually independent.

� Complete graphs:

We consider G = (V;E) with 8i; j 2 V; (i; j) 2 E. Then, C is reduced to a single set V and
for p 2 L(G), we get:

p(x) =
1
Z
 V (xV ) : (13)

This gives no further information upon the n-sample X1; :::; Xn.

5.3 Separation and conditional independence

When the graph is not complete, information lies in the absence of edges. In contrast to the directed
case, conditional independence is given by a simpler graph separation in the undirected case. It
follows the following characterization of Markov networks. First, let us specify the Markov property
w.r.t. a graph G which generalizes the usual Markov property used to characterize Markov chains.

De�nition 5.2 We say that p satis�es the Global Markov property w.r.t. G if and only if for all
disjoint subsets A;B; S � V :
A and B are separated by S ) XA??XBjXS.

When V is �nite, checking conditional independences for all A = fig; S = N(i); B = Enfig is
enough where N(i) = fj 2 V; (i; j) 2 V g is the set of neighbors of i in G.

The following theorem makes the connection between conditional independences or Markov
properties and factorization.

Theorem 5.1 (Hammersley - Cli�ord) If 8x; p(x) > 0 then
p 2 L(G) () p satis�es the global Markov property.

Note that the positivity constraint can be relaxed to a slighty less constraining condition some-
times called hereditary condition but positivity is however the most common due to its link to
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Gibbs distributions. Indeed, a distribution p 2 L(G) can also be referred to as a Gibbs distribu-
tion. It can be represented using the Boltzmann-Gibbs representation: 	C(xc) = exp(�E(xc)) and
p(x) = 1

Z exp(�E(x)) where E(x) =
P

c Ec(xc) is also called the energy function. The minus sign
convention in the exponential is not important but common in statistical physics.

Example 5.1 Pairwise Markov Random Fields (MRF).
A pairwise MRF admits as cliques only pairs and singletons so that its energy writes:

E(x) =
X

i2V

Ei(xi) +
X

(i;j)2E

Eij(xi; xj)

=
X

i2V

(Ei(xi) + 1=2
X

j2N(i)

Eij(xi; xj)) :

Note the 1=2 in the second expression above to ensure that each edge in counted only once.
Famous such MRFs include:

� Ising model on G = (V;E): p(x; �) = 1
Z exp(

P
i2V �ixi +

P
(i;j)2E �ijxixj) where the xi 2

f�1; 1g are binary variables.

� Potts model on G = (V;E): p(x; �) = 1
Z exp(

P
i2V �

T
i xi +

P
(i;j)2E �ijx

T
i xj) where the xi

are now K-dimensional indicator vectors which components are 0 except 1 which is 1. This
generalizes the Ising model to K-ary variables. We can denote by X this �nite set with K
elements. Each of them will be represented by a binary vector of length K with one component
being 1, all others being 0, so that X will be seen as included in f0; 1gK�K and its elements
denoted by fe1; : : : ; eKg.

Parameters �i and �ij are often called respectively the external �eld and interaction parameters.

A typical application of MRF and hidden MRF in noisy settings, is image segmentation or
image region labelling. At each pixel i of an image, a value say a grey level Yi is observed and
the goal is to recover from the observed image a segmentation into regions. This corresponds to
assigning a label xi for each pixel. This task can also be viewed as a clustering of the pixels into
a number of classes. For a binary segmentation into two labels or equivalently into two classes, an
Ising model can be used as the hidden MRF, while for a more general segmentation a Potts model
is necessary. The corresponding graph is that of Figure 10 whose joint distribution can be written
as p(x; y) = 1

Z
Q
i2V 	i(xi; yi)

Q
(i;j)2E 	ij(xi; xj):

6 Inference and learning

Frequently it is of interest to compute various quantities associated with an undirected graphical
model such as the log normalization constant logZ, local marginal distributions p(xi) or other
local statistics, modes and most probable con�gurations. These tasks may represent challenging
computational issues because the complexity often grows rapidly with the graph size and maximum
clique size. For instance, the complexity of computing the normalizing constant for n binary random
variables Z =

P
x2f0;1gn

Q
c2C 	c(xc), scales exponentially as 2n. Inference in graphical models is

based on exploiting the graphical structure to �nd e�cient algorithms and to make the structure
of these algorithms clear, e.g. propagation of local messages around the graph. However, exact
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Figure 10: Typical undirected graphical model for image segmentation using an hidden Markov
random �eld (HMRF)

(a) (b) (c) (d)

Figure 11: Illustration of image segmentation: a site/vertex corresponds to a pixel of the image, yi
is the observed grey level at pixel i in image (a). A 2 class segmentation consists in associating a
label 0 or 1 to each pixel like in (b) or (c). The ideal ground truth segmentation is shown in (d).

inference is not always tractable and a number of approximate inference techniques have been
developed. In this chapter, we will focus on estimation in hidden Markov random �elds. We assume
that we observe a number of measures denoted by Y = fYi; i 2 V g where V is a set of sites that can
be associated to vertices of a graph. The goal is to recover from Y a number of hidden variables
X = fXi; i 2 V g that represent for instance labels and can take a �nite number of values. X is
assumed to follow a discrete MRF distribution: p(x) = 1

Z exp(�E(x)). The link to the observations
Y is speci�ed by a so-called data term that can be written as p(yjx) = exp(�E(yjx)). It follows
that we can compute the conditional distribution which is also a MRF: p(xjy) = 1

Zy exp(�Ey(x))
with Ey(x) = E(x) +E(yjx). E(x) acts as a regularization or prior or context term while E(yjx) acts
as a data dependent term.

Let ~X denote the set in which X takes values. For general graphical models, not tree-structured,
say, p(x) = 1

Z
Q
c2C 	c(xc), all basic computations are combinatorial for large G and intractable.

This is generally the case for the normalization constant Z =
P

x2 ~X
Q
c2C 	c(xc) and the likelihood,

marginals p(xj) = 1
Z
P

xi;i 6=j
Q
c2C 	c(xc), conditionals and modes x̂ = arg maxx2 ~X

Q
c2C 	c(xc).

Among approximate solutions, we can distinguish two classes, deterministic approaches that
involve relaxation, variational approximations (e.g. mean �eld) and stochastic approaches such as
Gibbs sampling and simulation methods (Monte-Carlo). In the next section, we detail the variational
principle.
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6.1 Markov model based segmentation

A typical example in image analysis is the two dimensional lattice with a �rst-order neighborhood
system: for each site, the neighbors are the four sites surrounding it. Let X be a �nite set with
K elements denoted by fe1; : : : ; eKg. We de�ne a discrete Markov random �eld as a collection of
discrete random variables, X = fXi; i 2 V g, de�ned on V , each Xi taking values in X . The joint
probability distribution p of X is a Gibbs distribution given by

p(x) = Z�1 exp(�E(x)); (14)

where E is the energy function E(x) =
P
c
Ec(xc). The Ec’s are also often called the clique potentials

and may depend on parameters, not speci�ed in the notation. Z =
P
x

exp(�E(x)) is the normal-

izing factor also called the partition function;
P
x

denotes a sum over all possible values of x. The

computation of Z involves all possible realizations x of the Markov �eld. Therefore, it is, in general,
exponentially complex, and not computationally feasible. This can be an issue when using these
models in situations where an expression of the joint distribution p(x) is required. We will denote
by D the set of probability distributions on ~X .

In this section, we focus on Markov model-based image segmentation. Image segmentation
involves observed variables (e.g. noisy image pixels) and unobserved variables (e.g. unknown class
assignments) which have to be recovered. The hidden variables are modeled as a discrete Markov
random �eld, X, with distribution p as de�ned in (14) and an energy function E depending on
a parameter � 2 B � R and henceforth denoted by E(x;�). It is assumed that the observations
Y are conditionally independent given the Markov random �eld X, with conditional distribution
parameterized by � 2 � � Rn� , where n� is the dimension of � depending on the model under
consideration. In the general case, the likelihood of (Y;X) called the complete likelihood, is given
by

p(y; x ; �; �) = p(y j x; �) p(x;�): (15)

It is easy to see that, for such a hidden Markov �eld model, the conditional �eld X given Y = y is
a Markov �eld as X is with energy function E(x;�)� log p(y j x; �). Hereafter, we will refer to the
Markov �elds X and X given Y = y as the marginal and the conditional �elds.
In image segmentation problems, the question of interest is generally to recover the unknown image
x, interpreted as a classi�cation into a �nite number K of labels. This classi�cation usually requires
values for the vector parameter � = (�; �). If unknown, the parameters are usually estimated in the
maximum likelihood sense

�̂ = argmax�2� log p(y;�); (16)

where � = � � B is the parameter space. This optimization is usually solved by the iterative EM
procedure ([Dempster et al 1977]). Any iteration of the algorithm may be formally decomposed into
two steps: given the current value of the parameter �t, the so-called E-step consists in computing the
expectation of the complete log-likelihood knowing the observations y and the current estimate �t.
In the M-step, the parameter is then updated by maximizing this expected complete log-likelihood

�t+1 = argmax�2�

X

x2 ~X

log p(y; x;�) p(xjy;�t): (17)
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It is known that, under mild regularity conditions, EM converges to the set of the stationary points
of the incomplete likelihood � 7! p(y;�) ([Wu 1983]). As discussed in [Csiszar and Tusnady 1984]
and [Neal and Hinton 1998], EM can be viewed as an alternating maximization procedure of a
function F de�ned, for any probability distribution q 2 D, by

F (q; �) =
X

x2 ~X

log
�
p(y; x;�)
q(x)

�
q(x): (18)

Starting from the current value (qt; �t) 2 D � �, set

qt+1 = argmaxq2D F (q; �t); (19)

and

�t+1 = argmax�2� F (qt+1; �) (20)

= argmax�2�

X

x2 ~X

log p(y; x;�) qt+1(x):

The �rst optimization (19) has an explicit solution qt+1 = p(�jy;�t) so that the optimization in
(17) and (20) are equal. Hence the �marginal� sequence f�tgt of the sequence f(qt; �t)gt produced
by the alternating maximization procedure is an EM path. The maximization (20) can also be
understood as the minimization of a Kullback-Leibler divergence, up to some convention on p
thus justifying the name of alternating minimization procedure often found in the literature (e.g.
[Csiszar and Tusnady 1984, Byrne and Gunawardana 2005]).

There exist di�erent generalizations of EM when the M-step (17) is intractable; it can be re-
laxed by requiring just an increase rather than an optimum. This yields Generalized EM (GEM)
procedures ([McLachlan and Krishnan 1996]; see also [Boyles 1983] for a convergence result).

6.2 Variational EM algorithm

Unfortunately, EM (or GEM) is not appropriate for solving the optimization problem (16) in Hid-
den Markov Random Field due to the complex structure of the hidden variables X; the distribution
p(x;�) is only known up to a multiplicative constant (the partition function) that depends upon
the parameter of interest � and the domain ~X is too large so that the E-step is intractable. Alter-
native approaches were proposed and they can be understood as generalizations of the alternating
maximization procedures mentioned above : the optimization (19) is solved over a restricted class
of probability distribution ~D on ~X and the M-step (20) remains unchanged. This yields the Vari-
ational EM (VEM) algorithms ([Jordan et al. 1998]). VEM can also be introduced as resulting
from a relaxation of a convex optimization problem; the objective function p(y; �) is re-written
as the ratio of two partition functions and VEM results from the approximation of one of them
using the notion of conjugate duality in convex analysis (see [Wainwright and Jordan 2003] and
[Wainwright and Jordan 2005] for details).

[Byrne and Gunawardana 2005] proved that, under mild regularity conditions, VEM converges
to the set of the stationary points of the function F in ~D. Here again, generalizations of VEM
can be de�ned by requiring an increase rather that an optimum in the M-step (20) thus de�ning
generalized VEM procedures. These relaxation methods are part of the Generalized Alternating
Minimization procedures ([Byrne and Gunawardana 2005]).
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The most popular form of VEM is the case when ~D is the set of the independent probability
distributions on ~X so that qt+1(x) is a factorized distribution

Q
i2V q

t+1
i (xi). Optimizing (19) with

regards to qt+1
i (ek), i 2 V and ek 2 X leads to a �xed point equation:

8i 2 V;8ek 2 X ; log qt+1
i (ek) = ci +

X

x2 ~X

log p(xjy;�t) f�ek(zi)
Y

j 6=i

qt+1
j (zj)g (21)

where ci is the normalizing constant and �e denotes the Dirac mass at point e. The Markov
property implies that the right-hand side of the equation only involves the probability distributions
qj , j 2 N(i). Existence and uniqueness of a solution to (21) are properties that have not yet been
fully understood and will not be discussed here. We refer to [Tanaka 2001] for a better insight into
the properties of the (potentially multiple) solutions of the mean �eld equations. Such solutions
are usually computed iteratively (see [Wu and Doerschuk 1995] and [Ambroise and Govaert 1998],
[Zhang 1996] and an erratum in [Fessler 1998]).

Despite the relaxation which may make the summation of the VEM E-step explicit for a conve-
nient choice of ~D (ie the computation of F (qt+1; �) in (20)), VEM remains intractable for hidden
Markov random �elds. From (15) and (20), � and � are updated independently, given qt+1. Under
additional commonly used assumptions on p, �t+1 is computed in closed form. The issue is the
update of � since it requires an explicit expression of the partition function or an explicit expression
of some related quantities (its gradient for example).

To overcome this di�culty, di�erent approaches have been proposed. The Mean Field , Modal
�eld and Simulated Field algorithms proposed in [Celeux et al. 2003] are alternatives to VEM that
propagate the approximation qt+1 of p(xjy; �t) to p(x;�). Another simple presentation of the
variational principle can be found in [Bishop 2006].

7 Practical work in R: Image segmentation

As mentioned earlier, image segmentation can be seen as a spatial clustering task that can be
solved using undirected graphical models (Hidden MRF) on a regular grid. The segmentation can
also be performed without accounting for spatial information with a standard EM for mixtures of
Gaussians. In this section, we propose a simple segmentation task to illustrate the gain in accounting
for interaction. The R commands that can be used to answer the questions below are given in section
8. However, they should not be considered as a model of R implementation that would be much
better written and optimized in a genuine R package. At last in section 9, we mention a link to the
SPACEM3 software that can be used for spatial clustering and classi�cation tasks with additional
features such as those related to multimodal, high dimensional and partially missing or incomplete
data.

7.1 Non spatial segmentation

The �le "mickey.dat" contains a 200 x 200 grey level image. Each pixel can take a value between 0
and 255. The pixels are ordered in the �le line by line.

Read the �le and plot the image.

Plot a 20 class histogram of the pixels grey levels. Use the standard EM algorithm to �nd the
best mixture of two Gaussians that �ts the data.
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Initially this image was a binary image made of two colors that we will code as 0 and 1. The
goal is to recover the original color of each pixel.

Use the result of the previous EM algorithm to partition the pixels into two groups.

7.2 Spatial segmentation.

The image can be seen as a regular 2D grid with a neighborhood structure of order 1 or 2. Use
the following Hidden Markov Random Field (HMRF) model with two classes to partition the image
into two groups.

For all i 2 [1 : n]; xi 2 f0; 1g,
Data term:

p(yjx) =
nY

i=1

p(yijxi) with for k = 1; 0 p(yijxi = k) = f(yij�k; �2
k)

and f(yij�0; �2
0) = N (yij�0; �2

0)
f(yij�1; �2

1) = N (yij�1; �2
1)

where N (:j�; �2) is the density of the univariate Gaussian distribution with mean � and variance
�2.

Hidden MRF:

p(x) =
1
Z

exp(E(x)) with E(x) = �
X

(i;j)2V

(2xi � 1)(2xj � 1)

Z is the normalizing constant, � is a positive scalar regulating interaction between neighboring
pixels.

7.2.1 Inference and learning

Estimate the Gaussian parameters and recover the two class segmentation using,

� a Variational EM algorithm.

� the ICM algorithm.

� a Gibbs sampler (optional).

The � parameter can be �rst set to a positive value, e.g. 0.5. The boundary conditions can also
be �xed to simplify the code, i.e. to induce a constant number of neighbors for every pixels.

7.2.2 Comparison

Plot and compare the obtained segmentations. What is the e�ect of �? Of the neighborhood order
and structure? What happens when � is large? When � is negative? When two di�erent � values
are used for horizontal and vertical neighbors?
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7.2.3 External �eld

Add an external �eld to the previous model (optional).

8 R commands

The R function detailed in section 8.3 implements a Mean Field approximation of EM for a HMRF
with a 2 color Potts model (0,1) and ICM algorithm (which can be seen as a modal �eld algorithm).

8.1 Input of the R function

imgobs : Matrix of the observed (noisy) image to be segmented into two classes (x=0 or x=1), eg
a greylevel image ;
meaninit and varinit are both vectors of size 2 containing resp. initial values for the means and
variances of the 2 Gaussian distributions (noise model);
beta : MRF interaction spatial parameter, here beta is �xed by the user and is scalar and the same
for all pairs;
maxite: number of iterations, no convergence criterion in this function;
imginit : matrix, either a hard segmentation used for initialize the posterior probabilities or some
soft segmentation, here we can for instance run the function with beta=0 (standard EM) and use
the estimated parameters and segmentation to initialize.

8.2 Output of the R function

seg: matrix of the MAP segmentation;
mean: estimation of the 2 means;
var: estimation of the 2 variances;
prob1: matrix of the �nal posterior probabilities of being in class 1.
Note: all variables ending with ICM are similar de�nition but for the ICM algorithm.

8.3 R function

The VarEMbin function below implements VEM for a binary hidden MRF. Comments are outside
the grey blocks and can be removed to obtain a single R code. Some examples are given in the next
section.

VarEMbin<�function ( imgobs , meaninit , v a r i n i t , beta , maxite ,
img in i t ){
n_c <� ncol ( imgobs )
n_l <� nrow( imgobs )
img labe l<�matrix (0 , nrow = n_c , ncol = n_l )

ICM:

imglabelICM<�matrix (0 , nrow = n_c , ncol = n_l )

Initialisation:
1) Posteriors. In the binary case, only the probabilities to be in class 1 need to be computed.

Boundary conditions are set to 0 (binary case).
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p r o b 1 i n i t <� matrix (0 , nrow = (n_c+2) , ncol = (n_l +2))
p r o b 1 i n i t [ 2 : ( n_l +1) ,2 : ( n_c+1)]<�img in i t
prob1 <�p r o b 1 i n i t

ICM: prob1 is not a probability but a label.

prob1ICM<�matrix (0 , nrow = (n_c+2) , ncol = (n_l +2))
prob1ICM [ 2 : ( n_l +1) ,2 : ( n_c+1)]<�img in i t
# ok i f i mg in i t i s a hard c l u s t e r i n g image

2) Parameters.

bimean<�meaninit
b ivar<�v a r i n i t

ICM:

bimeanICM<�meaninit
bivarICM<�v a r i n i t

Mean Field EM:

for ( i t e in 1 : maxite ){
#Estep

mean1<�bimean [ 2 ]
sd1<�sqrt ( b ivar [ 2 ] )
mean0<�bimean [ 1 ]
sd0<�sqrt ( b ivar [ 1 ] )

#ICM
mean1ICM<�bimeanICM [ 2 ]
sd1ICM<�sqrt ( bivarICM [ 2 ] )
mean0ICM<�bimeanICM [ 1 ]
sd0ICM<�sqrt ( bivarICM [ 1 ] )

For simplicity, only the interior is updated, borders are set to label 0. Attention boundaries are not
taken into account, the number of neighbors is constant (either 4 or 8).

for ( i in 2 : ( n_l +1)) {
for ( j in 2 : ( n_c+1)){

2 neighbors (directional):

#sumvois1<�2�( prob1 [ i , ( j �1)]+prob1 [ i , ( j +1)])� 2

4 neighbors:

#sumvois1<�2�( prob1 [ i , ( j �1)]+prob1 [ i , ( j +1)]+prob1 [ ( i �1) , j ]
+prob1 [ ( i +1) , j ])�4

8 neighbors:

sumvois1<�2� ( prob1 [ i , ( j �1)]+prob1 [ i , ( j +1)]+prob1 [ ( i �1) , j ]
+prob1 [ ( i +1) , j ]+prob1 [ ( i �1) ,( j �1)]+prob1 [ ( i �1) ,( j +1)]
+prob1 [ ( i +1) ,( j �1)]+prob1 [ ( i +1) ,( j +1)])� 8
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dnorm with log=TRUE computes the log density

temp<�dnorm( imgobs [ i �1, j �1] ,mean0 , sd0 , log=TRUE)
� dnorm( imgobs [ i �1, j �1] ,mean1 , sd1 , log=TRUE)
� (2�beta�sumvois1 )
prob1 [ i , j ]<�1/(1+exp( temp ) )

ICM:

sumvois1ICM<�2� ( prob1ICM [ i , ( j �1)]+prob1ICM [ i , ( j +1)]
+prob1ICM [ ( i �1) , j ]+prob1ICM [ ( i +1) , j ]
+prob1ICM [ ( i �1) ,( j �1)]+prob1ICM [ ( i �1) ,( j +1)]
+prob1ICM [ ( i +1) ,( j �1)]+prob1ICM [ ( i +1) ,( j +1)])� 8
tempICM<�dnorm( imgobs [ i �1, j �1] ,mean0ICM , sd0ICM , log=TRUE)
� dnorm( imgobs [ i �1, j �1] ,mean1ICM , sd1ICM , log=TRUE)
� (2�beta�sumvois1 )

prob1ICM [ i , j ]<�(tempICM <0)+0
}}

M- step:

prob1temp<�prob1 [ 2 : ( n_l +1) ,2 : ( n_c+1)]
n1<�sum( prob1temp )
n0<�n_c�n_l�n1
prob0temp<�1�prob1temp

Update the 2 means:

bimean [ 2 ]<�sum( prob1temp� imgobs )/n1
bimean [ 1 ]<�sum( ( prob0temp )� imgobs )/n0

Update the 2 variances:

bivar [ 2 ]<�sum( prob1temp� ( imgobs�bimean [ 2 ] ) ^ 2 ) /n1
b ivar [ 1 ]<�sum( prob0temp� ( imgobs�bimean [ 1 ] ) ^ 2 ) /n0
# beta i s f i x e d f o r now

ICM:

prob1ICMtemp<�prob1ICM [ 2 : ( n_l +1) ,2 : ( n_c+1)]
n1ICM<�sum( prob1ICMtemp )
n0ICM<�n_c�n_l�n1ICM
prob0ICMtemp<�1�prob1ICMtemp

Update the 2 means:

bimeanICM [ 2 ]<�sum( prob1ICMtemp� imgobs )/n1ICM
bimeanICM [ 1 ]<�sum( ( prob0ICMtemp )� imgobs )/n0ICM

Update the 2 variances:

bivarICM [ 2 ]<�sum( prob1ICMtemp� ( imgobs�bimeanICM [ 2 ] ) ^ 2 ) /n1ICM
bivarICM [ 1 ]<�sum( prob0ICMtemp� ( imgobs�bimeanICM [ 1 ] ) ^ 2 ) /n0ICM
}

Compute �nal MAP:
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img labe l [ prob1temp >0.5]<�1
imglabelICM<�prob1ICM [ 2 : ( n_l +1) ,2 : ( n_c+1)]
l i s t ( seg=imglabel ,mean=bimean , var=bivar , prob1=prob1temp ,
segICM=imglabelICM )
}

8.4 Example of use

mick<�matrix ( scan ( "mickey . dat " ) , ncol=200 , byrow=T)
image( mick )

The last command above plots the image in Figure 11 (a).
Plot the histogram of the data imgobs=mick to �nd initial values for mean and var:

hist ( mick )

1) Run the algorithm with beta=0 (VEM corresponds then to regular EM) and use the output
label and parameters to set meaninit, varinit, imginit:

resmick<�VarEMbin( mick , c (90 ,170) , c (400 ,1064) , 0 , 10 ,
matrix (0 , 200 ,200 ) )
image( resmick$ seg ) # to check i f ok
img in i t<�resmick$ seg
meaninit<�resmick$mean
v a r i n i t<�resmick$var

The plotted image is close to the one in Figure 11 (b). The absence of spatial interaction implies
the classi�cation of each pixel in one of the two classes independently. As a result, it remains a salt
and pepper e�ect in the obtained binary segmentation.

2) Run VEM with � = 0:4 and 10 iterations and initial values meaninit = c(85:14; 148:71) and
varinit = c(402:97; 1234:07):

resmick<�VarEMbin( mick , meaninit , v a r i n i t , 0 . 4 , 1 0 , img in i t )
image( resmick$ seg )
image( resmick$segICM )
# almost the same f o r h igh be ta

The obtained segmentation is shown in Figure 12 (a). Note that � should not be too above the phase
transition value (0.36 for 4 neighbors, about 0.88 for 8). The run below produces a segmentation
for � = 1. The e�ect is visible on Figure 12 (b): when the spatial interaction is too strong, pixels
tend to all agree to be in the same class, which results in a almost monocolor segmentation.

resmick<�VarEMbin( mick , meaninit , v a r i n i t , 1 , 1 0 ,
matrix (0 , 200 ,200))
image( resmick$ seg )
#almost monocolor

Some experiments to make:
Negative �:
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resmick<�VarEMbin( mick , meaninit , v a r i n i t ,�0.15 ,50 ,
matrix (0 , 200 ,200 ) )
# or
resmick<�VarEMbin( mick , meaninit , v a r i n i t ,�0.18 ,10 ,
matrix (0 , 200 ,200 ) )

The obtained segmentation is shown in Figure 12 (c). All previous segmentations were made with
8 neighbors on a 2D grid. Try with only 2 or 4 neigbors by changing the lines referring to the
computation of sumvois1 in the code.

0.0 0.4 0.8
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0

0.
4

0.
8

0.0 0.4 0.8

0.
0

0.
4

0.
8

(a) (b) (c)

Figure 12: Output segmentations of the practical work: (a) VEM with 8 neighbors and � = 0:4;
(b) VEM with 8 neighbors and � = 1 and (c) VEM with 8 neighbors and � = �0:18.

For more sophisticated methods and applications, we include in the next section a reference to
the SPACEM3 software that implements a number of spatial clustering methods.

9 The SPACEM3 software

The SpaCEM3 software is dedicated to Spatial Clustering with EM and Markov Models. It pro-
poses a variety of algorithms for supervised and unsupervised classi�cation of multidimensional and
spatially-located data. The main techniques use the EM algorithm for soft clustering and Markov
Random Fields (MRF) for spatial modelling. The learning and inference parts are based on devel-
opments in mean �eld-like approximations. Its applications range from image segmentation (e.g.
tissue detection in MRI, retrieval of planet surface properties from hyperspectral satellite images)
to gene clustering (e.g. biological module detection), remote sensing and mapping epidemics of
ecological species. The main functionalities of the program include:

� Model-based unsupervised segmentation including the standard EM algorithm for mixtures
and Hidden Markov Random Field models

� Model selection for the Hidden Markov Random Field model

� Simulation of commonly used Hidden Markov Random Field models

� Simulation of independent Gaussian noise for noisy images
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� Non standard Markov models including various extensions of the Potts model and triplet
Markov models

� Additional treatment of very high dimensional data using dimension reduction techniques
within a classi�cation framework

� Models and methods allowing supervised classi�cation with original learning and test steps

� Integrated treatment of missing observations

� Summary statistics of the data and visualization

The interface is shown in Figure 13 with an example of hyperspectral image segmentation into
4 classes. The data to be segmented are spatially localized 184-dimensional spectra on the Mars’s
surface. More details on the models and algorithms implemented and on possible applications of the
software can be found in [Forbes and Peyrard 2003, Celeux et al. 2003] , [Blanchet and Forbes 2008,
Blanchet et al 2009], [Blanchet and Vignes 2009] and [Vignes and Forbes 2009].

The software can be downloaded at http://spacem3.gforge.inria.fr/.

Figure 13: SPACEM3 interface: illustration of an hyperspectral image segmentation.
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