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HARMONIC COCYCLES, VON NEUMANN
ALGEBRAS, AND IRREDUCIBLE AFFINE ISOMETRIC

ACTIONS

BACHIR BEKKA

Abstract. LetG be a compactly generated locally compact group
and (π,H) a unitary representation of G. The 1-cocycles with coef-
ficients in π which are harmonic (with respect to a suitable proba-
bility measure on G) represent classes in the first reduced cohomol-
ogy H̄1(G, π). We show that harmonic 1-cocycles are characterized
inside their reduced cohomology class by the fact that they span a
minimal closed subspace ofH. In particular, the affine isometric ac-
tion given by a harmonic cocycle b is irreducible (in the sense that
H contains no non-empty, proper closed invariant affine subspace)
if the linear span of b(G) is dense in H. The converse statement is
true, if π moreover has no almost invariant vectors. Our approach
exploits the natural structure of the space of harmonic 1-cocycles
with coefficients in π as a Hilbert module over the von Neumann
algebra π(G)′, which is the commutant of π(G). Using operator
algebras techniques, such as the von Neumann dimension, we give
a necessary and sufficient condition for a factorial representation
π without almost invariant vectors to admit an irreducible affine
action with π as linear part.

1. Introduction

Let G be a locally compact group and (π,H) a continuous unitary
(or orthogonal) representation of G on a complex (or real) Hilbert space
H. Recall that a 1-cocycle with coefficients in π is a continuous map
b : G → H such that b(gh) = b(g) + π(g)b(h) for all g, h ∈ H and
that a 1-cocycle is a coboundary if it is of the form ∂v for some v ∈ H,
where ∂v(g) = π(g)v − v for g ∈ G. The space Z1(G, π) of 1-cocycles
with coefficients in π is a vector space containing the space B1(G, π)
of coboundaries as linear subspace. The 1-cohomology H1(G, π) is the
quotient Z1(G, π)/B1(G, π).

The author acknowledges the partial support of the French Agence Nationale de
la Recherche (ANR) through the projects Labex Lebesgue (ANR-11-LABX-0020-
01) and GAMME (ANR-14-CE25-0004).
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The space B1(G, π) is not necessarily closed in Z1(G, π) (see Propo-
sition 1) and the reduced 1-cohomology with coefficients in π is defined

as H
1
(G, π) = Z1(G, π)/B1(G, π).

Assume now that G is compactly generated, that is, G = ∪n∈ZQ
n

for a compact subset Q, which we can assume to be a neighbourhood
of the identity e ∈ G and to be symmetric (Q−1 = Q).

Harmonic 1-cocycles in Z1(G, π), with respect to an appropriate
probability measure on G, form a set of representatives for the classes

in the reduced cohomology H
1
(G, π), as we will shortly explain. Such

cocycles appear in [BeV] in the case where π is the regular represen-
tation of a discrete group G, in relation with the first `2-Betti number
of G; they play an important role in Ozawa’s recent proof of Gromov’s
polynomial growth theorem ([Oza]) as well as in the work [ErO] and
[GoJ].

Harmonic 1-cocycles were implicitly introduced in [Gui, Theorem 2];
it was observed there that Z1(G, π) can be identified with a closed
subspace of the Hilbert space L2(Q,H,mG), where mG is a (left) Haar

measure on G and so H
1
(G, π) corresponds to the orthogonal comple-

ment B1(G, π)⊥ of B1(G, π) in Z1(G, π). Following [ErO], we prefer to
embed Z1(G, π) in a more general Hilbert space, defined by a class of
appropriate probability measures similar to those appearing there. For
this, we consider the word length on G associated to Q, that is, the
map g 7→ |g|Q, where

|g|Q = min{n ∈ N : g ∈ Qn}.

Definition 1. A probability measure µ on G is cohomologically adapted
(or, more precisely, 1-cohomologically adapted) if it has the following
properties:

• µ is symmetric;
• µ is absolutely continuous with respect to the Haar measure
mG;
• µ is adapted: the support of µ is a generating set for G;
• µ has a second moment:

∫
G
|x|2Qdµ(x) <∞.

Observe that the class of cohomologically adapted measures is inde-
pendent of the generating compact set Q, since the length functions
associated to two compact generating sets are bi-Lipschitz equivalent.

We consider the Hilbert space L2(G,H, µ) of measurable square-
integrable maps F : G→ H. Then Z1(G, π) is a subset of L2(G,H, µ)
(see Section 2). Moreover, the linear operator

∂ : H → Z1(G, π), v 7→ ∂v
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is bounded, has B1(G, π) as range, and it is straightforward to check

that its adjoint is −1

2
Mµ, where

Mµ : Z1(G, π)→ H, b 7→
∫
G

b(x)dµ(x).

So, the orthogonal complement B1(G, π)⊥ of B1(G, π) in Z1(G, π) can
be identified with the space of harmonic cocycles in the sense of the

following definition. In particular, the reduced cohomology H
1
(G, π)

can be identified with Harµ(G, π).

Definition 2. A cocycle b ∈ Z1(G, π) is µ-harmonic if Mµ(b) = 0, that
is,

∫
G
b(x)dµ(x) = 0. We denote by Harµ(G, π) the space of µ-harmonic

cocyles in Z1(G, π) and by

PHar : L2(G,H, µ)→ Harµ(G, π)

the orthogonal projection on Harµ(G, π).

Observe that, by the cocycle relation, b ∈ Z1(G, π) is µ-harmonic if
and only if it has the mean value property

b(g) =

∫
G

b(gx)dµ(x) for all g ∈ G.

In our opinion, the Hilbert space structure of H
1
(G, π) given by its

realization as a space of harmonic cocycles, together with its module
structure over the von Neumann algebra π(G)′ (see below), deserves
more attention than it has received so far in the literature. Our aim in
this paper is to use this structure in relation with a natural notion of
irreducibility for affine isometric actions (see Definition 3).

Our first result shows that harmonic 1-cocycles b are characterized by
a remarkable minimality property of the space span(b(G)), the closure
of the linear span of b(G).

Theorem 1. Let G be a compactly generated group. Let (π,H) be
an orthogonal or unitary representation of G and µ a cohomologically
adapted probability measure on G. Let b ∈ Harµ(G, π) be a µ-harmonic
cocycle. We have

span (b(G)) =
⋂
b′

span (b′(G)),

where b′ runs over the 1-cocycles in the cohomology class of b in H
1
(G, π).

In particular, Theorem 1 shows that, for a µ-harmonic cocycle b, the
closed linear subspace spanned by b(G) only depends on the reduced
cohomology class of b and not on the choice of µ.
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Recall that, given a cocycle b ∈ Z1(G, π), a continuous action απ,b
of G on H by affine isometries is defined by the formula

απ,b(g)v = π(g)v + b(g) for all g ∈ G, v ∈ H.
Conversely, let α be a continuous action of G on H by affine isometries.
Denote by π(g) and b(g) the linear part and the translation part of α(g)
for g ∈ G. Then π is a unitary (or orthogonal) representation of G on
H, b is a 1-cocycle in Z1(G, π), and α = απ,b. For all this, see Chapter
2 in [BHV].

The following notion of irreducibility of affine actions was introduced
in [Ner] and further studied in [BPV].

Definition 3. An affine isometric action α of G on the complex or
real Hilbert space H is irreducible if H has no non-empty, closed and
proper α(G)-invariant affine subspace.

First examples of irreducible affine isometric actions arise as actions
απ,b, where π is an irreducible unitary representation ofG with non triv-
ial 1-cohomology and b ∈ Z1(G, π) a cocycle which is not a coboundary.
By [Sha1, Theorem 0.2], such a pair (π, b) always exists, provided G
does not have Kazhdan’s Property (T). A remarkable feature of irre-
ducible affine isometric actions of a locally compact group G is that
they remain irreducible under restriction to “most” lattices in G (see
[Ner, 3.6], [BHV, Theorem 4.2]), whereas this is not true in general for
irreducible unitary representations.

Let b ∈ Z1(G, π). Observe that span(b(G)) is απ,b(G)-invariant. So,
for απ,b to be irreducible, it is necessary that span(b(G)) is dense in
H. This condition is not sufficient (see [BPV, Example 2.4]; however,
see also Proposition 3 below). The following corollary of Theorem 1
relates harmonic cocycles to this question.

Corollary 1. Let G, (π,H), and µ be as in Theorem 1. Let b ∈
Z1(G, π) and PHarb its projection on Harµ(G, π).
(i) If span(PHarb(G)) is dense in H, then the affine action απ,b is irre-
ducible.
(ii) Assume that B1(G, π) is closed; if the affine action απ,b is irre-
ducible, then span(PHarb(G)) is dense in H.

Remark 1. (i) Point (ii) in Corollary 1 does not hold in general when
B1(G, π) is not closed; indeed, let G = F2 denote the free group on
2. generators. Then H1(G, π) 6= 0 for every unitary representation π
of G (see [Gui, §9, Example 1]). On the other hand, there exists an

irreducible unitary representation π of G with H
1
(G, π) = 0 (see [MaV,

Theorem 1.1]), so that Harµ(G, π) = 0 for any cohomologically adapted
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probability measure µ on G. Now, let b be a 1-cocycle in Z1(G, π) which
is not a coboundary. Then the affine action απ,b is irreducible.
(ii) Although we will not need it, we will give an explicit formula for the
projection PHar : Z1(G, π)→ Harµ(G, µ) in the case where B1(G, π) is
closed (see Proposition 4 below).

In view of Corollary 1, it is of interest to know when B1(G, π) is
closed. Write H = HG ⊕H0, where HG is the space of π(G)-invariant
vectors in H and H0 its orthogonal complement. Let π0 denote the
restriction of π to H0. Observe that B1(G, π0) = B1(G, π) and that
Z1(G, π0) is closed in Z1(G, π); so, the following result is both a (slight)
strengthening and a consequence of Théorème 1 in [Gui].

Proposition 1. ([Gui]) Let (π,H) be an orthogonal or unitary repre-
sentation of the σ-compact group G. Then B1(G, π) is closed in Z1(G, π)
if and only if (π0,H0) does not weakly contain the trivial representation
1G.

Our approach to the proof of Theorem 1 uses the fact, observed in

[BPV, §3.1] and [BeV] that H
1
(G, π) is, in a natural way, a module

over the (real or complex) von Neumann algebra π(G)′, which is the

commutant of π(G) in B(H); see Section 2. Viewing, as we do, H
1
(G, π)

as the Hilbert space Harµ(G, π), one is lead to the study of Harµ(G, π)
as a Hilbert module over π(G)′.

For instance, if M := π(G)′ is a finite von Neumann algebra (that
is, if there exists a faithful finite trace onM) then, we can define (as in
[GHJ, Definition p.138] or [Bek, p. 327]) the von Neumann dimension

of H
1
(G, π) as

dimMH
1
(G, π) := dimMHarµ(G, π) ∈ [0,+∞) ∪ {+∞};

for more details, see Section 2. It is worth mentioning that in case π is

the regular representation of a discrete group G, dimMH
1
(G, π) coin-

cides with β1
2(G), the L2-Betti number of G (see [BeV, Proposition 2]).

We now give some applications of von Neumann techniques to the
problem of the existence of an irreducible affine isometric action of G
with a given linear part π. First, using Corollary 1, we can reformulate
Corollary 3.7 from [BPV] in our setting. Recall that a vector v in a
Hilbert module over a von Neumann algebra M is a separating vector
for M if Tv = 0 for T ∈M implies T = 0.

Proposition 2. ([BPV])
(i) Assume that M = π(G)′ has a separating vector b in Harµ(G, π).
Then απ,b is irreducible.
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(ii) Assume B1(G, π) is closed and that απ,b is irreducible for some
b ∈ Harµ(G, π). Then b is a separating vector for M.

For an application of the previous criterion in the case where G
is a discrete finitely generated group and π a subrepresentation of a
multiple of the regular representation of G, see [BPV, Theorem 4.25].
We extend this result to arbitrary factor representations, that is, to
unitary representations (π,H) such that the von Neumann subalgebra
π(G)′′ of B(H) generated by π(G) is a factor (equivalently, such that
π(G)′ is a factor). Concerning general facts about factors, such as their
type classification, see [Dix1].

Theorem 2. Let (π,H) be a factor representation of the compactly gen-
erated locally compact group G on the separable complex Hilbert space
H. Assume that B1(G, π) is closed in Z1(G, π). Set M := π(G)′ and
let µ be a cohomologically adapted probability measure on G. Depending
on the type ofM, there exists b ∈ Z1(G, π) such that απ,b is irreducible
if and only if:

(i) the factor M is of type I∞ or of type II∞ and its commutant
in B(Harµ(G, π)) is of infinite type (that is, of type I∞ or II∞,
respectively);

(ii) the factor M is of finite type (that is, of type In for n ∈ N or
of type II1) and dimMHarµ(G, π) ≥ 1;

(iii) the factor M is of type III and Harµ(G, π) 6= {0}.

Remark 2. Let (π,H) be a unitary representation of G such that
B1(G, π) is closed in Z1(G, π); let

π =

∫ ⊕

Ω

πωdν(ω)

be the central integral decomposition of π, so that the πω’s are mutually
disjoint factor representations of G (see [Dix2, Theorem 8.4.2]). One
checks that one has a corresponding decomposition of Harµ(G, π) as a
direct integral of Hilbert spaces:

Harµ(G, π) =

∫ ⊕

Ω

Harµ(G, πω)dν(ω).

Moreover, B1(G, πω) is closed in Z1(G, πω) and there exists a separating
vector for π(G)′ in Harµ(G, π) if and only if there exists a separating
vector for πω(G)′ in Harµ(G, πω) for ν-almost every ω. So, Theorem 2
can be used to check the existence of an irreducible affine with any
unitary representation π as linear part (provided B1(G, π) is closed in
Z1(G, π)).
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As an illustration of the use of Theorem 2, we will treat the example
of a wreath product of the form Γ = G oZ and a unitary representation
π of Γ which factorizes through a representation of G; the reduced
cohomology of such groups was considered in [Sha2, §5.4].

Theorem 3. Let G be a finitely generated group, and let (π,H) be
a unitary representation of the wreath product Γ = G o Z in the sep-
arable Hilbert space H. Assume that π factorizes through G and that
H1(G, π) = 0.
(i) For a suitable cohomologically adapted probability measure µ on Γ,
the space Harµ(Γ, µ) can be identified, as a module over π(Γ)′, with the
Hilbert space H.
(ii) There exists an irreducible affine action of Γ with linear part π if
and only if the representation (π,H) is cyclic.
(iii) Assume that G is not virtually abelian (that is, G does not have
an abelian normal subgroup of finite index). Then G has a factorial
representation π for which π(G)′ is of any possible type.

Remark 3. (i) When π is a factor representation, a necessary and
sufficient condition for the existence of a cyclic vector for π(G) (equiv-
alently, a separating vector for π(G)′) in H is given in Theorem 2, with
H replacing Harµ(G, µ) there.
(ii) By the Delorme-Guichardet theorem ([BHV, Theorem 2.12.4]), the
condition H1(G, π) = 0 is satisfied for every unitary representation π
of G if (and only if) G has Kazhdan’s property (T).

2. The space of harmonic cocycles as a von Neumann
algebra module

Let G be a locally compact group which is generated by a compact
subset Q, which we assume to be a symmetric neighbourhood of the
identity e ∈ G. Let (π,H) be an orthogonal or unitary representation
of G. The map

b 7→ ‖b‖Q = sup
x∈Q
‖b(x)‖

is a norm which generates the topology of uniform convergence on
compact subsets and for which Z1(G, π) is a Banach space.

Let M := π(G)′ be the commutant of π(G) in B(H), that is,

M = {T ∈ B(H) : Tπ(g) = π(g)T for all g ∈ G};

M is a (real or complex) von Neumann algebra, that is,M is a unital
self-adjoint subalgebra of B(H) which is closed for the weak (or strong)
operator topology.
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As observed in [BPV, §3.1]), H1(G, π) is a module over M; indeed,
if b ∈ Z1(G, π) and T ∈ π(G)′, then Tb ∈ Z1(G, π), where Tb is defined
by

Tb(g) = T (b(g)) for all g ∈ G;

moreover, T∂v = ∂Tv for every vector v ∈ H.
Let µ be a cohomologically adapted probability measure on G (Def-

inition 1). We consider the Hilbert space L2(G,H, µ) of measurable
mappings F : G→ H such that

‖F‖2
2 :=

∫
G

‖F (x)‖2dµ(x) <∞.

Then every b ∈ Z1(G, π) belongs to L2(G,H, µ); indeed, the cocycle
relation shows that

‖b(x)‖ ≤ |x|Q‖b‖Q for all x ∈ G,
and hence

‖b‖2
2 ≤ ‖b‖2

Q

∫
G

|x|2Qdµ(x) <∞.

In fact, the norms ‖ · ‖2 and ‖ · ‖Q on Z1(G, π) are equivalent (see
[ErO, Lemma 2.1]). So, we can (and will) identify Z1(G, π) with a
closed subspace of the Hilbert space L2(G,H, µ).

The von Neumann algebraM acts on H in the tautological way and
on L2(G,H, µ) by

TF (g) = T (F (g)) for all T ∈ π(G)′, F ∈ L2(G,H, µ), g ∈ G,
preserving Z1(G, π) and B1(G, π). Since the operator Mµ : Z1(G, µ)→
H is equivariant for these actions, Harµ(G, π) = kerMµ as well as its

orthogonal complement B1(G, π) are modules over M.
The image of M in B(L2(G,H, µ)) = B(L2(G, µ))⊗H is

M̃ = I ⊗ π(G)′,

which is a von Neumann algebra isomorphic to M. The orthogonal
projection PHar : L2(G,H, µ)→ Harµ(G, π) belongs to the commutant

M̃′ = B(L2(G, µ))⊗ π(G)′′

of M in B(L2(G,H, µ)), where π(G)′′ is the von Neumann algebra
generated by π(G) in B(H). The commutant of M in Harµ(G, π)) is
then the reduced von Neumann algebra (see Chap.1, §, Proposition 1
in [Dix1])

PHarM̃′PHar = PHar(B(L2(G, µ))⊗ π(G)′′)PHar.

Assume now that M is a finite von Neumann algebra, with faithful
normalized trace τ. Let L2(M) be the Hilbert space obtained from
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τ by the GNS construction. We identify M with the subalgebra of
B(L2(M)) of operators given by left multiplication with elements from
M. The commutant of M in B(L2(M)) is M′ = JMJ, where J :
L2(M) → L2(M) is the conjugate linear isometry which extends the
map M → M, x 7→ x∗. The trace on M′, again denoted by τ, is
defined by τ(JxJ) = τ(x) for x ∈M.

TheM-module L2(G,H, µ) can be identified with anM-submodule
of L2(M) ⊗ `2, with M acting on L2(M) ⊗ `2 by T 7→ T ⊗ I. The
orthogonal projection Q : L2(M) ⊗ `2 → L2(G,H, µ) belongs to the
commutant ofM in B(L2(M)⊗`2), which isM′⊗B(`2). The projection
P = PHar ◦Q belongs therefore to the commutant ofM in B(L2(M)⊗
`2).

Let {en}n be a basis of `2 and let (Pij)i,j be the matrix of P with
respect to the decomposition L2(M)⊗`2 = ⊕i(L2(M)⊗ei). Then every
Pij belongs to M′ and the von Neumann dimension of the M-module
Harµ(G, π) is

dimMH =
∑
i

τ(Pii).

3. Proofs of the main results

3.1. Proof of Theorem 1. Let b0 ∈ Harµ(G, π). Let b1 ∈ B1(G, π)
and set b := b0 + b1. We claim that b0(G) is contained in the closure of
span(b(G)).

Indeed, let K denote the closure of span(b(G)) and PK : H → K
the corresponding orthogonal projection. Since K is π(G)-invariant,
PK belongs to the commutant π(G)′ of π(G). Therefore (see Section 2),

PKb0 is contained in Harµ(G, π) and PKb1 is contained in B1(G, π). On
the other hand, since b take its values in K, we have that

PKb = b = b0 + b1.

It follows that PKb0 = b0 and PKb1 = b1. Therefore,

b0(G) ⊂ K = span(b(G)),

as claimed. �

3.2. A characterization of irreducible affine isometric actions.
We will need for the proof of Corollary 1 one of the several characteri-
zations of irreducible affine actions from Proposition 2.1 in [BPV]; for
the convenience of the reader, we give a direct and short argument.

Proposition 3. ([BPV]) For b ∈ Z1(G, π), the following properties
are equivalent:
(i) the action α = απ,b is irreducible;
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(ii) the linear span of (b+ ∂v)(G)) is dense in H for every v ∈ H.

Proof Observe that

απ,b+∂v(g) = t−v ◦ απ,b(g) ◦ tv for all g ∈ G, v ∈ H,

where tv is the translation by v. So, απ,b is irreducible if and only if
απ,b+∂v is irreducible. This shows that (i) implies (ii).

To show the converse implication, let F be a non empty closed
απ,b(G)-invariant affine subspace of H. Then F = v + K for a vec-
tor v ∈ H and a closed linear subspace K of H. Set b0 := b + ∂v.
Then

v + b0(g) = απ,b(g)v ∈ F for all g ∈ G,
and b0(G) is hence contained in K. Therefore, K = H, since span(b0(G))
is dense in H.�

3.3. Proof of Corollary 1. Let b ∈ Z1(G, π) and set b0 := PHarb ∈
Harµ(G, π).
(i) Assume that span(b0(G)) is dense in H. By Theorem 1, the linear
span of (b+ ∂v)(G) is dense for every v ∈ H, and Proposition 3 shows
that απ,b is irreducible.
(ii) Assume now that B1(G, π) is closed in Z1(G, π) and that απ,b is
irreducible. Write b = b0 + ∂v0 for b0 = PHarb and v0 ∈ H. Then
απ,b0 = απ,b−∂v0

is also irreducible, by Proposition 3; hence, span(b0(G))
is dense.�

3.4. Proof of Theorem 2. Let (π,H) be a unitary representation of
G; we assume that B1(G, π) is closed in Z1(G, π). Let µ be a cohomo-
logically adapted probability measure on G.

In view of Proposition 2, we have to investigate under which con-
ditions M = π(G)′ has a separating vector in Harµ(G, π). We may
assume that Harµ(G, π) 6= {0}.

Observe that a vector in Harµ(G, π) is separating forM if and only
if it is cyclic for the commutant N ofM in B(Harµ(G, π)). Three cases
cases can occur.
• First case: N is an infinite factor. ThenM always has a separating
vector (see Corollaire 11 in Chap. III, §8 of [Dix1]).
• Second case: N is a finite factor and M is an infinite factor. Then
N has a cyclic vector in Harµ(G, π) if and only if dimN Harµ(G, π) ≤ 1
(see [Bek, Corollary 1]). For this to happens a necessary condition is
that M is a finite factor. So, M has no separating vector.
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• Third case: N and M are finite factors. In this case, we have (see
[GHJ, Prop. 3.2.5])

dimMHarµ(G, π) dimN Harµ(G, π) = 1;

hence, M has a separating vector in Harµ(G, π) if and only if

dimMHarµ(G, π) ≥ 1.

Claims (i), (ii), and (iii) follow from this discussion.�

3.5. Proof of Theorem 3. We first consider the general case of the
wreath product Γ = G oH of two finitely generated groups G and H.
Recall that Γ = GnH(G), for H(G) =

⊕
g∈GH and G acts on H(G) by

shifting the copies of H. We view H as a subgroup of Γ, by identifying
it with the copy of H inside H(G) indexed by e.

Let S1 and S2 finite symmetric generating sets for G and H, respec-
tively. Then S1 ∪ S2 is a finite symmetric generating set for Γ. Let
µ1 and µ2 be cohomologically adapted probability measures on G and

H respectively. Then µ =
1

2
(µ1 + µ2) is a cohomologically adapted

probability measure on Γ.
Let (π,H) be a unitary representation of G, viewed as representation

of Γ. We have orthogonal π(Γ)-invariant decompositions

`2(Γ,H, µ) = `2(G,H, µ1)⊕ `2(H,H, µ2)

and
Harµ(Γ, π) = Harµ1(G, π)⊕ Harµ2(H, π).

Since π is trivial on H, the space Z1(H, π) coincides with the set
Hom(H,H) of homomorphismsH → H.Observe that every b ∈ Hom(H,H)
is µ2-harmonic, since∑

h∈H

b(h)µ2(h) =
∑
h∈H

b(−h)µ2(h) = −
∑
h∈H

b(h)µ2(h).

Hence, Harµ2(H, π) = Hom(H,H) (alternatively, this follows from the
fact that B1(H, π) = B1(H, 1H) is trivial); therefore, we have

Harµ(Γ, π) = Harµ1(G, π)⊕ Hom(H,H).

We specialize by taking H = Z; then Hom(H,H) can be identified
with H and we have

Harµ(Γ, π) = Harµ1(G, π)⊕H;

moreover, the action of the von Neumann algebra π(Γ)′ = π(G)′ on
Harµ(G, µ) corresponds to the direct sum of the actions of π(G)′ on
Harµ1(G, µ1) and on H.
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In particular, when the 1-cohomology H1(G, π) is trivial, we have

Harµ(Γ, π) = H,
so that Claim (i) is proved. Claim (ii) follows from Proposition 2.

To show Claim (iii), assume that G is not virtually abelian. Then G
is not of type I, by Thoma’s theorem ([Tho, Satz 6]).

First, observe that G has an irreducible unitary representation σ of
infinite dimension; indeed, otherwise, G would be a liminal (or CCR)
group and hence of type I, by [Dix2, 13.9.7]. Set π = nσ, a multiple of
σ for n ∈ N or n =∞; then π(G)′ is of type In.

Next, since G is not of type I, G has a factorial representation π
such that both π(G)′′ and π(G)′ are of type II1, by [Tho, Lemma 19].
Then ρ :=∞π is factorial and ρ(G)′ is of type II∞.

Finally, G has a factor representation such that π(G)′′ (and hence
π(G)′) is of type III, by Glimm’s theorem [Gli, Theorem 1]). �

4. An explicit formula for the projection on harmonic
cocycles

We give an explicit formula for the orthogonal projection PHar in
terms of an averaging (or Markov) operator associated to µ, in the
case where B1(G, π) is closed.

Consider the operator π0(µ) ∈ B(H0) defined by

π0(µ)v =

∫
G

π(x)vdµ(x) for all v ∈ H0.

The operator π0(µ)−I : H0 → H0 is invertible if and only if π0 does not
weakly contain the trivial representation 1G (see Proposition G.4.2 in
[BHV]); in view of Proposition 1, this is the case if and only if B1(G, π)
is closed.

Proposition 4. Assume that B1(G, π) is closed. For b ∈ Z1(G, π), we
have PHarb = b− ∂v, where

v = (π0(µ)− I)−1(Mµ(b)).

Proof Indeed, observe first that Mµ(b) ∈ H0; indeed, for every w ∈
HG, we have

〈Mµ(b), w〉 =

∫
G

〈b(x), w〉dµ(x) =

∫
G

〈b(x), π(x)w〉dµ(x)

=

∫
G

〈π(x−1)b(x), w〉dµ(x) = −
∫
G

〈b(x−1), w〉dµ(x)

= −
∫
G

〈b(x), w〉dµ(x) = −〈Mµ(b), w〉.



HARMONIC COCYCLES AND IRREDUCIBLE ISOMETRIC ACTIONS 13

Moreover, for v = (π0(µ)− I)−1(Mµ(b)), we have

Mµ(∂v) =

∫
G

(π(x)v − v)dµ(x) = (π0(µ)− I)v = Mµ(b).�
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