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Sommario

We discuss central aspects of the history of the concept of an a�ne

di�erentiable manifold, as a proposal con�rming the need for using some

quantitative methods (drawn from elementary Model Theory) in Ma-

thematical Historiography. In particular, we prove that this geometric

structure is a syntactic rigid designator in the sense of Kripke-Putnam.
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1 Introduction

It is well-known (see, for instance, [39], [59]) that the sources of the modern con-
cept of an a�ne di�erentiable manifold should be searched in the Weyl's work
[65], where he gave an axiomatic description, in terms of neighborhoods (fol-
lowing Hilbert's work on the foundations of geometry), of a Riemann surface
(that is to say, in modern terms, a real two-dimensional analytic di�erentiable
manifold).

Moreover, the well-known geometrical works of Gauss and Riemann1 are
considered as prolegomena respectively of the topological and metric aspects

1Nevertheless, following what has been said in the Introduction to [42], we may say that
�for a modern reader, it is very tempting to regard his [that is, of Riemann] e�orts as an
endeavor to de�ne a �manifold�, and it is precisely the clari�cation of Riemann's ideas, as
understood by his successors, which led gradually to the notions of manifold and Riemannian
space as we know them today�.
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of the structure of a di�erentiable manifold respectively in R3 and Rn, n ≥ 3

(see [6]).
All these common claims are well-established in the History of Mathema-

tics, as witnessed, for example, by the crucial work of E. Scholz (see [59]).
Nevertheless, in this paper we would like to propose other possible view-

points, about the same historical question, which are corroborated by some
elementary methods of Model Theory applied to Mathematical Historiogra-
phy. To be precise, we wish to show that Dini's work on implicit function
theorems provides an essential syntactic tool, which was at the foundation of
the modern theory of di�erentiable manifolds (see Examples 5 and 6, Section
1.1 of [26]).
We may think the Dini's theory on implicit functions as a theory, in a certain
sense, deductively equivalent (from the syntactical point of view) to the mo-
dern abstract theory of di�erentiable manifolds, via the fundamental works of
H. Whitney. For a modern treatment of the theory of di�erentiable manifolds
strictly related to Dini's and Whitney's theorems (and for other interesting
imbedding results), see [43].

Furthermore, in this perspective, we wish to relate (logically) Dini's work
with some arguments and statements of Lagrange's Analytical Mechanics, in
such a way that the latter may be seen as necessary physical (hence, semanti-
cal) and formal motivations to the birth of the structure of di�erentiable mani-
fold (as we know it nowadays). At last (but not least), we prove that the geo-
metric structure �di�erentiable manifold� is a mathematical entity that should
be understood as a syntactic rigid designator in the sense of Kripke-Putnam.

2 The papers of Hassler Whitney

With the papers [67], [68] and [69], Hassler Whitney begins a detailed study
of the structure of a di�erentiable manifold, mainly starting2 from the works
of O. Veblen and J.H.C. Whitehead (see next � 7).
Subsequently, he improves and extends part of these results: for instance, his
celebrated imbedding theorem is �rst stated in [68] for compact manifold, and
extended to every paracompact manifold in [70].

In the Introduction to [68], he says that

�A di�erentiable manifold may be de�ned in two ways: as a

point set with neighborhoods homeomorphic with Euclidean spaces

Rn (hence, according to Weyl), or as a subset of Rn de�ned near

2See footnote 2 of page 645 of [68].
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each point by expressing some of the coordinates in terms of others

by di�erentiable functions (hence, according to Dini, as we will see).
The �rst fundamental theorem is that the �rst de�nition is no

more general than the second; any di�erentiable manifold may be

imbedded in Euclidean space. In fact, it may be made into an

analytic manifold in some Rn�.

In [68], Whitney uses many results of [67] and, especially, he uses some
approximation theorems of the Weierstrass type (see I.6. of [68]).

In II.8. of [68], he proves (a �rst version of) the following, celebrated
imbedding theorem (of Whitney)

�Any Cr- manifold of dimension m (with r ≥ 1 �nite or in�-

nite) is Cr-homeomorphic with an analytic manifold in Euclidean

space Rm+1�.

There is another fundamental theorem proved by Whitney in [68], namely
the Theorem 2 (expounded in II.8., after the above mentioned Theorem 1),
that plays a crucial role in the proof of the various Lemmas to Theorem 1.
In the proof of Theorem 2 of [68], many results of the theory of real analytic
functions and their approximations, are used.

Finally, we recall what he says in I.1. of [69]

�Let f1, ..., fn−m be di�erentiable functions de�ned in an open

subset of Rn. At each point p at which all fi vanish, let the gra-

dients ∇f1, ...,∇fn−m be independent. Then the vanishing of the fi
determines a di�erentiable manifold M of dimension m. Any such

manifold we shall say is in �regular position� in Rn. Only certain

manifolds are in regular position [...]. The purpose of the paper is

to show that any m-manifold M in regular position in Rn may be

imbedded in a (n−m)-parameter family of homeomorphic analytic

manifold; these �ll out a neighborhood of M in Rn.

We may extend the above de�nition as follows: M is in regular

position if, roughly, there exist n −m continuous vector functions

in M which, at each point p of M , are independent and indepen-

dent of vectors determined by pairs of points of M near p. If M

is di�erentiable, the two de�nitions agree; the ∇fi are the requi-

red vectors. The theorem holds also for this more general class of

manifolds�.

Clearly, the recalls to the Dini's work are evident.
Moreover, as has been made subsequently to the works of Whitney (see, for

instance, � 1.1 and Theorem 3.2. of [27]; see also [43]), the Theorem 2 of [68],
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nowadays called regular value theorem, may be re-expressed and simpli�ed
through the implicit function theorem, starting from the original Whitney's
proof, with a few modi�cations.

Furthermore, the implicit function theorems are at the basis of the im-
portant notion of transversality, a modern di�erential topology tool (see [27])
that speci�es the intuitive concept of �generic position� (drawn from algebraic
geometry) of a manifold.

However, we are mainly interested in the above fundamental Theorem 1, for
the following reason: we shall use this imbedding theorem for proving a certain
logical (syntactical) equivalence between the theory of di�erentiable manifolds
according to Weyl (that is to say, the modern one) and that deducible by the
work of U. Dini.

3 The implicit function theorem: a brief history

The most complete work on the history of implicit function theorem, is [31],
to which we refer for a deepening of the subject; but, for the chief aspects of
this history, see also [41].

The germs of the idea for the implicit function theorem, can be retraced
both in the works of I. Newton, G.W. Leibniz, J. Bernoulli and L. Euler on
In�nitesimal Analysis, and in the works of R. Descartes on algebraic geometry.
Later on, in the context of analytic functions, J.L. Lagrange �nds a theorem
that may be seen as a �rst version of the present-day inverse function theorem
(see also, [32], � 2, for the limitations of this theorem). We shall return on
this question in regard to the in�uences of the Theory of Analytic Functions
and Algebraic Geometry, in the birth of the modern notion of di�erentiable
manifold.

Subsequently, A.L. Cauchy gives a rigorous formulation of the previous
semi-theories of implicit functions assuming that they are expressible as power
series, a restriction removed by Dini (see [8], p. 431).
Indeed, from here on, the implicit function theorem evolves until up the de�ni-
tive Dini's generalized real-variable version (see [16], [17]), related to functions
of any number of real variables.

But, only with Dini's works, we have a �rst complete, general and organic
theory of implicit functions (at least, from the syntactic viewpoint).
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4 The work of Ulisse Dini

Ulisse Dini (1845-1918) was a pupil of Ottavio Fabrizio Mossotti (1791-1863)
and Enrico Betti (1823-1892). The former was a physicist and a mathemati-
cian, deeply in�uenced by the works of J.L. Lagrange3, who taught Geodesy
at the University of Pisa when Dini was a student. The latter was professor
of Mathematical Physics at the University of Pisa and supervisor of the Dini's
thesis.

In 1864, Dini publishes a paper on an argument of his thesis suggested
by Betti. This �rst paper is followed by many other works on di�erential
geometry and geodesy. In that period, Dini is in a scienti�c correspondence
with E. Beltrami who took Geodesy chair left by the late Mossotti. At the
same time, Dini is into touch with B. Riemann, at the time visiting professor
at Pisa under Betti's interests.

In 1865, Dini spends one year of specialization in Paris under the super-
vision of J. Bertrand, where he continues his thesis arguments, with further
researches in di�erential geometry, geodesy, algebra and analysis.

In 1866, Dini comes back to Pisa, where he starts his academic teaching
career, as a professor of Geodesy and Advanced Analysis.

Nearly seventy, Dini settles an important work on a rigorous revision of the
mathematical foundations of Analysis, with his celebrated Lezioni di Analisi

In�nitesimale (see [16], [17]) and the Fondamenti per la teorica delle funzioni

di variabili reali (see [18]). In these works, many original results and contribu-
tions of the Author are inserted: among these, the (so-called Dini's) theory of
implicit functions, in [16], [17].

We are interested in the Lezioni di Analisi In�nitesimale.

These are the lessons given by the Author in the Academic Year 1876-1877
at the University of Pisa, and there exist two contemporaneous autographed
(or lithographed) editions: the edition published by the printing-work Bertini,
and the edition published by the printing-work Gozani. Both editions are in a
unique volume, but divided into two parts: the �rst devoted to the Di�erential
Calculus (with Chapters I-XXXII), the second devoted to the Integral Calculus
(with Chapters I-XXIII).

Dini's theory on implicit functions is expounded in the following Chapter
(of [16])

XIII. Derivate e di�erenziali dei vari ordini di funzioni implicite

di una o più variabili indipendenti,

3On the other hand, O.F. Mossotti was a close colleague and collaborator of G.A.A. Plana
at Torino, and the latter was a pupil of J.L. Lagrange at the Paris École Polytechnique.
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whereas, in the Chapter (of [16])

XV. Cangiamento delle variabili indipendenti,

Dini deals with certain forms of the so-called inverse function theorem.
Finally, in the following Chapters (of [16]), Dini exposes some geometrical and
analytical4 applications of some theorems of the previous Chapters XIII and
XV.

At the beginning of the 20th century, Dini publishes a new revised and en-
larged edition of the previous lessons [16], into two volumes (and each volume,
into two parts). Nevertheless, as speci�ed in the Preface to each volume, the
new edition is di�erent from the �rst only in notations and terminology, but
not in the contents: indeed, he notices that the Editorial publication of these
lessons is motivated by the will to giving a historical evidence to his teaching
of 1876-1877, with a lesser provisional publication.

For our purposes, we are interested in part 1a and part 2a of the vol. I of
[17]; the part 1a, with total pages 372, contains the Chapters I-XVII, where
the last Chapter has the following title

XVII. Massimi e minimi delle funzioni di una o più variabili

indipendenti.

The part 2a, with total pages 345, starts with the following headline

− APPLICAZIONI GEOMETRICHE DEL CALCOLO DIFFERENZIALE −

and contains the Chapters XVIII-XXXVI. It is completely devoted to the
geometrical applications of the tools and methods developed in part 1a: indeed,
it is a very, organic treatise on di�erential geometry, fully based on the previous
lessons [16]. Above all, in the Chapters XIX-XXXVI he uses extensively the
theory of implicit functions (of the previous Chapters XIII and XV of part 1a):
for a modern (only) terminological reformulation of these Dini's (geometric)
applications, see for example Cap. 2 of [2].

5 The paper of Henry Poincaré

Following E. Scholz ([59]; see also [40]), in the paper [54] may be found another
possible source of the concept of a manifold.

4Where, among other things, the Author introduces the famous Dini's numbers of
Mathematical Analysis.
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In fact, H. Poincaré, in � 1 and � 3 of [54], gives a constructive de�nition
of (unilateral/bilateral5) manifold as follows.
If x1, ..., xn are generic variables of Rn (n ≥ 2), then he considers the following
system of p equalities and q inequalities

(1)



F1(x1, ..., xn) = 0

....

Fp(x1, ..., xn) = 0

φ1(x1, ..., xn) > 0

....

φq(x1, ..., xn) > 0,

with Fi, φj continuous and uniform functions, with continuous derivatives in

such a way that J =
∥∥∥∂Fi

∂xk

∥∥∥ ̸= 0 in each point of the common de�nition domain

of the Fi. If p = 0, we have a domain.

The system (1) de�nes a manifold of dimension m = n − p, that, when6

q = 0, it is possible to prove (see � 3 of [54]) to be equivalent to a manifold
de�ned by a system of equations of the following type

(2)


x1 = θ1(y1, ..., ym)

....

xn = θn(y1, ..., ym).

Again, the (syntactic) recalls to the implicit function theory, are evident.
However, the main historical interest of the paper [54] is known to be

related to the origins of Algebraic Topology, and not to the (possible) concept
of di�erentiable manifold (see [58]).

6 The work of Hermann Weyl

The �rst de�nition of a complex two-dimensional topological manifold, as we
know it nowadays, is exposed in � 4 of [65], while in � 6 of [65], the Author
gives the notion of a di�erentiable structure on such a manifold type.

Weyl's analysis starts from a geometrical representation of an analytic form
(according to K. Weierstrass and Riemann), and attaining to a particular struc-
ture of (Riemann) surface7, through the new topological developments achieved

5The distinction between unilateral and bilateral manifolds is given in � 8 of [54]. We
refer to the bilateral case.

6Henceforth, if not otherwise speci�ed, when we shall consider the equivalence between
(1) and (2), it is understood that q = 0.

7This is not a surface, in the sense of Analysis Situs.
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by D. Hilbert and others. In particular, the local Hausdor�'s concept of �nei-
ghborhood� of a point, has played a crucial role in the Weyl's construction of
a topological manifold.

Moreover, some geometrical aspects of Complex Analysis of that time, have
also played a fundamental (syntactic) role in the Weyl's work (as we shall see
later).

The central Weyl's idea is that of local homeomorphism of a manifold with
Rn.

Subsequently, Weyl introduces a di�erentiable structure on a topological
manifold by means of such a local homeomorphism of this manifold with Rn,
taking into account some previous works of F. Klein.

For our purposes, it is necessary to examine such little known works of F.
Klein on Riemann surfaces.

Klein wrote a fundamental monograph8 on the concept of a Riemann sur-
face, more general than the formulation used by Riemann in his studies on the
theory of analytic functions.

Klein based his work on previous Riemann's studies on Abelian functions,
on the fundamental 1870 paper of H.A. Schwarz on the integration of the bi-
dimensional Laplace equation ∆u = 0, and on a 1877 paper of R. Dedekind.
In all these works, there are some �rst results relative to a particular class of
Rn-imbedded surfaces, generated by analytic functions.

Klein also known other works on Rn-imbedded surfaces as, for instance,
those of A. Tonelli (Atti della R. Accademia Reale dei Lincei, ser. II, v. 2,

1875), W.K. Cli�ord (1876), F. Prym (1874) and P. Koebe.

As said by Weyl himself, these works of Klein seem to assume an important
role in the (Weyl's) de�nition of a di�erentiable structure on a manifold.

Furthermore, Klein's Erlangen Program viewpoint seems to be at the base
of Weyl's de�nition of compatibility relations among local coordinate systems
of a generic point of the manifold, since he introduces a group of local coor-
dinate transformations Γ, that leaves �xed the origin of R2; such a group
characterizes the manifold, and Weyl speaks of a surface of type Γ.

Later on, in [66] the author makes use of what is said in [65], with appli-
cations to General Relativity.

8Entitled Über Riemann's Theorie der algebraischen Funktionen und ihrer Integrale,
Leipzig, 1882. See also F. Klein, �Neue Beiträge zur Riemannschen Funktionentheorie�,
Mathematische Annalen, 21 (1883).
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7 The works of O. Veblen and J.H.C. Whitehead

O. Veblen and J.H.C. Whitehead, in the paper [63] (and, more extensively,
in [64]), introduce two de�nitions of a n-dimensional (regular) a�ne manifold
through three groups of axioms.

In the Introduction, the Authors de�ne

�a manifold as a class of elements, called points, having a

structure which is characterized by means of coordinate systems�,

where the notion of (local) coordinate system is the same of the Weyl's one.
Next, they introduce the notion of regular transformation by means of Dini's
implicit function theorem (see p. 552 of [63]). This notion is put at the
foundation of the de�nition of regular manifold, through the further notion
of pseudo-group of transformations (see [44], [30] or [11]), via three groups of
axioms that, on the whole, characterize the concept of manifold (see � 5).

The next sections of [63] are devoted to the consistency and independence
of the previous groups of axioms, to some topological considerations and to a
few analytic applications.

Also in this case, Dini's implicit function theorems play a crucial role in
the de�nition of manifold, since this is characterizable as an abstract entity
locally di�eomorphic to Rn, via allowable � through regular transformations
� local coordinate systems9 (see Examples 5. and 6., Section 1.1 of [26], and
also the next paragraph).

8 The role of Dini's theory on implicit functions

in di�erential geometry

In this paragraph, we want to put in evidence the existence of important logical
(and historical) links between the theory of implicit functions, as settled by
Ulisse Dini, and the construction of the abstract theory of a (topological) a�ne
manifolds.

It is possible to build up a theory of a�ne manifolds in Rn, by means of
the Dini's implicit function theorem and the inverse function theorem: see, for
instance, [50], [51], [52], [53] � in particular [52], parte I, Capitolo 2, � 2 and
parte II, Capitolo 7, � 3 � and [15], secondo volume, Cap. V.

Implicit function theorem and inverse function theorem, characterize the
local structure of any manifolds (see the �parametrization� technique of [60],

9Besides, the Authors devote � 2 of Chapter III of [63], to explain the Implicit Function
Theorem, as a fundamental tool that will be used in the remaining text.
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Cap. 5; see also Chapter 5 of [25]): to this end, see, for instance, Theorems 3
and 4, Chapter 5, of [62].

Moreover, a manifold (in Rn) may be thought, in a certain sense, as the
zero values of a given system of functions of the type (1) (equivalent to (2)),
already discussed in the previous � 5.

Here, we do not develop the detailed calculations connected with these
claims, since we have other interests and aims. Nevertheless, it is necessary to
recall the main de�nitions and theorems related to such a question, following,
respectively, the expositions given by [22] in Chapters VII and VIII, and by
[55] in Chapter 4.

According to the exposition given by [22], the local character of the Dini's implicit
function theorems led to important applications even having local character: among these,
there are the inverse function theorems (or local invertibility theorems).

Roughly speaking, a di�erentiable manifold is a subset Γ ⊆ Rn that may be locally
represented as a set of zeros of a many-variables function whose Jacobian matrix has maxi-
mum rank. For example, we may consider a surface Γ ⊆ R3 given by g(x1, x2, x3) = 0 with
∇xg ̸= 0 for each x = (x1, x2, x3) ∈ Γ, or the geometric entity Γ given by the non-degenerate
intersection of p (≥ 2) hyperplanes Γ1, ...,Γp of Rn. In this last case, if Γi is represented by
the linear function gi(x) =

∑n
j=1 aijxj , x = (x1, ..., xn), i = 1, ..., p, then Γ is represented

by the zeros of the linear function g(x) = (g1(x), ..., gp(x)), so that, if Γ = Ker g, then
dim Γ = dim Ker g = n− dim Im g = n− rank A where A = ∥aij∥; moreover, we suppose
that det A ̸= 0. Finally, if we wish that such a Γ have dimension m ∈ N with m < n, then
we must impose that either p = n − m and rank A = n − m, or p = rank A = n − m.
Therefore, if we extend these last examples to the case in which g is non-linear, then we
should impose that its Jacobian matrix have maximum rank, and since this is variable with
the variation of the points of Γ, it follows that the representation of Γ as sets of zeros can
only have a local nature.

Generalizing this, we have that Dini's theorem implies that a manifold may be locally
thought either as non-degenerate intersection of diagrams of regular functions (de�nition 1)
and as images of regular functions (de�nition 2), in both these cases the Jacobian matrices
having maximum rank; furthermore, from the pointwise variability of the Jacobian matrix,
it follows the possibility of introducing local coordinate systems.

Hence, a �rst de�nition of manifold arises when we consider this latter as the result of
gluing together many pieces each of which is a curved (due to the non-linearity of the various
functions g) subset of Rn obtained intersecting a subspace (of Rn) with an open set (of Rn).
Precisely, we have the following

De�nition 1. Let Γ ⊆ Rn, m ∈ N with m < n, and k ∈ N or k = ∞. Then we say that
Γ is a Ck-manifold of Rn with dimension m, when, for each x0 ∈ Γ, there exists an open
neighborhood I of x0 and a function g ∈ Ck(I,Rn−m), such that Γ∩I = {x;x ∈ I, g(x) = 0}
and rank J(g)(x) = n−m for each x ∈ Γ ∩ I.

Here, J(g)(x) is the Jacobian matrix of g computed in x.
The following de�nition of a manifold arises when we consider it locally identi�ed as

image of regular functions. Exactly, we have the following
De�nition 2. Let Γ ⊆ Rn, m ∈ N with m < n, and k ∈ N or k = ∞. Then we say that

Γ is locally the diagram of a m-variables Ck-function when, for each x0 = (x10, ..., xn0) ∈ Γ,
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there exists two open neighborhood I ′ and I ′′ respectively of the points (x10, ..., xm0) and
(x(m+1)0, ..., xn0), and there is a Ck-function h : I ′ → I ′′, such that, setting I = I ′ × I ′′, we
have

Γ ∩ I = {(x1, ..., xn); (x1, ..., xn) ∈ I, (xm+1, ..., xn) = h(x1, ..., xm)},

unless unessential permutations of x1, ..., xn. In such a case, we say that Γ has a structure
of a Ck-manifold with dimension m.

The latter is the de�nition of a manifold via parametrizations, which are the result
of a formalization of the geographical mapping that put into bijective correspondence a
geographical chart C with a certain zone C ′ of Earth's surface; in such a way, it is evident
that the tools and methods of the Geodesy have played a fundamental role in developing the
intuitive idea of what a manifold can be10. Indeed, from this last point of view, we reach
the following

De�nition 3. Let Γ ⊆ Rn, m ∈ N with m < n, and k ∈ N or k = ∞. If x0 ∈ Γ

and Ω is an open set of Rn, then a local m-chart of class Ck of Γ at x0 is an injective
Ck-function r : Ω → Rn such that there exists an open neighborhood I of x0 in such a way
that Γ ∩ I = r(Ω) and rank J(r)(t) = m for any t ∈ Ω. An m-atlas of class Ck of Γ is a
family {ri}i∈Ξ (Ξ is a set of indices) of local m-charts of class Ck such that the union of the
related image sets is Γ. Finally, Γ is a Ck-manifold of dimension m if it has a m-atlas of
class Ck. The parametric map r−1 : Γ ∩ I → Ω provides a local coordinate system in such a
way that, if x ∈ Γ ∩ I, then the Cartesian coordinates t1, ..., tm of r−1(x) are said to be the
local coordinates of x with respect to the given local coordinate system.

Now, we consider a particular, simple situation that allows us to put into evidence that
certain conditions, imposed on the rank of the various Jacobian matrices, are necessary in
order that be possible to prove the equivalence among the above mentioned de�nitions of
manifold.

Let n = 3,m = 2 and Γ be a plane of R3 containing the origin of R3. Such a plane
may be considered as the set of zeros of a suitable linear operator with rank n − m = 1;
let a1x1 + a2x2 + a3x3 = 0 such an operator with (a1, a2, a3 =) ̸= 0, and, for instance, let
a3 ̸= 0. Hence we have x3 = px1 + qx2, so that such a plane is also the diagram of a linear
operator from R2 to R (that is to say, from Rm to Rn−m); �nally, the same plane has the
following parametric equations x1 = t1, x2 = t2 and x3 = pt1+ qt2, so that it is the image of
the linear operator (t1, t2) → (t1, t2, pt1+ qt2), operating from R2 to R3 (that is to say, from
Rm to Rn), with rank 2 (that is to say, m) whatever be p, q. From here, in the more general
case in which Γ ⊆ Rn be a subspace of dimension m(< n), it is possible to prove that Γ may
be represented as the set of zeros of the linear map associated to a certain (n−m,m)-matrix
with maximum rank, as the diagram of a certain linear operator from Rm to Rn−m, and as
the image of a certain linear operator from Rm to Rn with rank m.

Finally, if Γ is a manifold, then instead having to do with a linear operator (like in the
previous examples, in which such a linear operator globally represents Γ), we shall have to do
with regular non-linear operators providing (in general, only) a local representation of such
a manifold. The fundamental tools which allow us to get such a local representation are the
Dini's theorem and the inverse function theorem. Indeed, as seen in the above mentioned
example concerning a plane of R3, it has been necessary to solve an implicit equation with
respect to one of its three variables, so that, in the general case, it will be necessary to
solve a system of the type g(x) = 0 with respect to n −m out of its n variables, and the

10Till to the �rst middle of the 20-th century, Geodesy was a common subject-matter of
mathematical academic studies.
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implicit function theorem is the most natural tool for solving such a problem. This theorem,
nevertheless, may only provide local representations, also in the case in which the manifold
is globally given as the set of zeros of a unique function.

In Theorem 1.11 of Chapter VIII of [22], it is proved the following, fundamental result:
Theorem 1. Let Γ ⊆ Rn, m ∈ N with m < n, and k ∈ N or k = ∞. Then, the

following conditions are equivalent:

1. Γ is a Ck-manifold of dimension m, according to the De�nition 1;

2. Γ is locally the diagram of a m-variables function of class Ck, according to the
De�nition 2;

3. Γ is a manifold having a m-atlas of class Ck, according to the De�nition 3.

In the proof of implication 1 .⇒ 2 . it is used the Dini's implicit function theorem, whereas
in the proof of the implication 3 .⇒ 1 . it is used the inverse function theorem. Among other
things, the above theorem 1. provides a useful criterion to verify whether a certain subset
of Rn is a manifold or not.

Lastly, we observe that Dini's implicit function theorem and the inverse function theorem
are strictly correlated of each other. The above exposition, drew from [22], starts from Dini's
theorems toward inverse function theorems. Instead, according to the exposition of [55], it
is possible to start from inverse function theorems toward Dini's theorems.

For instance, Chapter 4 of [55] begins with problems concerning possible inversions
of di�erentiable functions between Rn-type spaces, hence with problems of local inversion
of functions of many variables. The �rst historical methods related to this problem type
concerns the class of di�erentiable functions, as the di�erential of a function is the �rst,
natural linear approximation tool for these functions, and we have a large class of results
for linear applications (like the di�erential map) suitable to answer to the above mentioned
inversion problems. Therefore, the principle of the method consist in a generalization of what
is known about linear maps to the more extended class of di�erentiable maps. Because of
the local nature of the di�erential map, it is clear that the so obtained results from this
generalization, have a local character as well.

In � 2 of [55], the author deals with some problems concerning the local inversion of
maps. If Ω ⊆ Rm and Λ ⊆ Rn are non-void open sets, then let f : Ω → Λ be a continuous
map; if x̄ ∈ Ω, then let ȳ = f(x̄). We say that f is locally injective on x̄ if there exists a
neighborhood U of x̄ such that f|U is an injective map. We say that f is locally surjective
on x̄ if, for any neighborhood U of x̄, f(U) is a neighborhood of ȳ.

As regard the local inversion problems of maps, let us consider the following examples.
Given two open sets Ω,Λ ⊆ Rn, for a11 C1-map f : Ω → Λ to be invertible in a point

x ∈ Ω, it is necessary and su�cient that its Jacobian matrix in x, say J(f)(x), is not singular
when n = m); so, we obtain a characterization of the local invertibility of a C1-function in
the case n = m.

The general case of arbitrary n,m ∈ N, is as follows.
Let f : Ω → Rn be a C1-map de�ned on an open set Ω ⊆ Rm; if we want to study locally

f in a neighborhood of a point x ∈ Ω, then we have to consider the rank of the Jacobian
matrix J(f)(x) of f at x (that represents the di�erential of f at x).
If rx = rank J(f)(x), then rx ≤ min{n,m} for every n,m ∈ N and x ∈ Ω, the local
invertibility of f in x being possible only when rx is the highest.

11The C1-regularity hypothesis is a fundamental one.
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Therefore, we �rst consider the case rx = min{n,m}, in such a way that it remains
maximum in a neighborhood of x, since f ∈ C1(Ω,Rn).

Let rx = m < n. In such a case, we have the following inverse function theorem:

Theorem 2. Let f : Ω → Rn be a C1-map de�ned on an open set Ω ⊆ Rm, and let
rx = rank J(f)(x) = m. Then, f is locally injective in x, and, moreover, the image, through
f , of an open neighborhood of x, is a regular12 Cartesian graph with base an open subset of
Rm.
For a proof, see Theorem 4.3 of [55].

Instead, if rx = n < m, then f is locally surjective, so that it follows the problem of
studying the inverse image of every point y ∈ Rn that lies into a neighborhood of f(x). To
this end, Dini's theorems are fundamental tools for the resolution of such a problem. For
instance, if we consider the case-study m = 2 and n = rx = 1, then it holds the following
Dini's implicit function theorem

Theorem 3. Let R2 = R′ × R′′ with R′ ∼= R′′ ∼= R. Let f : Ω → R be a continuous
function de�ned on an open set Ω ⊆ R2 with fy continuous on it; let P0 = (x0, y0) ∈ Ω

be a point such that f(x0, y0) = 0 and fy(x0, y0) ̸= 0. Then, f is locally surjective in P0.
Moreover, there exists a neighborhood U of x0 on R′ and a neighborhood V of y0 on R′′,
such that the set of zeros of f on U × V is a regular Cartesian diagram with base U , that
is to say, there exists a neighborhood W of 0 on R, such that, for each z ∈ W , the set
{(x, y); (x, y) ∈ Ω, f(x, y) = z} ∩ (U × V ) is a regular Cartesian diagram with base U .

Such a theorem is applied to the study of the set of zeros of a real function f of two
variables: for example, if f is a function verifying the same hypotheses of the previous
theorem, Γf = {(x, y); (x, y) ∈ Ω, f(x, y) = 0} and there is a point (x̄, ȳ) ∈ Γf such that
(fx(x̄, ȳ), fy(x̄, ȳ)) ̸= (0, 0), then Γf , in a neighborhood of (x̄, ȳ), is of the form y = φ(x) or
x = ψ(y), for certain C1-functions φ or ψ.
This result fails into the degenerate case fx(x̄, ȳ) = fy(x̄, ȳ) = 0, that is to say, on the
singular points of Γf .

In the general case, we have the following Dini's theorem

Theorem 4. Let f : Ω → Rn be a C1-function de�ned on an open set Ω ⊆ Rm,
with n < m. If rx̄ = rank J(f)(x̄) = n in a point x̄ ∈ Ω, then f is locally surjective
on x̄. Moreover, there exists a neighborhood V of ȳ = f(x̄), a neighborhood U of x̄ and
a (m − n)-dimensional open set V ′′ of Rm such that, for every ȳ ∈ V , f−1({ȳ}) ∩ U is a
regular Cartesian diagram with base V ′′.

For a proof (making use of the above mentioned theorem 3.), see Theorem 4.8 of [55].

Finally, we have functional dependence in the case in which rx < min{n,m} and, in
general, it is no longer true that such a value rx remains constant in a neighborhood of x.
Nevertheless, in such a case, if we suppose that such a value rx remains constant in, at least,
one neighborhood of x, then we have the following

Theorem 5. Let f : Ω → Rn be a C1-map de�ned on an open set Ω ⊆ Rm. Given a
point x̄ ∈ Ω, we suppose that rx̄ = rank J(f)(x̄) < min{n,m} is constant in a neighborhood
of x̄. Then, locally, the image of f is a regular Cartesian diagram, say Γf , with base an
open subset of a coordinated r-dimensional subspace of Rn. Moreover, the inverse image
of an arbitrary point of Γf , is a Cartesian diagram with base an open subset of a (m −
r)-dimensional coordinated space of Rm.

At this point, the author introduces the notion of a di�erentiable manifold on Rm.

12That is to say, a diagram of class C1.
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Precisely, if we wish to introduce particular subsets of Rm that are locally like some a�ne
numerical space Rn, with n ≤ m, then the above mentioned theorems are fundamental tools
for this problematic context.

This problem has, in general, only solutions of local nature: for example, it is well-known
that a circle of R2 and a line, are locally homeomorphic but not globally; on the other hand,
the intersection point of two distinct lines is not even locally homeomorphic to a point of a
line.

Thus, a (topological) n-dimensional manifold of Rm (with n ≤ m) is a subset Γ ⊆ Rm

such that every point of it, has a neighborhood homeomorphic to some open subset of Rn,
namely, for each x ∈ Γ, there exists an open neighborhood U of x on Rn, an open set V of
Rn and a bijective continuous map r : V → U ∩ Γ with continuous inverse; in such a case,
we say that r is a local coordinate system (or a local chart) of x.
In general, further properties are required to holding for such a map r: among these, we
mainly require that it is continuously di�erentiable (or of class Ck, with k ∈ N or k = ∞),
and, in such a case, we speak of a di�erentiable chart of class C1 (or of class Ck).

If every point x ∈ Γ has a di�erentiable chart of class Ck, then we say that Γ has the
structure of a n-dimensional di�erentiable manifold of class Ck.

We have the following13

Theorem 6. For a subset Γ ⊆ Rm to be a n-dimensional di�erentiable manifold of class
Ck, it is necessary and su�cient that, for every x ∈ Γ, there exists an open neighborhood U
of x such that Γ ∩ U is a Cartesian diagram of class Ck, with base an open subset B of a
n-dimensional coordinated space.

For a proof (making use of the above mentioned Theorem 2.), see Theorem 6.4 of [55].
From the previous Theorems 2. and 6., it follows that any inverse local chart r−1 :

Γ ∩ U → V can be factorized into r−1 = ∆ ◦ p where p is the canonical projection of
the given Cartesian diagram (of Theorem 6.) over the base B, whereas ∆ : B → V is a
Ck-bijective map with continuous inverse.

At this point, a natural question is to treat the case in which a same point x ∈ Γ is
into two distinct local charts, say r1 and r2. Exactly, let ri : Vi → Γ ∩ U, i = 1, 2 be two
local charts on the same open neighborhood U with x ∈ U ; then, it is possible to prove (see
Theorem 6.6 of [55]) that r−1

2 ◦ r1 and r−1
1 ◦ r2 are real homeomorphisms of class Ck: the

proof follows from the decomposition r−1 = ∆ ◦ p.
The di�erentiability properties of a manifold lies just in the di�erentiability of its transition
maps among allowable coordinate systems, and it is clear that these last properties do not
subsist in the abstract case, that is to say, these must be explicitly postulated: from here, it
follows the abstract (Weyl's) de�nition of a di�erentiable manifold. Nevertheless, the author
himself (see Remark 6.7 of [55]) says that the degree of (syntactic) logical generality of the
abstract theory of di�erentiable manifolds is no higher than that of the real di�erentiable
manifold theory, because of the works of Whitney. However, the axiomatic approach has
methodological and pragmatic advantages since, for instance, we may de�ne such a structure
over arbitrary mathematical objects (with a some prede�ned topology).

Finally, we may de�ne a di�erentiable manifold by means of Dini's Theorem 4. other
than through the inverse function theorem (see the above Theorem 2) as done in Theorem
6., as follows

Theorem 7. For a subset Γ ⊆ Rm to be a n-dimensional di�erentiable manifold of
class Ck (with n ≤ m) it is necessary and su�ciency that, for each x̄ ∈ Γ, there exists an

13The Theorem 6., among other, is a useful criterion for determining whether a subset Γ
is a manifold or not.
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open neighborhood (of Rn) and a Ck-function ψ : U → Rm−n with maximum rank on U

such that Γ ∩ U = {x;x ∈ U,ψ(x) = 0}.
In other words, the latter says that there are m − n real Ck-functions ψ1, ..., ψm−n,

de�ned on U and whose Jacobian matrix has rank m−n, such that14 Γ =
∩m−n

i=1 Γi, having
put Γi = {x;x ∈ U,ψi(x) = 0} for i = 1, ...,m− n.

For a proof (making use of the above mentioned Dini's Theorem 4.), see Theorem 6.8
of [55].

This last theorem, assures us that a n-dimensional di�erentiable manifold of class Ck is
locally representable as the set of zeros of a certain multivalued function.

In conclusion, from the viewpoint of the treatment given by [55], Chapter 4, the inverse
function theorem is related to the problem of local injectivity of a regular function, whereas
Dini's theorem is related to the problem of local surjectivity of a regular function. From
both these points of view, we may get a de�nition of a di�erentiable manifold (respectively,
like in Theorem 6. as regard the problem of local injectivity, and like in Theorem 7. as re-
gard the problem of local surjectivity) in Rn, so that it is evident the historical importance
played by Dini's works on implicit function theorem regarding the foundations of modern
di�erential geometry.

However, it would be an historical mistake to think that Ulisse Dini had
in mind such a manifold theory (although in Rn): in fact, he only settled
the fundamental syntactic tools need for the next modern constructions of an
abstract a�ne manifold, although it might be probable that some problems
of Rn-imbedded surfaces (as seen in the previous � 6) had been (more or less
unconsciously) at the base of his work15.

As we shall see later, there is no (explicit) semantic link between Dini's
work on implicit functions and the theory of manifolds; there holds, instead,
only strong links of syntactic nature (that, despite all, have a proper historical
importance, as we shall see in the next paragraphes, as regard the notion of
syntactic rigid designator).

We have already mentioned the possible role played by Algebraic Geometry
(see, for instance, [31]) and Complex Analysis in regard to the mind-setting of
modern concept of a di�erentiable manifold. We wish to outline some a few
words about these last aspects.

The work of H. Weyl, as seen in � 6, is centered around the study of the
geometrical representation of certain analytic functions.
On the other hand, we also remember that, for instance, Salvatore Pincherle,
in Chapter XI of [49], exposes the implicit functions theory in the complex
context, following Dini's work in the real case. In Chapter XII, he applies what
has been said in the previous one, to the algebraic functions theory, whereas,
in Chapter XIII, he resumes Lagrange's work on inverse function theorem in

14The maximum rank condition assures that such an intersection is non-degenerate.
15This last consideration has to be considered valid only in an semi-intuitive context, or

like a kind of insight, with respect to the Dini's work on implicit function theorems.
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view of its analytical applications. This plan is common to all major treatises
on Analytic Function Theory of that time.

From all that, it is possible to guess (as, for instance, made by [40]) some
not negligible in�uences of the 19-th century Algebraic Geometry, in the de-
velopments of some aspects of the Theory of Di�erentiable Manifolds, because
many algebraic geometry tools and methods are applied to the study of the
so-called Riemannian surfaces of an algebraic function16.

A posteriori, these conjectures �nd some partial (syntactic) con�rmations
by the so-called Nash-Tognoli imbedding theorems of Algebraic Geometry (see
[5], Chapter 14), a sort of algebraic geometry analogous of the Whitney's
theorems, proving that any compact smooth manifold is di�eomorphics to a
well-de�ned nonsingular real algebraic manifold.

Hence, the works of 19-th century algebraic geometers, it should be also
considered have had some in�uences on the possible sources of the modern
theory of di�erentiable manifolds. Nevertheless, just limited to the aim of
the present paper, the comparison with the Nash-Tognoli theorems mentioned
above, seems do not have had a great historical importance within the question
related to the born of modern theory of di�erentiable manifolds, di�erently by
the case of Dini's and Whitney's works (see next � 11).

At this point, it is necessary formally to introduce the minimal Model Theo-
ry notions, which will be essential for the following critical remarks: indeed, we
want to introduce these basic quantitative tools to precise better, in a rigorous
manner, the previous historical remarks, as well as to establish rigorously the
historical relevance of the possible syntactic links among theories, in our case,
between theory of functions and di�erential geometry.

9 Some notions of Model Theory

According to [10], roughly speaking, Model theory is Universal Algebra plus
Logic. In this section, we recall some notions of Model Theory, need for the
following. Our main references are [12], [13], [14], [36], [21], [38].

9.1 Syntactic and semantic models

Every scienti�c axiomatic theory has both a syntactic component and a se-
mantic one, and, often, these two components are mixed of each other into a
concrete (that is, non-axiomatic or intuitive) scienti�c theory.

16This is an historical remark which should be thought back in regard to André Weil work
on algebraic manifolds.
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Therefore, in general, the formalization process of a scienti�c theory is an
axiomatization process working out over an initial structure of intuitive theory,
towards an abstract (axiomatic) structure, called model.

The Model Theory deals with problems and methods of such a construc-
tion. In this problematic context, syntactic and semantic questions arise: for
instance, the works of K. Gödel and A. Tarski show the possible existence of
a non-contradictory syntactically closed theories, and the non-existence of a
non-contradictory semantically closed theories. Hence, there exist limitative
theorems on the syntactic and semantic capacities of an axiomatic theory.

Nevertheless, from these limitations, it also follows the reciprocal insepa-
rability of the syntactic and semantic components.

9.1.1 Syntactic models

The formalization process leads to the so-called notion of formal system. It is
composed both by syntactic components and semantic ones. In this section,
we expose the syntactic aspects.

An elementary (syntactic) formal system (or a syntactic theory) F is a tuple
F = ⟨⟨L,D⟩⟩ with language scheme L = ⟨Al, Te,Wr,E⟩ and deductive scheme

D = ⟨Ax,Ru⟩, where

• there exists disjoint sets Co,Qu, Fu, Pr, V a,Au, in such a way that Al =∪
{Co,Qu, Fu, Pr, V a,Au} is the alphabet (or the set of symbols) of F,

with Co the set of logic connectives, Qu the set of logic quanti�ers, Fu

the set of functors, Pr the set of predicates, V a the set of individual
variables and Au the set of auxiliary symbols (with Co ∪ Qu the set of
logic constants and Pr∪Fu the set of descriptive constants or vocabulary);

• Wr is the set of words, Te (⊆ Wr) is the set of atomic terms, E (⊆ Wr)

is the set of atomic expressions (with Te∪E the set of well-formed words,

and Prop the set of propositions de�ned as a subset of E whose elements
have no free variables);

• Ax (⊆ E) is the set of (logic and speci�c) axioms, whereas Ru is the set
of logic deduction rules (with respect to a given Logic).

Note. In this section, from now on, we only speak of a formal system (or
theory), without speci�es the term �syntactic�.

L determines the set of (explicit and implicit) de�nitions (say De) of F,
whereas D determines the set of proofs (say Pf), and the set of theorems (say
Th), of F.
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Therefore, a formal system (a theory) is a tuple of the type

(1) F = ⟨⟨L,D⟩⟩ = ⟨⟨ ⟨Al, Te,Wr,E,De⟩, ⟨Ax,Ru, Pf, Th⟩ ⟩⟩.

We may think to D as the predicative, or propositional, or enunciative calculus
of a theory F.

If α is a theorem of F, we write ⊢F α. If an expression α of F is a logical
derivation by a set of expressions M of F, then we write M ⊢F α.

If the set of axioms Ax is decidable, then F is said to be axiomatizable,

whereas, if the set of speci�c axioms is �nite, then F is said to be �nitely

axiomatizable.

If L is a formal [not formal (or intuitive)] language, then we say that F is
a formal [not formal] theory.

We should make some clari�cations about the elements of Fu and Pr. Fu
is the class of all n-functor Fun = {fn

i }0≤i<j with 0 ≤ j ≤ ω and 0 ≤ n < ω,
where Fu0 is the set of individual constants, with Fun = ∅ if j = 0. Pr is
the class of all n-predicate Prn = {P n

i }0≤i<j with 0 ≤ j ≤ ω and 0 < n < ω;
Pr2 contains, at least, the element P 2

0 said to be the identity predicate, with
Prn = ∅ if j = 0.

Let F1,F2 be two theories of the type (1); we say that

• F2 is a predicative linguistic extension of F1 when Pr1 ⊆ Pr2;

• F2 is a functorial linguistic extension of F1 when Fu1 ⊆ Fu2;

• F2 is a linguistic extension of F1 (and we write L1 ⊆ L2) when F2 is a
predicative and functorial linguistic extension of F1;

• F2 is a deductive extension of F1 when Ax1 ⊆ Th2;

• F2 is a theoretical extension of F1 (or that F1 is a sub-theory of F2) when
F2 is a deductive and linguistic extension of F1; in such a case, we write
F1 4 F2, and we say that 2 is the theoretical inclusion relation;

• a theoretical extension F2 of F1 is a linguistically invariant extension
when L1 = L2, that is to say, when F2 is an improper linguistic extension
of F1;

• a theoretical extension F2 of F1 is an inessential17 extension when Th1 =
Th2 ∩ E1.

17See next Remark 1.
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If F1 4 F2 and F2 4 F1, then we say that F1 is equivalent to F2, and we
write F1 ≈ F2; we say that ≈ is the theoretical equivalence relation.

We refer to [13], Capitolo 1, � 3, De�nizione 7, for the de�nition of the
elements of De (the set of predicative and functorial de�nitions of a theory F).

We say that F2 is a simple de�nitional extension of F1 if and only if there
exists a predicative [functorial] de�nition δP

n
i [δf

n
i ] in F2, such that

1. P n
i /∈ Pr1 [fn

i /∈ Fu1];

2. Pr2 = Pr1 ∪ {P n
i }, Fu2 = Fu1 [Fu2 = Fu1 ∪ {fn

i }, Pr2 = Pr1];

3. Ax2 = Ax1 ∪ {δPn
i } [Ax2 = Ax1 ∪ {δfn

i }].

We say that F2 is a de�nitional extension of F1 when there exists a sequence
of theories Fk1 , ...,Fkp (1 < p ≤ ω), such that:

1. F1 = Fk1 and F2 = Fkp ;

2. for each 1 ≤ i ≤ ω, Fi+1 is a simple de�nitional extension of Fi.

In other words,

F1 = Fk1 → ...→ Fki → ...→ Fkp = F2 1 < i < p,

is a chain of simple de�nitional extensions.
Every simple de�nitional extension is a (proper) deductive and linguistic

extension as well. Moreover, we have the following
Theorem 1. If F2 is a [simple] de�nitional extension of F1, then F2 is an

inessential extension of F1.

For a proof, see [13], Capitolo 1, � 3, Teoremi 5, 6.
Remark 1. The Theorem 1. is the �nal result of a part of the works of

Giuseppe Peano, Alessandro Padoa and Mario Pieri on the logical analysis
of formal systems; a consequence of the so-called (Peano-Padoa-Pieri) non-

creativity principle18 of the logical de�nitions, is that the de�nitions (elements
of De) of a formal theory F, should not determine deductive novelties19 but
only expressive novelties. From here, it follows why a [simple] de�nitional
extension is proved to be �inessential�.

If L is a pure syntactic [or not syntactic] language, then we say that F is
a pure syntactic [not pure syntactic] theory. This last classi�cation leads us
to an extra-syntactic area, as we will see later, when we shall introduce the
notion of semantic model.

18See [38], Cap. III, � 5, and Cap. VI, � 2, or [4], Cap. I.
19That is, the de�nitions should not involve the demonstrability of new theorems, or

rather, it should not widen the deductive capacity of a theory.
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We now introduce the notions of theoretical homomorphisms (for details,
see [13], Capitolo 2).

Let F1,F2 be two theories of the type (1).
A theoretical representation of F1 into F2 is a map ρ : Wr1 →Wr2; hence,

we write ρ : F1 → F2.
Remembering that E, Th ⊆ Wr, we can say that a theoretical representa-

tion ρ : F1 → F2 is

• an expressive homomorphism if ρ(E1) ⊆ E2;

• a theorematical homomorphism if ρ is an expressive homomorphism and
ρ(Th1) ⊆ Th2;

• a deductive homomorphism if ρ(Pr1) ⊆ Pr2.

A deductive homomorphism is a theorematical homomorphism as well.
This last classi�cation de�nes the so-called class of theoretical homomorphisms.

A theoretical representation ρ : F1 → F2 is said to be

• a version of F1 into F2, if there exists a map (called the base of this ver-
sion) ψ : Fu1 ∪Pr1 → Th2 ∪E2, satisfying a certain set of compatibility
properties (see [13], Cap. 2, � 1, Def. 3, a));

• a quasi-relativization of F1 into F2, if there exists an expression α(v) ∈ E2

(v is a free variable) and a map ψ : Fu1 ∪ Pr1 → Th2 ∪ E2, verifying a
set of compatibility properties (see [13], Cap. 2, � 1, Def. 3, b)); we say
Bρ =< α(v), ψ > to be the base of this quasi-relativization;

• a relativization of F1 into F2, if there exists a quasi-relativization ρ′ of F1

into F2, with base Bρ′ =< α(v), ψ >, in such a way that ρ(β) ⇒ ρ′(β)

for each β ∈ E1, and ρ(β) = ρ′(β) for each β ∈ Pr1.

Versions, quasi-relativizations and relativizations, are expressive homomor-
phisms.

A theorematical homomorphism ρ of F1 into F2 is said to be

• a translation, if ρ(¬β) = ¬ρ(β) for each β ∈ Pr1;

• an interpretation, if ρ is a version of F1 into F2;

• a relative interpretation, if ρ is a relativization of F1 into F2;

• an isomorphism, if ρ : Wr1 → Wr2 is a bijection such that ρ(Ax1) = Ax2,
and there exists a map ψ : Al1 → Al2, commuting with ρ, such that
ψ(Fu1) ⊆ Fu2, ψ(Pr1) ⊆ Pr2, ψ(V a1) ⊆ V a2, ψ(Au1) ⊆ Au2, ψ(Co1 ∪
Qu1) ⊆ Co2 ∪Qu2.
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Therefore, we say that F1 is translatable, interpretable, and relatively in-

terpretable into F2 if, respectively, there exists a translation, an interpretation,
and a relative interpretation of F1 into F2. We say that F1 is isomorphic to F2

if there exists an isomorphism between F1 and F2, and we write F1 ∼ F2.
An isomorphism is a deductive homomorphism as well, but not conversely,

in general (see [13], Capitolo 2, � 1, Teorema 5).
It is possible to prove (see [13], Cap. 2, � 2, Teorema 1) the following
Theorem 2. If F1 4 F2, then F1 is translatable, relatively interpretable

and interpretable into F2; moreover, if it is also L1 = L2 and F1 is isomorphic

to F2, then F1 ≈ F2, the converse being not true, in general.

The relations of translatability, relative interpretability and interpretability,
are pre-orders.

We have the following chain of implications (see [13], Capitolo 2, � 1,
Teoremi 6, 7, 8, 9)

Isomorphism ⇒ Interpretation ⇒

⇒ Relative Interpretation ⇒ Traducibility.

If a representation ρ, inducing a certain theoretical homomorphism [isomor-
phism], is computable, then we speak of an e�ective theoretical homomorphism
[isomorphism]. If F1 is relatively interpretable into F2, then we say that F1 has
a syntactic model into F2, and we write F1 - F2.

It is important the following
Theorem 3. If F1 is [relatively] interpretable in F2, then F2 has a de�ni-

tional extension F′
2 containing a sub-theory F′

1 isomorphic to F1.

For a proof, see [13], Capitolo 2, � 2, Teoremi 10, 11.
Among the theoretical homomorphisms de�ned above, for our historiogra-

phical purposes, we are interested in the interpretable and relatively interpreta-
ble ones. The adjective �interpretable� leads us towards the semantic context.
To each formal theory F = ⟨⟨L,D⟩⟩ of the type (1), it is associable a particu-
lar universe U , that is, the set of truth values of its statements (propositions,
theorems, expressions, and so on); its choice is independent20 by the syntactic
structure of F.

Therefore, the interpretability of F1 into F2, means that it is always possible
to give an interpretation of the concepts of F1 in the terms of the concepts of
F2, in such a way that what F1 says to be true with respect to its universe
U1, is also true − by means of such an interpretation − with respect to the
universe U2 of F2.

20We shall take again this argument in the semantic context.
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Instead, the relative interpretation of F1 into F2, means that it is always
possible to give an interpretation of the concepts of F1 in terms of the concepts
of F2, but in such a way that what F1 says to be true with respect to its universe
U1, is also true with respect to a particular sub-universe Uα of U2, determined
by the relativization condition α(v) (of the base Bρ =< α(v), ψ > of the given
representation ρ : F1 → F2).

At this point, it is possible to apply these considerations to the historio-
graphical context, as follows. Indeed, a central problem in the Historiography
of Exact Sciences, is the determination of the possible relations among di�e-
rent theories, as, for instance, those that hold among a concrete (or intuitive)
theory and its formalizations21.

A �rst rational (or quantitative) comparison of this last type, it is possible,
for instance, when one takes into account the possible existence of a theoretical
representation among the theories under comparison: for example, if there
exists an interpretation, or a relative interpretation, of a theory F1 into a
theory F2, then we can say that F1 is, in a certain sense, �included� into F2.

Analogously, the possible determination of a syntactic model (and the pos-
sible theoretical connections that it may provide) gives a useful criterion for
the �reducibility� of a theory into another. These types of (syntactic) connec-
tions, provide �natural� interpretations of certain theories into others, also in
the case in which their (historical) sources are very far o�.

Nevertheless, for methodological motivations, we should consider such syn-
tactic comparison criteria, with the suitable cautions.

However, at this point, we may do a simple historical application of what
has been said above. If FDini

1 is the theory of di�erentiable manifolds in the
Dini's sense, while FWeyl

2 is the theory of di�erentiable manifolds in the Weyl's
sense (that is, the modern one), then it is obvious that FDini

1 is interpretable
into FWeyl

2 .
On the other hand, by means of Whitney's theorems, we can say too that FWeyl

2

is interpretable into FDini
1 . By Theorem 3, it follows that FDini

1 ∼ F′Weyl
2 4

F̃Weyl
2 and FWeyl

2 ∼ F′Dini
1 4 F̃Dini

1 , for certain de�nitional extensions F̃i of
Fi i = 1, 2. Moreover, we may suppose the equality22 between the languages
of FDini

1 and F′Weyl
2 , and of FDini

2 and F′Weyl
1 , so that, by Theorem 2., we have

FDini
1 ≈ F′Weyl

2 and FWeyl
2 ≈ F′Dini

1 . From here, it does not follow the (syntactic)
equivalence FDini

1 ≈ FWeyl
2 , but a �minor� equivalence, as follows. If we take

21Although, it would be more correct to consider such a type of logical comparison only
among theories having almost the same syntactic degree of formalization.

22In fact, even by Whitney's works, it is no restrictive to think any abstract smooth
n-manifold as a closed subset of some RN (with N = N(n) > n), locally representable
(according to Dini) as an intersection of the diagrams of a system of di�erentiable functions
de�ned on some common open subset of Rn, with values into Rs, s = N − n.
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into account the notion of deductive equivalence, then we may say that F1 and
F2 are deductively equivalents, and we write F1 ≃ F2, when F2 is a deductive
extension of F1, and vice versa. Therefore, if we take into account what has
been said in Remark 1, about the inessentiality of the de�nitional extensions,
then we may set Fi ≃ F̃i i = 1, 2. Thus, the relations FDini

1 4 F̃Weyl
2 ≃ FWeyl

2

and FWeyl
2 4 F̃Dini

1 ≃ FDini
1 , implies the following deductive equivalence FDini

1 ≃
FWeyl
2 .

On the other hand, it is clear that this equivalence cannot be extended to the
theoretical syntactic equivalence ≈, because there is no linguistic equivalence
between FDini

1 and FWeyl
2 : indeed, in FDini

1 , there exists neither the explicit nor
the implicit de�nition of manifold. In conclusion, FWeyl

2 is a proper linguistic
and inessential extension of FDini

1 .

Another, almost equivalent way leading to the same conclusions (about the
relations between FDini

1 and FWeyl
2 ), is centered around the (logic) immersion

theorems (see [36], Cap. 2, � 2.3), through which we have FDini
1 ∼ FWeyl

2 .

Let T be the class of all possible elementary theories, and T = T / ≈ the
set of equivalence classes of T , with respect to the equivalence relation ≈. If
4ri is the relation of relative interpretability, then (T,4∗

ri) is a pre-ordered set,
putting [F1] 4∗

ri [F2] if and only if F1 4ri F2 (this is a well-posed de�nition).

We call rational power of a theory F, its equivalence class [F] ∈ (T,4∗
ri):

intuitively, [F] is the class of all theories F′ containing a sub-theory 'which
says the same things said' by F, whereas, on its turn, F contains a sub-theory
'which says the same things said' by F′.

Analogously, if 4eri denotes the e�ective relative interpretation relation,
we have that (T,4∗

eri) is a pre-ordered set; [F] ∈ (T,4∗
eri) is said to be the

rational content of F, and, intuitively, it 'contains everything said by F and,
also, everything said' by the weaker theories of F.
Since it is possible to prove the existence of a (syntactic) isomorphism between
(T,4∗

ri) and (T,4∗
eri), the unique formal entity they determined, is called a

theoretical pre-order.

Therefore, it is possible to consider this theoretical pre-order, as a tool to
determine a certain �axiological scale of importance� among theories; further,
it may turn out to be also useful in certain historical classi�cations of the
'importance' of a theory identi�ed by its rational content. Moreover, such a
pre-ordering may correspond to the historical development of the theories, so
that it is evident the usefulness of the syntactic tools here exposed, in the
possible historic-critical comparison between theories.
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9.1.2 Semantic models

In this section, we discuss the elementary semantic aspects of a (syntactic)
formal system.

The emergence of the semantic context, has the following motivations. The
above exposed syntactic methods, may turn out to be useful when we are
mainly interested in the syntactic comparison of theories: for instance, with
these methods, it is possible a comparison of theories with di�erent languages.

Nevertheless, the historical comparison is often oriented towards a langua-
ge comparison, and the syntax shows its own limits23 with respect to this
framework. A method to avoid these limits, consists in the introduction of the
so-called Metamathematical Semantics.

Roughly speaking, the Semantics studies the sets of possible meanings (or
interpretations) associable to syntactic symbols.
In [13], Capitolo 4, it is possible to �nd a purely abstract formalization of the
Semantics; instead, we are interested in a more extended setting, suitable to
historical questions. To this end, we refer to [12], [14], [21] and [38].

We follow the algebraic viewpoint of the Semantics, as developed by the
Polish school. One of the central concepts of Algebraic Semantics is that of
(Peirce-Schröder) logical matrix, built up on a syntactic system F = ⟨⟨L,D⟩⟩.
Such a logical matrix is a tuple of the type M = ⟨⟨F,D⟩⟩, where D is the
set of the so-called appointed (or designated) values, de�ned as follows. If
C = Fu ∪ Pr is the set of descriptive constants24 of F, U is a possible world

(or a universe of discourse) and v : C → U is a valuation, then R = (U , v) is
said to be a (Frege) extensional interpretation of F. Therefore, we may de�ne
(extensively) D as follows: for each formula F of F, it is v(F) ∈ D if and
only if F is true. F is a tautology if and only if v(F) ∈ D for every valuation
v. If Ev(M) is the set of all formulas true under v (that is to say, such that
v(F) ∈ D), then we set E(M) =

∩
v Ev(M). In such a way, the logical matrix

generalizes the concept of (Tarski-Huntington-Bernstein) deductive system (or
deductive theory); in general, F is a Boolean algebra and D is a �lter on F

(instead, the set of not true formulas, is an ideal of this algebra). We say that
R is a semantic interpretation of the language L of F. We may also write
M = ⟨⟨F,R⟩⟩ = ⟨⟨F, (U , v)⟩⟩, instead of M = ⟨⟨F,D⟩⟩.

23There are further problematic limits of the syntactic context: for instance, there exists
�niteness problems, connected with the attempts to avoid the impossible identi�cation
between mathematical truth and demonstrability, that led to the failure of the Hilbert's
formalistic program.

24Descriptive constants (or atomic propositions) and speci�c axioms, characterize
(syntactically) a formal theory.
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We can now introduce the fundamental notion of Lindenbaum-Tarski alge-
bra.

If M is a deductive theory (according to Tarski), we de�ne the following
pre-order

ϕ ≤M ψ
def.⇔ F ⊢M ϕ⇒ ψ.

Its symmetrization gives the following equivalence relation25

ϕ ≡M ψ
def.⇔

(
M ⊢M ϕ⇒ ψ

)
∧
(
M ⊢M ψ ⇒ ϕ

)
,

and it is immediate to prove that AM = M/ ≡M is a Boolean algebra with

[ϕ] ∪ [ψ] = [ϕ ∨ ψ], [ϕ] ∩ [ψ] = [ϕ ∧ ψ],

¬[ϕ] = [¬ϕ], 0 = [(∀x)(x ̸= x)], 1 = [(∀x)(x = x)].

Frequently, the above Lindenbaum-Tarski construction is made on F in-
stead of the wholeM, so that we obtain the following (syntactic) Lindenbaum-
Tarski algebra AF = F/ ≡F. It is possible to prove that AM is a free algebra
generated by C.

By means of the Lindenbaum-Tarski algebra, it is possible to set up a bijec-
tive correspondence between valuations and some particular homomorphisms
of Boolean algebras, as follows.

Let F(L) be the set of all formulas of L (in F) (as de�ned in [9], Appendice
B, B.1.), and let AF(L) = F(L)/ ≡F(L) be the Lindenbaum-Tarski algebra
of F(L); then, it is possible to prove that any valuation of M, bijectively
correspond to a well-determined homomorphism (of Boolean algebras) from
AM to F, de�ned on the set of generators C.

Moreover, if M is an arbitrary set of formulas of F (⊆ F(L)) and T (L,M)

is the set of all theorems of the formal system having language L, and M

the set of speci�c axioms (see [9], l.c.), then T (L,M) is a sub-theory of F,
while T (L,M)/ ≡T (L,M) is a �lter of AM. Thus, a Theory has a unique
�lter (on AM) as an algebraic counterpart [precisely, a maximal �lter for a
(syntactically) complete Theory]: it is generated by the equivalence classes of
the speci�c axioms M of T (L,M).

On the other hand, following [36], if it is given a language L, a consistent
set T of L-sentences is, roughly speaking, a Theory (see the above T (L,M)),
while a model of T (or a T -model) is a L-structure (see [36], Cap. 1, �� 1.1, 1.2
and 1.3), say S, such that every sentence in T is true into S. We say that a

25There exists other equivalence relations leading to the so-called (Halmos) polyadic al-
gebras, or to the so-called (Tarski) cylindric algebras. For simplicity, we restrict ourself to
consider Lindenbaum-Tarski algebras.
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theory T proves a L-sentence ψ if T ⊢S ψ for every model S. Sometimes, the
elements of T are called axioms, whereas the theorems (of T ) are the sentences
proved in T , that is, the deductive closure of T (see also [60]).

If we write, for simplicity's sake, S ⊢ ψ instead of T ⊢S ψ, then ⊢ sets
up a Galois connection between the class of models of T and the set of all
L-sentences of the deductive closure of T (see [12], Chapter 5, � 4).

Precisely, to each class C of T -models corresponds the set C∗ of all L-
sentences true into every model of C, while, to each class S of L-sentences of
T , corresponds the class S∗ of T -models with respect to which any sentence of

S is true. Then, we have the following bijective correspondences C
ξ→ C∗ and

S
ξ−1

→ S∗, induced by the above Galois connection.
On the other hand, if we consider the Lindenbaum-Tarski algebra associa-

ted (to the formal system corresponding) to the deductive closure of T , say
AT , then the Galois connection, ξ, induces a Galois connection between AM

and the space of models of T , say MT . Hence, we may write AT

ξ∼= MT . The
(logical) closure operators de�nes (following Kuratowski) a well-determined
topology on the model space MT , and the corresponding topological space is
called the Boole space of T (see [12], Chapter 5, � 6); it is a Stone space.

If we want to apply these last considerations to the case related to the
History of Di�erentiable Manifolds, then we may deduce, via Whitney's theo-
rems26, the existence of a Galois connection betweenMFDini

1
andMFWeyl

2
, hence

between their corresponding Lindenbaum-Tarski algebras (computed with re-
spect to the syntactic context, or with respect to the extensional semantic
context).

At this point, it is necessary to specify some of the above expounded
semantic concepts.

If B = (B,∨′,∧′,¬′, 0, 1) is any Boolean algebra, then a realization (or
representation) of the language L into B, is a map ρ : F(L) → B, such that

1. ρ(¬α) = ¬′ρ(α),

2. ρ(α ∧ β) = ρ(α) ∧′ ρ(β),

3. ρ(α ∨ β) = ρ(α) ∨′ ρ(β),

4. ρ(α⇒ β) = ¬′ρ(α) ∨′ ρ′(β).

26This correspondence is bijective since, by a fundamental theorem due to H. Grauert (see
[23], and [43]), any abstract manifold corresponds to a unique real manifold, via Whitney's
imbedding. Hence, it follows the existence of a unique (Whitney) imbedded structure, for
each assigned abstract manifold.
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We say that ρ is a model of α, or that α is true with respect to ρ, if and
only if ρ(α) = 1. α is said to be valid into B if and only if it is true with
respect to any realization ρ into B; α is said to be valid if and only if it is valid
into any Boole algebra B.

A semantic meaning may be de�ned with respect to the (Frege) extensio-
nal context (extensional semantic) or with respect to the intensional context
(intensional semantics).

We have seen that a possible extensional interpretation is given by R =

(U , v), where U is a possible world (or a universe of discourse), while v is
a map that assigns a meaning, into U , to the descriptive constants (∈ C) of
L. Then, according to G. Frege, v should satisfy the following conditions: 1)
v(a) ∈ U for each a ∈ C; 2) v(P n

i ) ⊆ Un ∀n ∈ ω, ∀P n
i ∈ Pr. We say that R

is an (extensional semantic) interpretation of L, or a (extensional) semantic

structure associated to L.
Then, we say that a proposition ψ ∈ Pr is true with respect to the inter-

pretation R = (U , v) if and only if v(ψ) ⊆ Un, where n ∈ ω is the arity of ψ.
In general, for an arbitrary L-sentence ψ, we say that ψ is true with respect
to R, and we write |=R ψ, if a set of (Frege) conditions are ful�lled (see [14],
Capitolo 2, � 2.2.). These are the basic elements of the (Frege) extensional
semantics in the modern formulation given by A. Tarski.

Nevertheless, especially in the historical context, it is more important
to consider an intensional semantic context, as, for example, that given by
Kripke's Semantics (of the general class of Modal Logics).

The main limit of Tarski Semantics is due to the fact that it comprehends
only two possible cases: indeed, such a Semantics considers either one universe
of discourse U or all possible universes of discourse.

Instead, S. Kripke (see [32]) considers a suitable system of possible univer-
ses of discourse in dependence on the uses and purposes of the given formal
system. So, we speak of a Kripke realization with respect to a particular set
of universes of discourse, those accessible. These universes of discourse are
connected among them by the so-called accessibility relations. In such a way,
we go towards the realm of Modal Logics (Temporal, Epistemic, etc.) and
the intensional theories of meaning (as, for example, the Carnap's one). The
Modal Logics may play a very important role in some historical interpretation,
as we will see in the next section.

Finally, we may consider a Kripke deductive system as a tuple of the type
MKripke = ⟨⟨F, (Ui, vi)i∈J⟩⟩, where Ri = (Ui, vi), i ∈ J , is the Kripke's set of
realizations of MKripke (if J is a singleton, or an in�nite set, then we obtain
a Tarskian deductive system). Mutatis mutandis, what has been said above
about the Lindenbaum-Tarski methods, may be applied to MKripke as well.
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Analogously to what has been said in section 9.1.1., the critical comparison
between the Lindenbaum-Tarski algebras built up on a [Kripkian] deductive
theory, may turn out to be useful for possible historical comparisons between
the relative theories (see next � 11).

9.2 The work of Saul Kripke

Saul Kripke is considered one of the most important founders of the so-called
Semantic Modal Logic, which gives a more extended semantic context than
that of Tarski's one (for the Classical Logic) and of Gödel's one (for the
Intuitionist Logic).

The book [32] is a philosophical continuation of the �rst sixty Kripke's
researches on the semantic analysis of Modal Logic. This work has, among
other things, a prominent role in the Historiography of Sciences, as we will
see.

In [32], among other, is discussed the historical role of the Factuals, Coun-
terfactuals and of the so-called Historical Chains, in the framework of the
so-called Possible Worlds; there is a deep critical analysis of the Aristotele's
distinction between Essential and Accidental properties, and of some rela-
ted metaphysical Kantian conceptions (as the �a priori�, the �analytical� and
�necessity� truth Categories, and so on).

The kripkian logical and philosophical analysis, starts from a critical stu-
dy of the already known (philosophical) concepts and notions of Name, Ne-
cessity, Possibility, Essence, Analytical Truth, Referent, Meaning, Reference,
Description, rigid and not rigid Designators, Cluster Concept, and so forth.

He examines the modalities of the relations which hold between Names and
Things; besides, in his �rst January 20, 1970 lesson, the author discusses the
role of the concept of Possible World in the mathematical de�nitions, as regard
the importance of the Identity Criterion along time (hence, from the historical
viewpoint).

From a critical re-examination of the previous Name Theories (as, for exam-
ple, the Name Reference Theory of G. Frege and B. Russell), Kripke reaches
his semantic theory of Possible Worlds, with some possible its applications;
among these, we recall those having usefulness in some epistemological que-
stions: precisely, the author says that his theory is an essential tool to establish
the existence, or not, of correct historical connections among historical facts.
On the other hand, this is just what is necessary, for instance, for the historical
comparison of the mathematical theories treated in this paper.

Saul Krikpe, with Hilary Putnam (see [56]), are the founders of the modern
new reference theory.
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10 The role of the principle of virtual works in

di�erential geometry

In this section, we wish brie�y to recall the important role played by the
principle of virtual works of Analytical Mechanics. [39] is the main reference
for the History of Mechanics up to 1920.

This principle has played a fundamental role in Lagrange's work (see [33]):
in fact, it is at the base of the analytical mechanics arguments27. There are
many modern texts on Analytical Mechanics whose �rst chapters, devoted to
the formulations of the celebrated Lagrange's equations, just begin with the
exposition of D'Alembert-Lagrange principle of virtual works. For instance,
a modern historical exposition very similar to the original Lagrange's formu-
lation, is given by [1], vol. I, Capitolo I: here, once again, the reference to
Dini's work on implicit function theorems is evident and this proves the essen-
tial syntactic necessity of these methods for the formal setting of Analytical
Mechanics and, hence, for the subsequent formulation of Di�erential and Rie-
mannian Geometry. For a brief, but rigorous, exposition of these arguments,
see [46], [47] and the more complete treatment of [20].

We brie�y recall the main results of [1], vol. I, Capitolo I.
In � 2 of Chapter I, it is expounded the so-called D'Alembert principle

mia⃗i = F⃗i + R⃗i i = 1, ..., N , for a system of N point particles, each of which
has mass mi, acceleration a⃗i, and subjected to both the total active forces
F⃗i and the total constraint forces R⃗i. This principle reduces every dynamical
problem to a statical one; it provides a well-de�ned equilibrium condition. For
a smooth28 systems with holonomic constraints, this last equilibrium condition
being equivalent to the so-called principle of virtual works, whose analytical
formulation is based on the invertibility of the virtual displacements δPi of the
point particle Pi, and it is

∑N
i=1(F⃗i −mia⃗i) × δPi = 0, said to be the general

(or symbolic) equation of Dynamics.
In � 3 and � 4, respectively, the [angular] momentum conservation theorems

and the Lagrange's equations29, are deduced from this symbolic equation.
In the following sections, many possible formal expressions of Lagrange's

equations are deduced: the δ-d Lagrange's formalism is the main analytical

27In passing, this principle has also been used on some questions related to the constrained
motion of a quantum particle (see, for instance, [28]).

28Here, the term 'smooth' means constraints without friction.
29There exist various forms of Lagrange's equations exposed in [1], vol. I, Capitolo I. In

particular, in the subsection 2 of � 4., the authors expose a �rst form of Lagrange's equations
using the Lagrange's multipliers rule, that plays a fundamental role in the extremum theory
with side conditions (so that, again, we go back to Dini's works).
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tool for deducing many formal dynamical properties of a holonomic smooth
constrained systems, given in a (Hertz) form similar to (1) of our � 5, with q = 0

(equivalent to (2), where the yi are replaced by the lagrangian coordinates qi);
these properties have both metrical nature (assuming it is assigned a certain
metric given by the kinetic energy, according to Jacobi) and a�ne nature, and
it is much probable that they have played a fundamental role in the subsequent
development of Di�erential Geometry.

For instance, to this purpose, it is important to remember that the �rst
di�erential topology tool explaining the basic di�erential geometry local con-
cepts, is that of tangent space in a point of a manifold: historically, the �rst
de�nitions of tangent space have been the result of a generalization of the main
basic concepts and methods of Analytical Mechanics concerning the constrai-
ned motion of a particle over a smooth holonomic system (see the so-called
physicist's de�nition and the geometer's de�nition, of a tangent space, equiva-
lent between them � and to another, called the algebraic de�nition � given in
Chap. 2 of [7]; see also [39]).

However, for our purposes, we follow the modern exposition given by V.I.
Arnold in [3].

In Chapter IV, he gives a �rst modern de�nition of smooth holonomic con-
straint suggested30 by M.A. Leontovic (see � 17, A.), with a second de�nition
(see � 17, B.) where it is de�ned, substantially, a manifold in the Dini's sense
(see (1) of our � 5); he returns on the de�nition of smooth holonomic con-
straint in B., Example 10 of � 18, where it is introduced the modern (Weyl's)
de�nition of di�erentiable manifold.

In � 21, Arnold introduces D'Alembert principle, and, at the point B. of
the same section, he proves the (syntactic) equivalence between D'Alembert-
Lagrange principle (of virtual works) and the de�nition of smooth holonomic
constraint given at the point B. of � 17, by means of the use (see the point C.
of � 21) of a variational calculus arguments already known to Lagrange (see
the point C. of � 21, where the author also exposes the original Lagrange's
static formulation). A similar exposition may be found in [1], vol. I, Capitolo
I.

The holonomy of such constraints has physical motivations, and, therefore,
it is evident the mathematical physics sources of the concept of a smooth ho-
lonomic constraint, hence of the di�erentiable manifold: indeed, the principle
of virtual works provides the local characterization of a manifold, locally like
to Rn, likewise to Dini's implicit function theorems.

30For a deduction of Lagrange's equation from this Leontovic's point of view, see [19], and
reference therein.
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On the other hand, it is well-known that the sources of Lagrange's inver-
se function theorem (already mentioned), should be traced in the Lagrange's
works on some static problems, where, among other, he introduced the nowa-
days well-known �Lagrange's multipliers� (see [15], Capitolo V., � 5., footnote 5

of page 382). The latter, in turn, results to be related to the principle of virtual
works as well, hence to the local structure of a di�erentiable manifold (via the
connection of the Lagrange's multipliers with the inverse function theorem).
To this end, we brie�y recall the problem.

Almost every extremum problem with side conditions, historically started from questions
of mechanics of constrained systems.

If Γ is a smooth constraint, hence a manifold described by a set of zeros of functions,
then, by means of Lagrange's multipliers, an extremum problem on Γ is reduced to a local
extremum problem related to the functions (locally) describing such a manifold Γ. To this
end, we remember that, if Γ is a manifold of Rn, f : Γ → R, x0 ∈ Γ and r is a chart of Γ
(see � 8) containing x0, then we say that x0 is a relative maximum/minimum extremum for
f if and only if r−1(x0) is a relative maximum/minimum extremum for f ◦ r.

Since, in general, it is a di�cult task to determine the charts of a manifold, because of
the local nature of the question, for such an extremum problem it is enough to consider the
same extremum problem related to a restriction of f on Γ′ = Γ∩I where I is a neighborhood
of x0.

Hence, we have the following
Lagrange's Multipliers Theorem. Let Γ ⊆ Rn be a manifold of dimension m(< n),

and x0 ∈ Γ; let I be an open neighborhood of x0 and g(x0) = 0 the local equation of Γ in x0
with g ∈ C1(I) and rank J(g)(x) = n−m for each x ∈ Γ∩I. Let f : Γ → R with f ∈ C1(I).
If x0 is a relative extremum for f|Γ∩I

then ∇f(x0) ∈ Nx0Γ (normal space to Γ at x0), that
is, there exist n −m real numbers λ1, ..., λn−m such that ∇f(x0) =

∑n−m
i=1 λi∇gi(x0) with

λ1, ..., λn−m uniquely determined by x0.
If, for each x0 ∈ Γ, we have ∇f(x0) ∈ Nx0Γ, then we say that x0 is a stationary (or

a critical) point of f ; such points are in bijective correspondence with the solutions of the
system of equations g(x) = 0 and ∇f(x) =

∑n−m
i=1 λi∇gi(x), whose solutions are of the type

(x1, ..., xn, λ1, ..., λn−m) ∈ Rn × Rn−m, with λ1, ..., λn−m said to be Lagrange's multipliers.
For instance, in the case n = 3, if R3 is a model of the physical space and Γ(⊆ R3)

represents a bilateral smooth holonomic constraint for the material point x0 subjected to
the force �eld ∇f , then the above Theorem says that the force acting over a critical point
x0 is orthogonal to the constraint Γ, whereas the values of the Lagrange's multipliers are
connected with the intensity of the constraint reactions. From here, it arises evident links
with the principle of virtual works.

In short, it is evident the existence of syntactic links between these ana-
lytical mechanics arguments and the basic formulations of the theory of dif-
ferentiable manifolds, although it is a very di�cult task to do sure historical
claims about these suppositions, but, at most, having only probability nature.

The only certainty concerns the syntactic comparison among the previous
arguments, whereas their possible semantic comparison may be conducted wi-
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thin the Kripkian context (or, more generally, into the Modal Logics context),
if we choose the suitable Kripke's set of realizations upon which to interpret
the syntactic contents of the previous statements. From this point of view, it
is perhaps possible to think that the work of Lagrange (and others, as C.G.J.
Jacobi, L. Euler, and so on) on Analytical Mechanics, were intuitively orien-
ted towards a study of the (local) geometry of con�guration space of a moving
particle, subsequently formalized by both D'Alembert-Lagrange principle and
a mathematical structure described by a system of the type (1) of our � 5
(with q = 0), by means of a large use of the so-called δ-d symbolism (typical
of Classical Analytical Mechanics). The just mentioned historical connections
are, however, rather probably (see next � 11).

We conclude this section, with an unusual remark on the work of Tullio
Levi-Civita on his parallel displacement31, from which it is possible to infer
another prove of the importance played by the principle of virtual works in the
foundations of Di�erential Geometry.

In fact, it is almost always a�rmed (in the current relative literature) that
Levi-Civita parallel displacement was motivated by the attempt of giving a
geometrical interpretation to the so-called �covariant derivative� of Absolute
Di�erential Calculus. Indeed, if one carefully reads the paper [35], it is clear
that the historical verity is quite di�erent. Levi-Civita was motivated by the
attempts to simplify the computation of the curvature of a manifold through
the Riemann symbols, as he says in the Introduction of his paper.

Then, once introduced a generic metric structure on a manifold de�ned
by a system of the type (2) of our � 5, the author establishes a fundamental
equation, the (I) of � 2.; the latter, is nothing but the principle of virtual works
applied to such a manifold, thought as a smooth holonomic system subjected to
(invertible) virtual displacements. From it, the author deduces an equivalent
equation, the (8) of the same paragraph, hence another equivalent form, the
(Ia) of � 3, from which he deduces the analytical conditions characterizing his
celebrated notion of parallel displacement. In the remaining paragraphes, the
author does not make any explicit mention to the covariant derivative, except a
secondary application relative to Ricci's rotation coe�cients (see � 13 of [35]).

11 Conclusions

Albeit it is surely erroneous to think that the concept of a di�erentiable ma-
nifold (as we know it nowadays) is already present in the works of Dini on

31As regard the historical importance of Levi-Civita parallel displacement in Physics (as,
for example, in Gauge Theories), see [6].
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implicit function, or in the foundations of Analytical Mechanics, nevertheless
we may state, out of doubt, what follows.

Any mathematical theory does not born from nothing, but, instead, it starts
from some previous ones32: precisely, it begins from those having, at least, a
some syntactic link with it33. Hence, from here, it is evident the importance
of the notion of syntactic model in searching such syntactic links, in such a
way that it is possible to determine a chain of syntactic models which may
remember the Kripkian �historical chains� of � 9.2.

So. we have exposed a case-study of such an historiographical methodology,
precisely, that relative to the origins of the concept of a di�erentiable manifold.

Beyond such a �rst comparison among theories, further researches are pos-
sible concerning the semantic context, for instance, in the Modal Logic fra-
mework. Through this last perspective, it is subsequently possible to make
suitable �interpretations� (on the basis of the previous syntactic comparison),
which are more proper for a historical setting.

For instance, since we have seen that certain �lters algebraically correspond
to theories, then it is possible to compare two theories comparing their �lters,
and so on, to be then historically interpreted.

Analogously, it may be compared the corresponding (syntactic or seman-
tic) Lindenbaum-Tarski algebras between them. In these last two cases, the
resulting chains of �lters, or algebras, may be considered as an �algebraic
formalization� of the so-called �historical chains� of Historiography (already
mentioned when we have discussed on Kripke's work).

We have therefore sketched such a line of historiographical methodology in
relation to a particular case related to the History of Di�erential Geometry.
Thus, in this context, it is very likely that Dini's works on implicit functions
and the bases of Analytical Mechanics, have played a considerable role in
the formulation of the modern theory of Di�erentiable Manifolds, both from
syntactic and semantic viewpoint.

32On the other hand, this statement �nds a further con�rmation on a certain, not casual
epistemological �evolution� of a mathematical structure along the historical time (see [48]).
As a concrete example of that, we recall the work of G. Peano on the axiomatization of Na-
tural Numbers, that started from the previous works of R. Dedekind on the same argument
(such a question, besides, it is treated, from the Modal Logic viewpoint, in the January 22,
1970 lesson of S. Kripke � see [32]).

33The further, not trivial question concerning the awareness, or not, of the existence of
these theories on behalf of the author under historical examination, may be analyzed from
suitable philosophical viewpoints. However, certain contemporaneously but independent
(between them) mathematical discoveries/construction (like those mentioned above in the
footnote 12) prove that the previous syntactical capacity of a certain theoretical context
reaches a certain degree in allowing a subsequent discovery/construction.
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Furthermore, from what has been said so far, it is clear too that the geome-
tric structure, called di�erentiable manifold, is a syntactic34 rigid designator in
the sense of the new reference theory of S. Kripke and H. Putnam; in fact, the
same syntactic structure (or mathematical entity), i.e., that of di�erentiable
manifold, has been identi�ed in, at least, two di�erent semantical contexts (or
in two discourse worlds): that of the Theory of Implicit Functions and that of
Lagrange's Analytical Mechanics. Moreover, following H. Putnam, we could
say that it may exists a collective (not individual) historical chain (see above),
so external to every individual, or else a series of �reference rings� transmit-
ted through the time, in which it is possible to identify a certain constancy
of the discourse's terms (rigidity of the reference) leading to a given entity
(rigid designator): in our case, it deals with the syntactic structure �di�eren-
tiable manifold�. Hence, the quantitative methods used in this paper for such
a particular case-study, may turn out to be of some usefulness also in regard
to the nature of other mathematical entities (in the context of Mathematical
Philosophy).

34Examples of semantic rigid designators are the physical entities (as, for instance, an
elementary particle, a physical �eld, etc.).
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