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HARMONIC FACTORIZATION AND RECONSTRUCTION

OF THE ELASTICITY TENSOR

M. OLIVE, B. KOLEV, B. DESMORAT, AND R. DESMORAT

Abstract. In this paper, we propose a factorization of a fourth-order
harmonic tensor into second-order tensors. We obtain moreover explicit
equivariant reconstruction formulas, using second-order covariants, for
transverse isotropic and orthotropic harmonic fourth-order tensors, and
for trigonal and tetragonal harmonic fourth-order tensors up to a cubic
fourth order covariant remainder.

1. Introduction

Interest in coordinate-free representations formulas for linear anisotropic
elastic materials has been an active research area, starting by the formulation
of elastic energy functionals in the framework of finite strains [49, 43, 46, 24]
and having a key role in the classification of linear elastic or piezoelectric
materials [16, 18]. It has also been of main importance in the Continuum
Mechanics representation of cracked/damaged media [11, 29, 12, 40].

One underlying difficulty is that several Elasticity tensors may represent
the same linear anisotropic elastic material in different orientations. More
precisely, any change of orientation of a material specified by some rotation
g ∈ SO(3,R) defines a new Elasticity tensor E deduced from the previous
one by some group action

E 7→ E = g ⋆E, Eijkl = gipgjqgkrglsEpqrs

where Einstein convention on repeated indices is used. As the material is
rotated the tensor E moves on its orbit in the space Ela of Elasticity tensors.
Thus, a linear elastic material is represented by the orbit of an Elasticity
tensor under this group action, and any intrinsic parameter is necessary an
invariant of this group action.

In a seminal paper, Boehler–Kirilov–Onat [8] emphasized the fundamental
role played by polynomial invariants of the Elasticity tensor and which have
been used by Auffray–Kolev–Petitot [2] to classify the orbits of the elasticity
tensor. The old problem of finding a basis of polynomial invariants for the
fourth order Elasticity tensor was finally solved by Olive in 2014 [38] after
several attempts [8, 5, 44, 55, 41]. Aminimal integrity basis of 297 invariants

for this space was definitively obtained in [1]. Note that in 2D, this integrity
basis is composed by only 6 invariants [53, 54], which shows the incredible
complexity of 3D linear elasticity compared to 2D case. In 3D, the problem
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cannot be reduced as finding an integrity basis of second-order tensor-valued
functions.

Two main tools have been used to solve this extremely difficult computa-
tional problem.

The first one is the so-called harmonic decomposition which corresponds
to the splitting of the Elasticity tensor into irreducible pieces [42, 45] which
was first achieved by Backus in 1970 [3]. Such a decomposition is useful
to compute the material symmetry classes [16, 17, 18]. As mentioned, it
has been used also in the study of effective elastic properties of cracked
media [29, 26, 40, 9, 13] and – without explicit reference to it – in the
homogenization techniques of laminated composites [52, 51, 37]. Note that
in the later case, the polar decomposition method for 2D media has been
used [53, 50], while its equivalence with 2D harmonic decomposition has
been shown in [14].

The second one is a purely mathematical tool, binary forms, which was the
cornerstone of Invariant Theory in the nineteenth century [10, 20, 21, 22, 23]
and is connected to spinors. This tool has been brought first to the knowl-
edge of the mechanical community by Backus [3], and then by Boehler–
Kirilov–Onat [8] but its deep power did not seem to have been widely consid-
ered so far. It happens to be extremely useful for solving problems in tensor
analysis for higher order tensors in 3D. For instance, this tool was used by
Auffray–Olive [39] to produce a minimal integrity basis for a traceless and
totally symmetric third order tensor, which appears in piezoelectricity [56]
and second-gradient strain elasticity theory [36]. Note, furthermore, that
applications of binary forms are not just bounded to questions in continuum
mechanics but are also related to other fields such as quantum computa-
tion [34] and cryptography [32].

The harmonic decomposition of the Elasticity tensor produces a quintuple

(α, β,a′,b′,H)

where α, β, are scalar invariants, a′,b′ are second order traceless tensors and
H is a fourth order harmonic tensor. The scalar and second order tensor
components are linearly related to the Voigt and the dilatation tensors, the
two independent traces of the Elasticity tensor. The irreducible fourth order
component remains problematic in the study the Elasticity tensor.

In the present work, we try to go further in the representation of the
harmonic fourth order component H. We propose to introduce a secondary
decomposition of this tensor, which was first discovered by Sylvester [48]
and now known as Maxwell multipoles (see also [3, 4]), through a binary
operation called harmonic product (a commutative and associative product
directly inherited from the product of binary forms). This decomposition
aims ideally to reduce H to a family of vectors, the Maxwell multipoles, or,
as detailed next, to reduce H to a family of second order tensors. In 2D,
the factorization of the harmonic component H by means of second order
tensors was already established in [14], it results from the decomposition of
Elasticity tensor by Verchery’s polar method [53]. Besides, this factorization
has the good taste to be equivariant, which means that it commutes with
the action of the rotation group.
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However, the solution in 3D of such a decomposition – i.e. the four
Maxwell multipoles or in an equivalent manner the two second order tensors
that factorize H – is far from being unique and constructive and is thus of
poor value in practice. Moreover, there are no global equivariant section

of such mappings. We concentrate therefore on producing an equivariant

explicit solution of the problem that we call a reconstruction and which are
limited to specific symmetry classes. This process uses the concept of covari-
ants, which generalizes the idea of invariants but which are tensors (rather
than scalars) depending in an equivariant manner of the original tensor.
For obvious reasons, no such reconstruction can be globally defined. As it is
well known [33], only triclinic, monoclinic, orthotropic, transversely isotropic
and isotropic classes have a chance to be reconstructed using second-order
covariants.

In this paper, we obtain for the first time explicit reconstruction formu-
las in the orthotropic and the transversely isotropic cases, using polyno-

mial second-order harmonic covariants and rational invariants. Moreover,
to overpass the geometrical constraints in the trigonal and in the tetragonal
cases, we establish for these symmetry classes reconstruction formulas by
means of second order covariants up to a single cubic fourth order covariant

remainder.
The considered reconstruction problem is closely related to the so-called

isotropic extension of anisotropic constitutive functions via structural ten-
sors developed by Boehler [6] and Liu [33] independently (see also [7, 35]).
In the case of a linear constitutive law, an isotropic extension is just an equi-

variant reconstruction limited to a given symmetry class of the constitutive
tensor. Furthermore, our approach is more constructive since we are able
to give explicit equivariant formulas in which the “structural tensors” are
polynomial covariant tensors of the constitutive tensor.

Organization of the paper. In Section 2, we recall basic materials on ten-
sorial representations of the orthogonal group, recalling the link between to-
tally symmetric tensor and homogeneous polynomials and the harmonic de-
composition. In Section 3, we introduce the harmonic product between har-
monic polynomials and formulate an harmonic factorisation theorem which
proof is postponed in Appendix B. The general reconstruction problem is
formulated in Section 4, where a geometric obstruction for an equivariant
reconstruction of fourth-order tensors, by means of second order polynomial
covariants is explained. Explicit reconstructions formulas, using rational in-
variants and second order polynomial covariants are obtained in Section 5
for transversely isotropic and orthotropic tensors. In Section 6, we propose
similarly equivariant reconstructions for tetragonal and trigonal fourth order
harmonic tensors up to a cubic covariant remainder.

Notations. The following spaces are involved:

• Ela: the space of Elasticity tensors;
• T

n(R3): the space of n-th order tensors on R
3;

• S
n(R3): the space of n-th order totally symmetric tensors on R

3;
• H

n(R3): the space of n-th order harmonic tensors on R
3;

• Sn(R3): the space of homogeneous polynomials of degree n on R
3;
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• Hn(R3): the space of harmonic polynomials of degree n on R
3;

• Sn(C2): the space of binary forms of degree n on C
2;

• S2n
R
(C2): the space of binary forms of degree 2n which correspond

to real harmonic tensors of degree n.

In addition, we adopt the following conventions:

• x, y, z, xi: coordinates on R
3;

• u, v: coordinates on C
2;

• vvv, www, xxx, nnn, eeei: vectors of R3;
• ξξξ: a vector in C

2;
• a,b, dk, s, h, hk: second-order tensors;
• d: second-order dilatation tensor;
• v: second-order Voigt tensor;
• 1: second order unit tensor;
• E: elasticity tensor;
• I: fourth-order unit tensor;
• T, S: generic tensors;
• H: fourth-order harmonic tensor;
• p: polynomial on R

3;
• h: harmonic polynomial on R

3;
• f ,g,w: binary forms;
• g: element of SO(3,R);
• · : the scalar product;
• ⊗: the tensor product;
• ⊙, ⊗(4): the symmetric tensor product;
• ∗: the harmonic product;
• ⋆: the action;
• ‖T‖ =

√
T ·T: the Euclidean norm;

• (.)t: the transpose;
• (.)′: the deviatoric part;
• (.)0: the harmonic projection;

• (.), λ: the complex conjugate.

2. Tensorial representations of the rotation group

In this section, we recall classical facts about tensorial representations of
the rotation group SO(3,R). More details on the subject can be found in [47]
or [19]. We consider thus tensors on the Euclidean space R

3 and, thanks
to the Euclidean product, we do not have to distinguish between upper and
lower indices. Therefore, a n-th order tensor may always be considered as
a n-linear mapping

T : R3 × · · · × R
3 → R, (xxx1, . . . ,xxxn) 7→ T(xxx1, . . . ,xxxn).

Let Tn(R3) be the space of n-th order tensors. The rotation group SO(3,R)
acts on T

n(R3), by the rule

(g ⋆T)(xxx1, . . . ,xxxn) := T(g−1 · xxx1, . . . , g−1 · xxxn),
where T ∈ T

n(R3) and g ∈ SO(3,R).
Usually, we are not interested in the whole tensor space Tn(R3) but rather

in a subspace V defined by some particular index symmetries and stable (or
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invariant) under the action of the rotation group SO(3,R), which means
that

g ⋆T ∈ V, ∀T ∈ V, ∀g ∈ SO(3,R).

Example 2.1. The permutation group Sn acts on T
n(R3) by the rule

(σ ⋆T)(xxx1, . . . ,xxxn) := T(xxxσ−1(1), . . . ,xxxσ−1(n)), σ ∈ Sn,

and this action commutes with the action of SO(3,R). The space of totally
symmetric tensors of order n, denoted by S

n(R3), is the space of tensors T
which are invariant under this action, in other words, such that

(σ ⋆T)(xxx1, . . . ,xxxn) = T(xxx1, . . . ,xxxn), ∀σ ∈ Sn.

Example 2.2. The space of alternate tensors of order n, denoted by Λn(R3),
is the space of tensors T such that

(σ ⋆T)(xxx1, . . . ,xxxn) = ǫ(σ)T(xxx1, . . . ,xxxn), ∀σ ∈ Sn,

where ǫ(σ) is the signature of the permutation σ.

2.1. Harmonic tensors. The representation V is irreducible if the only
stable subspaces are {0} and V. The irreducible representations of the ro-
tation group SO(3,R) are known (up to isomorphism) [19]. Explicit models
for these irreducible representations are given by harmonic tensor spaces

which are described below.
Contracting two indices i, j on a totally symmetric tensor T does not

depend on the particular choice of the pair i, j. Thus, we can refer to this
contraction without any reference to a particular choice of indices. We will
denote this contraction as trT, which is a totally symmetric tensor of order
n− 2 and is called the trace of T. Iterating the process leads to

trk T = tr(tr(· · · (trT)))

which is a totally symmetric tensor of order n− 2k.

Definition 2.3. A harmonic tensor of order n is a totally symmetric tensor
T ∈ S

n(R3) such that trT = 0. The space of harmonic tensors of order n
will be denoted by H

n(R3). It is a sub-vector space of Sn(R3) of dimension
2n+ 1.

The sub-space Hn(R3) of Sn(R3) is invariant under the action of SO(3,R)
and is irreducible (see for instance [19]). Moreover, every finite dimensional
irreducible representation of SO(3,R) is isomorphic to some H

n(R3). As a
special case of the Peter–Weil theorem [47], every SO(3,R)-representation
V splits into a direct sum of harmonic tensor spaces H

n(R3), and such a
direct sum is called the harmonic decomposition of V.

Example 2.4. The harmonic decomposition of a second order symmetric
tensor s corresponds to its decomposition s′ + 1

3(tr s)1 into its deviatoric
and spheric parts

S
2(R3) = H

2(R3)⊕H
0(R3).

There is a well-known correspondence between totally symmetric tensors
of order n and homogeneous polynomial of degree n on R

3, which extends
the well-known correspondence between a symmetric bilinear form and a
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quadratic form via polarization. Indeed, to each symmetric tensor T ∈
S
n(R3) corresponds a homogeneous polynomial of degree n given by

p(xxx) := T(xxx, . . . ,xxx), xxx := (x, y, z) ∈ R
3.

This correspondence defines a linear isomorphism φ between the tensor
space Sn(R3) and the polynomial space Sn(R3) of homogeneous polynomials
of degree n on R

3. The linear isomorphism φ satisfies moreover

φ(g ⋆T) = g ⋆ φ(T), g ∈ SO(3,R),

it is said to be an equivariant mapping.

Remark 2.5. The rotation group SO(3,R) acts on the polynomial space
Sn(R3), by the rule

(g ⋆ p)(xxx) := p(g−1 · xxx), g ∈ SO(3,R).

The inverse T = φ−1(p) can be recovered by polarization. More precisely,
the expression p(t1xxx1 + · · · + tnxxxn) is a homogeneous polynomial in the
variables t1, . . . , tn and we get

T(xxx1, . . . ,xxxn) =
1

n!

∂n

∂t1 · · · ∂tn

∣∣∣∣
t1=···=tn=0

p(t1xxx1 + · · ·+ tnxxxn).

Remark 2.6. Note that the Laplacian operator of p = φ(T) writes as

△φ(T) = n(n− 1)φ(trT).

Thus, totally symmetric tensors with vanishing trace correspond via φ to
harmonic polynomials (polynomials with vanishing Laplacian). This justi-
fies the denomination of harmonic tensors for elements of Hn(R3). More
generally, for any non-negative integer k, we get

(2.1) △kφ(T) =
n!

(n− 2k)!
φ(trk T).

The equivariant isomorphism φ sends H
n(R3) to Hn(R3), the space of

homogeneous harmonic polynomials of degree n. Thus, the spaces Hn(R3)
provide alternative models for irreducible representations of the rotation
group SO(3,R). A third model of these irreducible representations is given
by the spaces of binary forms S2n

R
(C2), whose construction is detailed in

Appendix A.

2.2. Harmonic decomposition of totally symmetric tensors. The
harmonic decomposition of a homogeneous polynomial of degree n is de-
scribed by the following proposition.

Proposition 2.7. Every homogeneous polynomial p ∈ Sn(R3) can be de-

composed uniquely as

(2.2) p = h0 + qh1 + · · · + qrhr,

where q(x, y, z) = x2 + y2 + z2, r = [n/2] – with [·] integer part – and hk is

a harmonic polynomial of degree n− 2k.
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The harmonic polynomial (p)0 := h0 is the orthogonal projection of p onto
Hn(R3) (for the induced Euclidean structure of R3). Its explicit expression
can be obtained recursively as follows (see [1]). Let first define

(2.3) hr =





1

(2r + 1)!
△rp, if n is even;

3!× (r + 1)

(2r + 3)!
△rp, if n is odd.

Then hk is obtained inductively by the formula

(2.4) hk = µ(k)△k


p−

r∑

j=k+1

qjhj




with

(2.5) µ(k) :=
(2n − 4k + 1)!(n − k)!

(2n− 2k + 1)!k!(n − 2k)!
,

which leads to h0 after r iterations.
Introducing the symmetric tensor product

T1 ⊙T2 :=
1

(n1 + n2)!

∑

σ∈Sn1+n2

σ ⋆ (T1 ⊗T2) ,

for T1 ∈ S
n1(R3) and T2 ∈ S

n2(R3), we can recast proposition 2.7 in tenso-
rial form:

S
n(R3) = H

n(R3)⊕H
n−2(R3)⊕ · · · ⊕H

n−2r(R3)

where r = [n/2]. More precisely, every totally symmetric tensor T ∈ S
n(R3)

of order n can be decomposed uniquely as

T = H0 + 1⊙H1 + · · · + 1⊙r−1 ⊙Hr−1 + 1⊙r ⊙Hr,

where Hk is a harmonic tensor of degree n − 2k and 1⊙k means the sym-
metrized tensorial product of k copies of 1. The harmonic part (T)0 := H0

is the orthogonal projection of T onto H
n(R3). Using (2.1), the tensorial

form of (2.3) reads

Hr =





1

2r + 1
trr T, if n is even;

3

2r + 3
trr T, if n is odd.

which is a scalar for even n or a vector for odd n. Finally, the tensorial form
of (2.4) is given by:

Hk = φ−1(hk) = µ(k)
n!

(n − 2k)!
trk


T−

r∑

j=k+1

1⊙j ⊙Hj




Note that in this equation, trk
[
T−∑r

j=k+1 1
⊙j ⊙Hj

]
is the orthogonal

projection of trk T on H
n−2k(R3).
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2.3. Harmonic decomposition of the elasticity tensor. Harmonic de-
composition of the space Ela of Elasticity tensors was first obtained by
Backus [3] and is given by

Ela = H
0(R3)⊕H

0(R3)⊕H
2(R3)⊕H

2(R3)⊕H
4(R3).

More precisely, an elasticity tensor E admits the following harmonic de-
composition [3]:

(2.6) E = α 1⊗(4) 1+ β 1⊗(2,2)1+ 1⊗(4) a
′ + 1⊗(2,2)b

′ +H.

In this formula, 1 is the Euclidean canonical bilinear 2-form represented by
the components (δij) in any orthonormal basis and the Young-symmetrized
tensor products ⊗(4) and ⊗(2,2), between symmetric second-order tensors
a,b, are defined as follows:

(a⊗(4) b)ijkl =
1

6

(
aijbkl + bijakl + aikbjl + bikajl + ailbjk + bilajk

)
,

where ⊗(4) is the totally symmetric tensor product also denoted by ⊙, and

(a⊗(2,2)b)ijkl =
1

6

(
2aijbkl + 2bijakl

− aikbjl − ailbjk − bikajl − bilajk
)
.

In the harmonic decomposition (2.6), α, β are scalars, a′,b′ are second order
harmonic tensors (also known as symmetric deviatoric tensors) and H is a
fourth-order harmonic tensor.

Remark 2.8. In this decomposition, α, β and a′,b′ are related to the dilata-
tion tensor d := tr12 E and the Voigt tensor v := tr13 E by the formulas

α =
1

15
(trd+ 2 trv) β =

1

6
(trd− trv)

and

a′ =
2

7

(
d′ + 2v′

)
b′ = 2

(
d′ − v′

)

where d′ := d− 1
3 tr(d)1 and v′ := v− 1

3 tr(v)1 are the deviatoric parts of
d and v respectively.

3. Harmonic factorization

In this section, we introduce a product between harmonic tensors (which
is associative and commutative). Then, we show that every harmonic tensor
H ∈ H

n(R3) can be factorized as a harmonic product of lower order tensors.

3.1. Harmonic product. The product of two harmonic polynomials is not
harmonic in general. However, we define the following binary operation on
the space of harmonic polynomials:

h1 ∗ h2 := (h1h2)0.

This product is commutative:

h1 ∗ h2 = h2 ∗ h1,
and is moreover associative, which means that

(h1 ∗ h2) ∗ h3 = h1 ∗ (h2 ∗ h3).
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The fact that this binary operation is associative is essential in practice. It
means that the final result does not depend on the way we have chosen to
“put the brackets” to compute it. We can therefore write

h1 ∗ h2 ∗ h3 := (h1 ∗ h2) ∗ h3 = h1 ∗ (h2 ∗ h3),
and omit the brackets. Endowed with this product, the vector space

H(R3) :=
⊕

n≥0

Hn(R3)

of harmonic polynomials becomes a commutative algebra. The unity (for the
multiplicative operation ∗) is represented by the constant harmonic polyno-
mial 1.

Remark 3.1. Using the equivariant isomorphism φ between H
n(R3) and

Hn(R3), this algebraic structure is inherited on harmonic tensors. More
precisely, given two harmonic tensors H1 and H2 of order n1 and n2 respec-
tively, we define a harmonic tensor H1 ∗H2 of order n1+n2 by the following
formula:

H1 ∗H2 := φ−1 (φ(H1) ∗ φ(H2)) = (H1 ⊙H2)0 .

Example 3.2 (Harmonic product of two vectors). For two vectors vvv1, vvv2 ∈
H

1(R3), we get

vvv1 ∗ vvv2 =
1

2
(vvv1 ⊗ vvv2 + vvv2 ⊗ vvv1)−

1

3
(vvv1 · vvv2)1.

Example 3.3 (Harmonic product of two second order harmonic tensors). For
two second order harmonic tensors h1,h2 ∈ H

2(R3), we get

h1 ∗ h2 = h1 ⊙ h2 −
2

7
1⊙ (h1h2 + h2h1) +

2

35
tr(h1h2)1⊙ 1.

3.2. Harmonic factorization theorem. We now introduce the following
SO(3,R)-equivariant mapping, from the direct sum R

3⊕· · ·⊕R
3 of n copies

of R3 to Hn(R3):

(3.1) Φ : (www1, . . . ,wwwn) 7→ h(xxx) := (xxx ·www1) ∗ · · · ∗ (xxx ·wwwn).

This mapping is obviously not one-to-one. It is however surjective. This
result is not trivial and seems to have been demonstrated for the first time
by Sylvester [48] (see also [3, Appendix 1]). We provide our own proof of
Sylvester’s theorem in Appendix B, which relies on binary forms. Note how-
ever, that the use of binary forms for the proofs limits the validity of these
theorems to dimension D = 3 (see [3] for a counter-example in dimension
D ≥ 4).

Theorem 3.4 (Sylvester’s theorem). Let h ∈ Hn(R3), then there exist n
vectors www1, . . . ,wwwn in R

3 such that

h(xxx) = (xxx ·www1) ∗ · · · ∗ (xxx ·wwwn).

Example 3.5. Let h ∈ H2(R3) and f ∈ S4
R
(C2) be the corresponding binary

form (see example A.6). The four roots of f are

λ1,−
1

λ1
, λ2,−

1

λ2
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with the possible couple (0,∞) among them. Using the stereographic pro-
jection τ (see remark A.4), we set

wwwi := τ−1(λi).

Note that

τ−1

(
− 1

λi

)
= −τ−1(λi).

Then, we have

h(xxx) = k(xxx ·www1) ∗ (xxx ·www2),

for some constant k ∈ R.

The lack of injectivity for the mapping Φ is detailed in the following
proposition, which proof is provided in Appendix B.

Proposition 3.6. We have

Φ(w̃ww1, . . . , w̃wwn) = Φ(www1, . . . ,wwwn).

if and only if

(w̃ww1, . . . , w̃wwn) = (λ1wwwσ(1), . . . , λnwwwσ(n))

where (wwwσ(1), . . . ,wwwσ(n)) is a permutation of the vectors (www1, . . . ,wwwn) for

some σ ∈ Sn and λ1, . . . , λn are real numbers such that λ1 · · ·λn = 1.

Remark 3.7. It is tempting to restrict the mapping Φ defined in (3.1) to unit
vectors, in order to try to reduce the indeterminacy in the choice of an n-uple
of vectors (www1, . . . ,wwwn). However, this does not really solve the problem of
indeterminacy. Of course, the indeterminacy due to the scaling by the λi is
replaced by signs ǫi, but the indeterminacy due to the permutation persists
anyway.

Sylvester’s theorem is equivalent to the following (in appearance, more
general) theorem which leads to other important factorization results for
harmonic polynomials (and thus harmonic tensors).

Theorem 3.8 (Harmonic factorization theorem). Let h ∈ Hkn(R3). Then

there exist harmonic polynomials h1, . . . ,hk ∈ Hn(R3) such that

h = h1 ∗ . . . ∗ hk.

Remark 3.9. The tensorial counterpart of Theorem 3.8 is that for every
harmonic tensor H ∈ H

kn(R3) there exist harmonic tensors H1, . . . ,Hk ∈
H

n(R3) such that

H = H1 ∗ . . . ∗Hk.

A corollary of Theorem 3.8 is the following result, which applies to every
even order harmonic tensor.

Corollary 3.10. Let H ∈ H
2n(R3). Then there exist H1,H2 ∈ H

n(R3)
such that

(3.2) H = H1 ∗H1 −H2 ∗H2.
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Proof. Let h ∈ H2n(R3) corresponding to the harmonic tensor H. Using
Theorem 3.8, we can find p1,p2 ∈ Hn(R3) such that h = (p1p2)0. But

p1p2 =

(
p1 + p2

2

)2

−
(
p1 − p2

2

)2

.

Hence, if we set h1 = (p1 + p2)/2 and h2 = (p1 − p2)/2, we get

h = h1 ∗ h1 − h2 ∗ h2,
which tensorial form is precisely (3.2). �

Remark 3.11. This result has already been obtained in [15] for monoclinic
harmonic fourth-order tensors, using direct elimination techniques.

Remark 3.12. In 2D, the factorization of the harmonic part H2D ∈ H
4(R2)

of the elasticity tensor has already been computed in [14], using previous
results obtained in [53, 50]. In that case, we get

(3.3) H2D = h⊗ h− 1

2
(h · h) J2D

with second order tensor h harmonic (i.e. symmetric deviatoric), and where
J2D = I − 1

2 1 ⊗ 1 and h · h = ‖h‖2. As in 3D, we can define a harmonic
product between 2D harmonic tensors hk

h1 ∗ h2 := h1 ⊙ h2 −
1

4
tr(h1h2)1⊙ 1

and equation (3.3) can be rewritten as

(3.4) H2D = h ∗ h.
Hence, any 2D harmonic fourth-order tensor can be expressed as the har-
monic square h ∗ h, i.e. the projection of diadic symmetric square h ⊗ h

onto the vector space of fourth-order harmonic tensors H4(R2). In 3D, this
result is generally false. Indeed, if a fourth-order harmonic tensor H is a
harmonic square, i.e. H = h∗h, then H is either orthotropic or transversely
isotropic (see section 4).

Although these various decompositions are interesting by themselves,
there is however something frustrating. These decompositions are not unique
in general and the solution is not enough constructive (they require root’s
extraction of possible high degree polynomials). In the next sections, we
provide explicit geometric reconstructions.

4. Equivariant reconstruction of a fourth-order harmonic
tensor

In this section, we consider the general problem of reconstructing a fourth-
order harmonic tensor H using lower order covariants (i.e. lower order
tensors which depend on H in an equivariant manner). This reconstruction
is useful when applied to the fourth-order harmonic part H of the elasticity
tensor (2.6), since its other components α, β,a′,b′ are already decomposed
by means of second order covariants tensors and invariants.

From a mechanical point of view the definition of covariants of a given
– effective elasticity – tensor is strongly related to the tensorial nature of
the thermodynamics variables allowing to properly model a specific state
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coupling with elasticity [29, 40, 30, 9, 31]. In the case of effective elasticity
of cracked/damaged media for instance, either second order [25, 12, 28] or
fourth order [11, 29] damage variables are considered, depending on the
authors choice [30, 27, 31]. Considering the reconstruction by means of
lower order covariants of the harmonic part of an effective elasticity tensor
in this case would answer the question: do we have to use a fourth order
damage variable – a fourth order covariant in next derivations – in order
to reconstruct a given harmonic – effective elasticity – tensor? In 2D the
answer is negative, as shown in [14, 15]: only one second order tensor h is
needed (see Eq. (3.4)).

4.1. The reconstruction problem. To illustrate the problem, let us first
come back to Theorem 3.8. Applied to a fourth-order harmonic tensor H,
this theorem states that H can be factorized as the harmonic product of two
second order harmonic tensors

H = h1 ∗ h2.

In other words, the equivariant mapping

F : H2(R3)×H
2(R3) → H

4(R3), (h1,h2) 7→ h1 ∗ h2

is surjective. What would be more interesting is to have an explicit mapping
(i.e. an explicit construction of the solution)

S : H4(R3) → H
2(R3)×H

2(R3), H 7→ (h1(H),h2(H))

such that:

(F ◦ S)(H) = h1(H) ∗ h2(H) = H, ∀H ∈ H
4(R3),

and with geometric properties. A mapping like S is called a section of
F . A geometric property would be for instance for S to be equivariant,
in which case each second order tensors hi(H) is a covariant tensor. The
main problem is that there does not exist any equivariant section S for F
defined on the whole space H

4(R3): for instance, for a tensor H with cubic
symmetry, all second order harmonic covariants vanish, which forbids the
existence of such a general equivariant section. We will provide now the
following definitions.

Definition 4.1 (Decomposition). Let T be some nth order tensor. A de-

composition of a T into other tensors (possibly scalars) Tk (k = 1, . . . , N)
is a mapping

T = F(T1, . . . ,TN ).

The decomposition is equivariant if F is an equivariant mapping.

Definition 4.2 (Reconstruction). Given a decomposition

T = F(T1, . . . ,TN )

of a tensor T into other tensors (possibly scalars), a reconstruction of T is
a section S of F . The reconstruction is equivariant if both F and S are
equivariant mappings.
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Remark 4.3. In other words, a reconstruction is given by a mapping

S : T 7→ (κ1(T), . . . , κN (T))

such that

T = F(κ1(T), . . . , κN (T)).

If the reconstruction is equivariant the Tk = κk(T) are covariant tensors

(or invariants if there are scalars), which means that

g ⋆Tk = κk(g ⋆T), ∀g ∈ SO(3,R).

4.2. Obstruction to an equivariant reconstruction. The existence of
an equivariant reconstruction may not be possible for certain symmetry
classes. More precisely, we have the following result.

Lemma 4.4. Consider an equivariant decomposition T = F(T1, . . . ,TN )
and suppose that there exists an equivariant reconstruction S, so that Tk

are covariants tensors. Then

(4.1) GT =
⋂

k

GTk
,

where

GT := {g ∈ G; g ⋆T = T}
is the symmetry group of the tensor T.

Proof. Consider an equivariant decomposition T = F(T1, . . . ,TN ). Then,
we have ⋂

k

GTk
⊂ GT.

If moreover Tk = κk(T) are covariant tensors, we get thus

g ⋆Tk = κk(g ⋆T) = κk(T) = Tk,

for all g ∈ GT, and hence GT ⊂ GTk
, which achieves the proof. �

According to lemma 4.4, the existence of an equivariant reconstruction
associated to an equivariant decomposition

T = F(κ1(T), . . . , κN (T))

requires some conditions on the symmetry groups of the involved covariants
Tk = κk(T). For a decomposition involving second-order covariant tensors,
we have the following result (for details on closed subgroups of SO(3,R), see
Appendix C).

Corollary 4.5. If T = F(T1, . . . ,TN ) is an equivariant decomposition of

T into second-order symmetric covariant tensors Tk, then

[GT] ∈ {[1], [Z2], [D2], [O(2)]} ,
where [H] means the conjugacy class of a subgroup H ⊂ SO(3,R).

Proof. The proof is easily achieved using the clips operator introduced in [38].
This binary operator, noted ⊚ is defined on conjugacy classes (or finite fam-
ilies of conjugacy classes) of closed subgroups of SO(3,R):

[H1]⊚ [H2] =
{
[H1 ∩ (gH2g

−1)], g ∈ SO(3,R)
}
.
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It is an associative and commutative operation and

[H]⊚ [1] = {[1]} , [H]⊚ [SO(3,R)] = {[H]} ,
for all closed subgroup H. Moreover, we have in particular (see [38]):

⊚ [Z2] [D2] [O(2)]
[Z2] {[1], [Z2]} {[1], [Z2]} {[1], [Z2]}
[D2] {[1], [Z2], [D2]} {[1], [Z2], [D2]}
[O(2)] {[Z2], [D2], [O(2)]}

Thus, if each Tk is a second-order symmetric covariant (or an invariant),
then [GTk

] is either [D2], [O(2)] or [SO(3,R)] (see Appendix C) and we
deduce that

[GT] ∈ [H1]⊚ [H2] . . . ⊚ [HN ], [Hi] ∈ {[D2], [O(2)], [SO(3,R)]} ,
which achieves the proof. �

Remark 4.6. Corrollary 4.5 implies in particular that there is no equivariant
reconstruction by means of second order symmetric covariant tensors of a
harmonic fourth order tensor H (and thus of the elasticity tensor E) for the
cubic, the trigonal and the tetragonal symmetry classes. For a cubic tensor,
the situation is even worse since all its second order symmetric covariants
are spheric, whereas its first order covariants vanish.

Remark 4.7. The geometric framework introduced here is connected to
the so-called isotropic extension of anisotropic constitutive functions via
structural tensors developed by Boehler [6] and Liu [33] independently (see
also [35]). In the case of a linear constitutive function, an isotropic exten-
sion is just an equivariant decomposition limited to a given symmetry class

[GH ] and for which the arguments (T1, . . . ,TN ) (the structural tensors)
of the decomposition satisfy (4.1). In that case, our approach is however
more constructive since we are able to give an explicit equivariant formula

in which the “structural tensors” are covariant tensors of the constitutive
tensor. Moreover, condition (4.1) is a corollary of the theory and does not
need to be imposed a priori as an hypothesis.

5. Reconstructions by means of second order covariants

In this section, we provide explicit equivariant reconstructions for transverse-
isotropic and orthotropic fourth order harmonic tensors. These reconstruc-
tions use the following second-order (polynomial) covariants introduced in [8]:

(5.1)
d2 := tr13 H

2, d3 := tr13 H
3, d4 := d2

2,
d5 := d2(Hd2), d6 := d3

2, d7 := d2
2(Hd2)

d8 := d2
2(H

2d2), d9 := d2
2(Hd2

2), d10 := d2
2(H

2d2
2).

where the following notations have been used.

• For two fourth-order tensors A and B, AB is the fourth-order tensor

(AB)ijkl := AijpqBpqkl.

• For a fourth-order tensor A and a second-order tensor b, Ab is the
second-order tensor

(Ab)ij := Aijklbkl.
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We also make use of the following invariants:

(5.2) Jk := trdk, k = 2, . . . , 10,

which constitute an integrity basis for H4(R3) (see [8]).

Remark 5.1. The second–order covariants dk (k = 2, 3, 4, 6) are always sym-

metric covariants, while in general dk (k = 5, 7, 8, 9, 10) are neither sym-
metric nor antisymmetric.

Finally, using the Kelvin representation, a fourth order harmonic tensor
H = (Hijkl) is represented by the symmetric matrix

H =




H1111 H1122 H1133

√
2H1123

√
2H1113

√
2H1112

H1122 H2222 H2233

√
2H2223

√
2H1223

√
2H1222

H1133 H2233 H3333

√
2H2333

√
2H1333

√
2H1233√

2H1123

√
2H2223

√
2H2333 2H2233 2H1233 2H1223√

2H1113

√
2H1223

√
2H1333 2H1233 2H1133 2H1123√

2H1112

√
2E1222

√
2H1233 2H1223 2H1123 2H1122




with only 9 independent components due to the traceless property, namely:

H1111 = −H1122 −H1133, H2222 = −H1122 −H2233,

H3333 = −H1133 −H2233, H2333 = −H1123 −H2223,

H1113 = −H1223 −H2333, H1222 = −H1112 −H1233.

5.1. The transversely isotropic class. A harmonic tensor H ∈ H
4(R3)

is transverse isotropic if and only if there exists g ∈ SO(3,R) such that
H = g ⋆H0 where H0 has the following normal matrix form

H0 =




3δ δ −4δ 0 0 0
δ 3δ −4δ 0 0 0

−4δ −4δ 8δ 0 0 0
0 0 0 −8δ 0 0
0 0 0 0 −8δ 0
0 0 0 0 0 2δ



,

where δ 6= 0. It was moreover established in [2, Section 5.2] that

J2 6= 0, δ =
7J3
18J2

.

Thus, by a direct computation of the second order covariant d2 (see Eq. (5.1))
and its deviatoric part d′

2, we get the following result:

Theorem 5.2. For any transversely isotropic harmonic fourth-order tensor

H, we have

H =
63

25

1

J3(H)
d′
2(H) ∗ d′

2(H),

Remark 5.3. If J3(H) > 0, then H is a perfect harmonic square. The
converse is also true and can be easily established, using binary forms, where
the harmonic product corresponds to the ordinary product of polynomials.
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5.2. The orthotropic class. A harmonic tensorH ∈ H
4(R3) is orthotropic

if and only if there exists g ∈ SO(3,R) such that H = g ⋆H0 where H0 has
the following normal matrix form

(5.3) H0 =




λ2 + λ3 −λ3 −λ2 0 0 0
−λ3 λ3 + λ1 −λ1 0 0 0
−λ2 −λ1 λ2 + λ1 0 0 0
0 0 0 −2λ1 0 0
0 0 0 0 −2λ2 0
0 0 0 0 0 −2λ3




where λ1, λ2, λ3 are three distinct real numbers. Note that this normal form
is however not unique: any permutation of the λk provides an alternative
normal form, but this is the only ambiguity. It is therefore useful to intro-
duce the three elementary symmetric functions

σ1 := λ1 + λ2 + λ3,

σ2 := λ1λ2 + λ1λ3 + λ2λ3,

σ3 := λ1λ2λ3

(5.4)

which are independent of a particular normal form, as being invariant under
any permutation of the λi. Moreover, it was shown in [2, Section 5.5] that
the discriminant

∆3 := (λ2 − λ1)
2(λ2 − λ3)

2(λ3 − λ1)
2,

which is strictly positive, is a polynomial invariant, and that the σk are
themselves rational invariants. More precisely:

∆3 =
K6

432
, where K6 := 6J6 − 9J2J4 − 20J2

3 + 3J3
2 ,

and

σ1 =
9(3J7 − 3J2J5 + 3J3J4 − J2

2J3)

2K6
,

σ2 =
4

7
σ21 −

1

14
J2,

σ3 = − 1

24
J3 +

1

7
σ31 −

1

56
σ1J2.

Consider now the matrix

λλλ0 :=



λ1 0 0
0 λ2 0
0 0 λ3


 .

Since both H0 and λλλ0 have the same symmetry group, namely D2 (as
defined in Appendix C), the following definition

λλλ(H) := g ⋆ λλλ0, if H = g ⋆H0

does not depend on the rotation g and thus defines a covariant mapping
from the orthotopic class in H

4(R3) to the space of symmetric second order
tensors. We have moreover the following result, which can be checked by a
direct evaluation on H0 and λλλ′0.
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Lemma 5.4. Let H be an orthotropic harmonic fourth-order tensor. Then,

the deviatoric part λλλ′(H) of the second order covariant λλλ(H) can be written

as

(5.5) λλλ′(H) =
1

8∆3

(
α2d

′
2(H) + α3d

′
3(H)− 54σ3 d

′
4(H) + 11σ2 d

′
5(H)

)

where

α2 := 2(112σ21σ3 + 21σ1σ
2
2 − 270σ2σ3),

α3 := 8(14σ1σ3 − 11σ21σ2 + 15σ22).

Note that

2(σ21 − 3σ2) = (λ1 − λ2)
2 + (λ1 − λ3)

2 + (λ2 − λ3)
2 > 0,

and we can thus introduce the positive invariant

σeq :=
√
σ21 − 3σ2.

and the Lode invariant defined by

L :=
1

σ3eq

(
σ31 −

9

2
σ1σ2 +

27

2
σ3

)
.

Since moreover

∆3 = σ21σ
2
2 + 18σ1σ2σ3 − 4σ31σ3 − 4σ32 − 27σ23

=
4

27
σ6eq(1− L2),

and ∆3 > 0, we deduce that −1 < L < 1.
With these notations, we obtain the following result which can be checked

by a direct computation on the normal form.

Theorem 5.5. For any orthotropic harmonic fourth-order tensor H, we

have

(5.6) H = h1λλλ
′(H)∗λλλ′(H)+2h2λλλ

′(H)∗(λλλ′(H)2)′+h3 (λλλ
′(H)2)′∗(λλλ′(H)2)′,

where λλλ′(H) is defined by (5.5) and the three invariants hk are given by

h1 :=
5σ1 + 7Lσeq
2(1 − L2)σ2eq

, h2 := −3(5Lσ1 + 7σeq)

2(1− L2)σ3eq
, h3 :=

9(5σ1 + 7Lσeq)
2(1 − L2)σ4eq

.

Remark 5.6. The three invariants hk are in fact rational invariants of H.
Using invariants σk (Eq. (5.4)), we have indeed





h1 =

(
σ21 − 3σ2

) (
8σ31 − 31σ1σ2 + 63σ3

)

9∆3
,

h2 = −16σ41 − 86σ21σ2 + 90σ1σ3 + 84σ22
3∆3

,

h3 =
8σ31 − 31σ1σ2 + 63σ3

∆3
.

As in the transversely orthotropic case, the following theorem character-
ized orthotropic harmonic tensors which are a perfect harmonic squares.
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Theorem 5.7. An orthotropic harmonic fourth-order tensor H is a perfect

harmonic square H = h ∗ h if and only if

(5.7) σ1 > 0 and 49σ2 − 8σ21 = 0.

In that case the harmonic second order tensor h is is given by

(5.8) h := ±
√

49

10(1 − L)σ1

(
λλλ′(H)− 21

5σ1
(λλλ′(H)2)′

)
.

Proof. Let H be an orthotropic fourth order harmonic tensor. Suppose first
that conditions (5.7) are satisfied. Then, the coefficients h1, h2, h3 in (5.6)
satisfy

h22 − h1h3 = 49σ2 − 8σ21 = 0

and we have thus a factorization H = h ∗ h, where h is defined by (5.8).
Conversely, suppose that H can be factorized as H = h ∗ h. Without

loss of generality, we can assume that h is diagonal, with diagonal elements
a1, a2 and −(a1 + a2). Thus H is fixed by D2 and is represented by matrix
normal form (5.3). Consider now the associated binary form g of h (resp. f
of H) – see Appendix A. We get then

g = α0u
4 + α2u

2v2 + α0v
2, α0 :=

1

4
(a0 − a1), α2 = −3

2
(a0 + a1),

and

f =
1

16
(λ1 + λ2 + 8λ3)u

8 +
7

4
u6v2(λ1 − λ2) +

35

8
u4v4(λ1 + λ2)

+
7

4
(λ1 − λ2)u

2v6 +
1

16
(λ1 + λ2 + 8λ3)v

8.

Now, f = g2 leads to




α2
2 + 2α2

0 =
35
8 (λ1 + λ2) ≥ 0,

α0α2 =
7
8(λ1 − λ2),

α2
0 =

1
16(λ1 + λ2 + 8λ3) ≥ 0,

.

and we get

σ1 =
α2

2 + 12α0
2

5
, σ2 =

8α2
4 + 192α0

2 α2
2 + 1152α0

4

1225

Therefore, we have

σ1 ≥ 0, 8σ21 − 49σ2 = 0.

If σ1 = 0, we get also σ2 = 0 and thus ∆3 = −243σ23 ≤ 0, which leads to a
contradiction (since H is supposed to be orthotropic). This concludes the
proof. �

6. Reconstructions by means of second order covariants with
a cubic covariant remainder

In this section, we consider the problem of reconstruction of harmonic
tensors for which an equivariant reconstruction into second-order tensors
is not possible, namely the harmonic tensors within the trigonal and the
tetragonal classes. For these two classes, we show that such a reconstruction
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is possible up to a fourth-order harmonic tensor with cubic symmetry. All
the closed SO(3,R) subgroups used in this section are defined in Appendix C.

6.1. The tetragonal class. A harmonic tensor H ∈ H
4(R3) is tetragonal

if and only if there exists g ∈ SO(3,R) such that H = g ⋆H0 where H0 has
the following normal matrix form

(6.1) H0 =




3δ − σ δ + σ −4δ 0 0 0
δ + σ 3δ − σ −4δ 0 0 0
−4δ −4δ 8δ 0 0 0
0 0 0 −8δ 0 0
0 0 0 0 −8δ 0
0 0 0 0 0 2δ + 2σ




where σ2 − 25δ2 6= 0 and σ 6= 0.

Remark 6.1. Note that this normal form is however not unique: the change
σ 7→ −σ, provides an alternative normal form. Nevertheless, the choice
σ > 0 allows to fix this ambiguity. Note also that

H0(−σ, δ) = r ⋆H0(σ, δ),

where r = R
(
eee3,

π
4

)
is the rotation by angle π

4 around the (Oz) axis.

For tetragonal harmonic tensors, it was shown in [2, Section 5.4] that the
following polynomial invariants do not vanish

(6.2) K4 := 3J4 − J2
2 > 0 K10 := 2J2K

2
4 − 35J2

5 > 0

and that δ and σ2 are rational invariants, given by

(6.3) δ =
1

4

J5
K4

, σ2 =
1

8

(
J2 − 280δ2

)
=

1

16

K10

K2
4

.

The choice σ > 0 in the normal form (6.1) allows to write σ as follows:

(6.4) σ =

√
K10

4K4
.

Remark 6.2. Note that the condition σ2 − 25δ2 = 0 is equivalent to L10 = 0
with

L10 := K10 − 25J2
5 ,

and corresponds to the degeneracy when H has at least a cubic symmetry.
On the other hand, the condition σ = 0 (with L10 6= 0) is equivalent to
K10 = 0 and corresponds to the degeneracy when H has at least a transverse
isotropic symmetry.

6.1.1. Geometric picture for the tetragonal class. The normal form (6.1)
corresponds to the subspace Fix(D4), where given a subgroup Γ of SO(3,R)
the fixed point set Fix(Γ) is defined as

Fix(Γ) :=
{
H ∈ H

4(R3), g ⋆H = H, ∀g ∈ Γ
}
.

Note now that there is only one subgroup in the conjugacy class [O(2)]
which contains D4, it is O(2) itself. Its fix point set, Fix(O(2)), is the
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one-dimensional subspace spanned by

(6.5) TTT 0 :=




3 1 −4 0 0 0
1 3 −4 0 0 0
−4 −4 8 0 0 0
0 0 0 −8 0 0
0 0 0 0 −8 0
0 0 0 0 0 2



.

However, there are two different subgroups O1 and O2 in the conjugacy class
[O] which contains D4 and which are defined as follows. The first one, O1,
is the symmetry group of the cube with edges (±1;±1;±1). The second
one, O2, is obtained by rotating O1 around the (Oz) axis by angle π

4 . In

other words, O2 := rO1r
−1, where r is the rotation by angle π

4 around the
(Oz) axis. The fixed point sets Fix(O1) and Fix(O2) are one-dimensional
subspaces spanned respectively by

CCC1
0 :=




8 −4 −4 0 0 0
−4 8 −4 0 0 0
−4 −4 8 0 0 0
0 0 0 −8 0 0
0 0 0 0 −8 0
0 0 0 0 0 −8




and

CCC2
0 :=




−2 6 −4 0 0 0
6 −2 −4 0 0 0
−4 −4 8 0 0 0
0 0 0 −8 0 0
0 0 0 0 −8 0
0 0 0 0 0 12



.

Moreover, both Fix(O1) and Fix(O2) are supplementary subspaces of Fix(O(2))
in Fix(D4), and thus we can write either

H0(σ, δ) =
5δ + σ

5
TTT 0 −

σ

5
CCC1
0,

or

H0(σ, δ) =
5δ − σ

5
TTT 0 +

σ

5
CCC2
0.

Let H be a tetragonal harmonic fourth order tensor. Then there exists
g ∈ SO(3,R) (defined up to a right composition by an element of D4) and a
unique couple of real numbers (σ, δ) with σ > 0 such that:

H = g ⋆H0(σ, δ).

Since D4 ⊂ O(2), the following definitions

TTT 1(H) :=
5δ + σ

5
g ⋆ TTT 0, TTT 2(H) :=

5δ − σ

5
g ⋆ TTT 0,

do not depend on the rotation g, leading to well-defined covariant mappings
TTT 1, TTT 2 from the tetragonal class in H

4(R3) to the transversely isotropic
classes. Similarly, since O1 and O2 contains D4, the same is true for

CCC1(H) := −σ
5
g ⋆ CCC1

0, CCC2(H) :=
σ

5
g ⋆ CCC2

0.
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Remark 6.3. Let r = R
(
eee3,

π
4

)
be the rotation by angle π

4 around the (Oz)
axis. We have then

r ⋆ TTT 0 = TTT 0, r ⋆ CCC1
0 = CCC2

0.

Now if H = g ⋆H0(σ, δ), we get

(grg−1) ⋆ TTT 1(H) = TTT 2(H), (grg−1) ⋆ CCC1(H) = CCC2(H).

6.1.2. Reconstruction theorem for the tetragonal class.

Theorem 6.4. For any tetragonal harmonic fourth-order tensor H, we have

H = TTT k(H) + CCCk(H), k = 1, 2

where

TTT k(H) =
7

16

(5δ + (−1)k+1σ)

(25δ2 − σ2)2
d′
2(H) ∗ d′

2(H)

is a transversely isotropic covariant, and

CCCk(H) =

(
1− 14δ

5δ − (−1)k+1σ

)
H+

7

2(5δ − (−1)k+1σ)
(H2)0,

is a cubic covariant.

Proof. All the formulas can be checked on the normal form (6.1), for which
d′
2(H) = 4

(
25δ2 − σ2

)
(eee3 ⊗ eee3)

′. Since the formulas are covariant, this is
enough to achieve the proof. �

Remark 6.5. In theorem 6.4, each formula, i.e. k = 1 or k = 2, is self-
sufficient. It is equivariant and applies in any basis to any tetragonal har-
monic fourth order tensor H. The two reconstruction formulas correspond
to the choice of a frame and therefore of a cube, rotated by the angle π

4 or
not around (Oz). They use the invariants σ > 0 and δ defined in (6.3) and
(6.4).

The decomposition in Theorem 6.4 can be rewritten in terms of the in-
variants J5, K4, K10 and L10, rather than σ, δ by using their rational ex-
pressions (6.3) and (6.4).

Corollary 6.6. For any tetragonal harmonic fourth-order tensor H, we

have

H =
28K3

4 (5J5 +
√
K10)

L2
10

d′
2(H) ∗ d′

2(H) + CCC(H)

where

CCC(H) =

(
1 +

14J5(5J5 +
√
K10)

L10

)
H− 14K4(5J5 +

√
K10)

L10
(H2)0

is a cubic fourth order covariant and

K4 = 3J4 − J2
2 > 0, K10 = 2J2K

2
4 − 35J2

5 > 0, L10 = K10 − 25J2
5 6= 0.
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6.2. The trigonal class. A harmonic tensor H ∈ H
4(R3) is trigonal if and

only if there exists g ∈ SO(3,R) such that H = g ⋆H0 where H0 has the
following normal matrix form

(6.6) H0 =




3δ δ −4δ −
√
2σ 0 0

δ 3δ −4δ
√
2σ 0 0

−4δ −4δ 8δ 0 0 0

−
√
2σ

√
2σ 0 −8δ 0 0

0 0 0 0 −8δ −2σ
0 0 0 0 −2σ 2δ




where σ2 − 50δ2 6= 0 and σ 6= 0.

Remark 6.7. Note that this normal form is however not unique. Changing
σ 7→ −σ, provides an alternative normal form. Nevertheless, the choice
σ > 0 allows to fix this ambiguity. Note also that

H0(−σ, δ) = rt ⋆H0(σ, δ),

where rt = R
(
eee3,

π
3

)
is the rotation by angle π

3 around the (Oz) axis.

For trigonal harmonic tensors, it was shown in [2, Section 5.3] that the
polynomial invariants K4 and K10, defined by (6.2), are strictly positive and
that δ, σ2 are rational invariants, given by

(6.7) δ =
1

4

J5
K4

, σ2 =
1

16

(
J2 − 280δ2

)
=

1

32

K10

K2
4

.

The choice σ > 0 in the normal form (6.6) allows to write σ as follows:

(6.8) σ =
1

4
√
2

√
K10

K4
.

Remark 6.8. Note that the condition σ2−50δ2 = 0 is equivalent to M10 = 0
with

M10 := K10 − 100J2
5 ,

and corresponds to the degeneracy case when H has at least a cubic sym-
metry. On the other hand, with M10 6= 0,condition σ = 0 is equivalent to
K10 = 0 and corresponds to the degeneracy case when H has at least a
transverse isotropic symmetry.

6.2.1. Geometric picture for the trigonal class. The geometric picture is sim-
ilar to the tetragonal case: D3 is contained in only one subgroup in the

conjugacy class [O(2)] and two different subgroups Õ1, Õ2 in the conjugacy
class [O], which are defined as follows.

Õ1 := r3O1r
−1
3 , Õ2 := rtÕ1r

−1
t

where O1 is the symmetry group of the cube with edges (±1;±1;±1) (al-
ready defined in section 6.1) and the rotations introduced are

r3 := R
(
eee3,

π

4

)
◦R

(
eee1 − eee2, arccos

(
1√
3

))
, rt := R

(
eee3,

π

3

)
.
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The fixed point sets Fix(Õ1) and Fix(Õ2) are one-dimensional subspaces
spanned respectively by

C̃CC1

0 :=




3 1 −4 −10 0 0
1 3 −4 10 0 0
−4 −4 8 0 0 0
−10 10 0 −8 0 0

0 0 0 0 −8 −10
√
2

0 0 0 0 −10
√
2 2




and

C̃CC2

0 :=




3 1 −4 10 0 0
1 3 −4 −10 0 0
−4 −4 8 0 0 0
10 −10 0 −8 0 0

0 0 0 0 −8 10
√
2

0 0 0 0 10
√
2 2



.

The normal form (6.6) can be decomposed as the sum of a transversely
isotropic harmonic tensor and of a cubic harmonic tensor, either as

H0(σ, δ) =
10δ − σ

√
2

10
TTT 0 +

σ
√
2

10
C̃CC1

0,

or as

H0(σ, δ) =
10δ + σ

√
2

10
TTT 0 −

σ
√
2

10
C̃CC2

0,

where TTT 0 has been defined in (6.5).
As in the tetragonal case, we can give coherent definitions of transversely

isotropic parts

T̃TT 1
(H) :=

10δ − σ
√
2

10
g ⋆ TTT 0, T̃TT 2

(H) :=
10δ + σ

√
2

10
g ⋆ TTT 0,

and cubic parts

C̃CC1
(H) :=

σ
√
2

10
g ⋆ C̃CC1

0, C̃CC2
(H) := −σ

√
2

10
g ⋆ C̃CC2

0,

6.2.2. Reconstruction formulas for the trigonal class.

Theorem 6.9. For any trigonal harmonic fourth-order tensor H, we have

H = T̃TT k
(H) + C̃CCk

(H), k = 1, 2,

where

T̃TT k
(H) =

7
(
10δ − (−1)k+1σ

√
2
)

8 (50δ2 − σ2)2
d′
2(H) ∗ d′

2(H),

is a transversely isotropic covariant and

C̃CCk
(H) =

(
1− 7δ

10δ + (−1)k+1σ
√
2

)
H− 7

6(10δ + (−1)k+1σ
√
2)

(H2)0

is a cubic covariant.

Proof. All the formulas can be checked on the normal form (6.6), for which
d′
2(H) = 2

(
50δ2 − σ2

)
(eee3 ⊗ eee3)

′. Since the formulas are covariant, this is
enough to achieve the proof. �
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Remark 6.10. In theorem 6.9, each formula, i.e. k = 1 or k = 2, is self-
sufficient. It is equivariant and applies in any basis to any trigonal harmonic
fourth order tensor H. The two reconstruction formulas correspond to the
choice of a frame and therefore of a cube, rotated by the angle π

3 or not
around (Oz). They use the invariants σ > 0 and δ defined in Eq. (6.7) and
(6.8).

The decomposition in Theorem 6.4 can be rewritten in terms of the in-
variants J5, K4, K10 and M10, rather than σ, δ by using their rational ex-
pressions (6.7) and (6.8).

Corollary 6.11. For any trigonal harmonic fourth-order tensor H, we have

H =
224K3

4 (10J5 +
√
K10)

M2
10

d′
2(H) ∗ d′

2(H) + C̃CC(H)

where

C̃CC(H) =

(
1 +

7J5(10J5 +
√
K10)

M10

)
H+

14K4(10J5 +
√
K10)

3M10
(H2)0

is a cubic fourth order covariant, and

K4 = 3J4 − J2
2 > 0, K10 = 2J2K

2
4 − 35J2

5 > 0, M10 = K10 − 100J2
5 6= 0.

7. Conclusion

In this article, we have defined the harmonic projection (T)0 ∈ H
n(R3)

of a totally symmetric n-th order tensor T, and the harmonic product

H1 ∗H2 := (H1 ⊙H2)0 ∈ H
n1+n2(R3)

of two harmonic tensors H1 ∈ H
n1(R3), H2 ∈ H

n2(R3).
Using Sylvester’s theorem 3.4, we have shown that the fourth order har-

monic part H of an elasticity tensor E can be expressed as the harmonic
product H = h1 ∗ h2 of two second order harmonic tensors h1,h2 (i.e.
symmetric deviatoric). This decomposition is independent of any reference
frame, even for triclinic materials. Nevertheless, such a factorization is non-
unique and not really constructive. Moreover, a globally defined solution
(h1(H),h2(H)) can never be covariant.

We have therefore introduced an equivariant reconstruction problem of a
tensor by means of lower order covariants, restricted to a given symmetry
class. Finally, we have obtained explicit formulas for the reconstruction of
the fourth order harmonic part H of an elasticity tensor:

• for the transversely isotropic and orthotropic symmetry classes, by
means of second order covariants (Theorems 5.2 and Theorem 5.5).
Moreover, necessary and sufficient conditions for such tensors to be
perfect harmonic squares, which means H = h ∗ h, have also been
obtained (Remark 5.3 and Theorem 5.7);

• for the tetragonal and trigonal symmetry classes, by means of second
order covariants and a fourth order cubic covariant (Theorem 6.4 and
Theorem 6.9).

These reconstruction formulas are only valid inside each symmetry class,
this is illustrated by the fact that they contain denominators which vanish
when a degeneracy into a higher symmetry class occurs.
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Appendix A. Binary forms

We have already described two models for the irreducible representations
of the rotation group SO(3,R): the space of harmonic tensors H

n(R3) and
the space of harmonic polynomials Hn(R3). In this section, we shall derive
a third model: the space of binary forms S2n

R
(C2), whose construction is

slightly more involved.
To start, let us recall that there is a well-known relation between the

rotation group SO(3,R) and the group of special unitary complex matrices

SU(2) :=
{
γ ∈ M2(C); γ̄

tγ = 1, det γ = 1
}
.

Let

(A.1) xxx := (x, y, z) 7→M(xxx) =

(
−z x+ iy

x− iy z

)

be a linear mapping from R
3 to the space of traceless, hermitian matrices

of order 2 (σx = M(eee1), σy = M(eee2) and σz = M(eee3) are the famous Pauli
matrices). The group SU(2) acts on this space by conjugacy

Adγ :M 7→ γMγ−1, γ ∈ SU(2),

and preserves the quadratic form

detM = −(x2 + y2 + z2).

It can be checked, moreover, that detAdγ = 1 for all γ ∈ SU(2). Therefore,
we deduce a group morphism

(A.2) π : γ 7→ Adγ , SU(2) → SO(3,R).

Example A.1. For

γ =

(
eiθ 0
0 e−iθ

)

we get

π(γ) =



cos(2θ) − sin(2θ) 0
sin(2θ) cos(2θ) 0

0 0 1




in the basis (σx, σy, σz).

The group SU(2) acts naturally on C
2 and more generally on complex

polynomials in two variables (u, v) by the rule

(γ ⋆ f)(u, v) := f(γ−1 ⋆ (u, v)), γ ∈ SU(2).

Let Sn(C2) be the space of complex, homogeneous polynomials of degree
n in two variables. An element of Sn(C2)

f(ξξξ) :=

n∑

k=0

aku
kvn−k, ξξξ := (u, v) ∈ C

2

is called a binary form of degree n.
The main observation, due to Cartan (see [1] for the details), is that there

is an equivariant isomorphism between the space S2n(C2) of binary forms of
degree 2n and the space Hn(C3) of complex, harmonic polynomials of degree
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n in three variables x, y, z. This linear isomorphism ψ : Hn(C3) → S2n(C2)
is given explicitly by

(A.3) (ψ(h))(u, v) := h

(
u2 − v2

2
,
u2 + v2

2i
, uv

)
, h ∈ Hn(C3).

It satisfies moreover the equivariant relation

ψ(π(γ) ⋆ h) = γ ⋆ ψ(h), γ ∈ SU(2), h ∈ Hn(C3).

The proof that ψ is an equivariant isomorphism can be found in [1]. The
inverse ψ−1 is obtained explicitly as followed. Let

f(u, v) :=
2n∑

k=0

aku
kv2n−k.

For each k make the substitution

ukv2n−k →
{

zk(−x+ iy)n−k, if 0 ≤ k ≤ n
z2n−k(x+ iy)k−n, if n ≤ k ≤ 2n.

We obtain this way a homogeneous polynomial in three variables p of degree
n such that

f(u, v) = p

(
u2 − v2

2
,
u2 + v2

2i
, uv

)
.

Now, let h = (p)0 be the n-th order harmonic component of p in the har-
monic decomposition (2.2) of p. Then ψ−1(f) := (p)0 = h.

Remark A.2 (Real harmonic polynomials). Under this isomorphism, the
space Hn(R3) of real harmonic polynomials corresponds to the real subspace
S2n
R
(C2) ⊂ S2n(C2) of binary forms f which satisfy

(A.4) f(−v, u) = (−1)nf(u, v).

These binary forms

f(u, v) :=

2n∑

k=0

aku
kv2n−k

are also characterized by the following property:

(A.5) a2n−k = (−1)n−kak, 0 ≤ k ≤ n.

The space S2n
R
(C2) is invariant under the action of SU(2) and is moreover

irreducible for this action.

Remark A.3. Note that if f1 ∈ S2n1

R
(C2) and f2 ∈ S2n2

R
(C2), then f1f2 ∈

S
2(n1+n2)
R

(C2) and

ψ−1(f1f2) = (ψ−1(f1)ψ
−1(f2))0

Example A.4 (Order-1 harmonic tensors). An order-1 harmonic tensor h on
R
3 is just a linear form h on R

3, which can be written as

h(xxx) = www · xxx = wi xi,

with www = (w1, w2, w3). The corresponding binary form f = ψ(h) ∈ B2 is
given by

f(u, v) = a0u
2 + a1uv − a0v

2,
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where

a0 =
1

2
(w1 + iw2) , a1 = w3.

Conversely, given f ∈ B2, the corresponding real 3-vector www is given by

w1 = a0 + a0, w2 = −i (a0 − a0) , w3 = a1.

Remark A.5. For order-1 tensors, there is a closed relation between the
Cartan-map (A.3) and the stereographic projection

τ : www0 = (w0
1, w

0
2 , w

0
3) 7→ λ :=

w0
1

1− w0
3

+ i
w0
2

1− w0
3

, S2 \ {nnn} −→ C

where S2 is the unit sphere and nnn = (0, 0, 1). The stereographic projection
can be extended to a bijection τ : S2 → C ∪ {∞} by setting τ(nnn) = ∞. Its
inverse, τ−1, is given by

w0
1 =

2

| λ |2 +1
ℜ(λ), w0

2 =
2

| λ |2 +1
ℑ(λ), w0

3 =
| λ |2 −1

| λ |2 +1
, λ ∈ C.

Now let www 6= (0, 0, 0). Then we can write www = twww0, where t = ‖www‖ and
‖www0‖ = 1. If moreover www0 6= (0, 0, 1), we can write f = ψ(h) as

(A.6) ψ(h)(u, v) = tα(u+ λv)(λu− v), α :=
1

| λ |2 +1
, λ = τ(www0).

Example A.6 (Order-2 harmonic tensors). Let h = (hij) be a second order
real harmonic tensor and h be the corresponding real harmonic polynomial,
then the corresponding binary form f = ψ(h) ∈ B4 is given by

f(u, v) = a0u
4 − a1u

3v + a2u
2v2 + a1uv

3 + a0v
4,

where

a0 =
1

4
h11 −

1

4
h22 +

1

2
ih12, a1 = −h13 − ih23, a2 =

3

2
h33

Conversely, given f ∈ B4, the corresponding harmonic tensor h is given by

(A.7) h :=




a0 + a0 − 1
3a2 −i (a0 − a0) −1

2 (a1 + a1)
−i (a0 − a0) −a0 − a0 − 1

3a2
1
2 i (a1 − a1)

−1
2 (a1 + a1)

1
2 i (a1 − a1)

2
3a2




Example A.7 (Order-4 harmonic tensors). Let H = (Hijkl) be a fourth-order
real harmonic tensor and h be the corresponding real harmonic polynomial,
then the corresponding binary form f = ψ(h) ∈ B8 is given by

f(u, v) = a0u
8 − a1u

7v + a2u
6v2 − a3u

5v3 + a4u
4v4

+ a3u
3v5 + a2u

2v6 + a1uv
7 + a0v

8,
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where the independent components are

a0 =
1

16
(−8H1122 −H1133 −H2233) + i

1

4
(2H1112 +H1233),

a1 =
1

2
(4H1223 +H1333) + i

1

2
(−3H1123 +H2223),

a2 =
7

4
(H1133 −H2233) + i

7

2
H1233,

a3 = −7

2
H1333 + i

7

2
(H1123 +H2223),

a4 = −35

8
(H1133 +H2233)

Conversely, given f ∈ B8, the corresponding harmonic tensor in H
4(R3) is

given by:

H1111 = −H1122 −H1133, H1112 =
i

4

(
4a0 − 4a0 −

2

7
a2 +

2

7
a2

)
,

H1113 = −H2223 −H2333, H1122 = −a0 − a0 +
1

35
a4,

H1123 =
i

4

(
−a1 + a1 +

1

7
a3 −

1

7
a3

)
, H1133 =

1

7
a2 +

1

7
a2 −

4

35
a4,

H1222 = −H1112 −H1233, H1223 =
1

4

(
a1 + a1 +

1

7
a3 +

1

7
a3

)
,

H1233 =
1

7
i (a2 − a2) , H1333 =

1

7
(−a3 − a3) ,

H2222 = −H1122 −H2233, H2223 =
i

4

(
a1 − a1 +

3

7
a3 −

3

7
a3

)
,

H2233 = −1

7
a2 −

1

7
a2 −

4

35
a4, H2333 = −H1123 −H2223,

H3333 = −H1133 −H2233.

Appendix B. Proof of Sylvester’s theorem

The key point to prove Sylvester’s theorem 3.4 is a root characterization

of binary forms in S2n
R
(C2).

Lemma B.1. Let f ∈ S2n(C2). Then f ∈ S2n
R
(C2) if and only if it can be

written as

f(u, v) = αurvr
n−r∏

i=1

(u− λiv)
(
λiu+ v

)
,

where λ1, . . . , λn−r ∈ C∗ and α ∈ R.

Proof. Let f ∈ S2n
R
(C2) which does not vanish identically. Due to (A.5), we

deduce that for each 0 ≤ k ≤ n, a2n−k = 0 if and only if ak = 0. Thus, there
exists a non-negative integer r ≤ n such that

f(u, v) = urvrg(u, v),

where g ∈ S
2(n−r)
R

(C2) with leading term b2(n−r) = (−1)n−rb0 6= 0. Let

p(t) := g(t, 1).
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Then p is a polynomial of degree 2(n − r) with no vanishing root. Due
to (A.4), we deduce that if λ is a root of p, then −1/λ̄ is another root of p.
Thus

p(t) = b2(n−r)

n−r∏

i=1

(t− λi)

(
t+

1

λi

)
,

and we get

g(u, v) =
b2(n−r)∏

λi

n−r∏

i=1

(u− λiv)
(
λiu+ v

)

Now, using (A.4), we have
∏
λi∏
λi

= (−1)n−r b0
b2(n−r)

=
b2(n−r)

b2(n−r)

and thus

(B.1) α :=
b2(n−r)∏

λi
=
b2(n−r)∏

λi

is real. The converse can be immediately established using the functional
characterization (A.4) of S2n

R
(C2). �

Remark B.2. This factorization is not unique. Permuting a couple of paired
roots λi,−1/λi, leads to the transformation

(u− λiv)
(
λiu+ v

)
→ −1

|λi|2
(u− λiv)

(
λiu+ v

)
,

and may result in a different value for α.

We can now give the proof of Sylvester’s theorem 3.4 and of proposi-
tion 3.6.

Proof of theorem 3.4. Using the isomorphism between Hn(R3) and S2n
R
(C2)

described in Appendix A, we set f := ψ(p). Using Lemma B.1, we can write

f(u, v) = αurvr
n−r∏

i=1

(u− λiv)
(
λiu+ v

)
.

Let

wi =

{
(u− λiv)

(
λiu+ v

)
, if i ≤ n− r;

uv, if i > n− r.

Each wi is in S2
R
(C2) so ψ−1(wi) ∈ H1(R3) is a polynomial of degree 1 on

R
3 and can be written as xxx ·wwwi for some vector wwwi in R

3. We get thus

p = ψ−1(f) = ψ−1(w1 · · ·wn)

= ψ−1(w1) ∗ · · · ∗ ψ−1(wn) = (xxx ·www1) ∗ · · · ∗ (xxx ·wwwn),

which achieves the proof. �

Proof of Proposition 3.6. Let www1, . . . ,wwwn and w̃ww1, . . . , w̃wwn be unit vectors.
We can assume, rotating if necessary this configuration of 2n vectors on
the sphere, that none of the wwwk, w̃wwk are equal to (0, 0, 1) or (0, 0,−1). Set

λk := τ(wwwk), µk := τ(w̃wwk),
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and note that the λk, µk belong to C \ {0}. Using (A.6), the relation

(xxx ·www1) ∗ · · · ∗ (xxx ·wwwn) = (xxx · w̃ww1) ∗ · · · ∗ (xxx · w̃wwn), ∀xxx ∈ R
3.

can be recast as the binary form identity
n∏

k=1

αk(u+ λkv)(λku− v) =
n∏

k=1

βk(u+ µkv)(µku− v), ∀(u, v) ∈ C
2.

Therefore, there exists a permutation σ of {1, . . . , n}, such that either µk =
λσ(k) or µk = −1/λσ(k). In the first case we deduce that

w̃wwk = τ−1(λσ(k)) = wwwσ(k)

while in the second case, we have

w̃wwk = τ−1

(
− 1

λσ(k)

)
= −wwwσ(k).

We obtain therefore that w̃wwk = ǫkwwwσ(k) where ǫk = ±1 for 1 ≤ k ≤ n
with ǫ1 · · · ǫn = 1. If the vectors wwwk, w̃wwk are not unit vectors, a normalisa-
tion process lead to the conclusion that w̃wwk = λkwwwσ(k) where λk ∈ R and
λ1 · · ·λn = 1, which achieves the proof. �

Appendix C. Symmetry classes

The action of the rotation group SO(3,R) on the space of n-order har-
monic tensors H

n(R3) partitions this space into symmetry classes, where
two tensors H1,H2 belong to the same symmetry class if their respective
symmetry group GH1

and GH2
are conjugates, that is

GH2
= gGH1

g−1, for some g ∈ SO(3,R).

Symmetry classes are in correspondence with conjugacy classes

[K] :=
{
gKg−1; g ∈ SO(3,R)

}

of closed subgroups K of SO(3,R) (several conjugacy classes may however
correspond to empty symmetry classes). Moreover, symmetry classes are
partially ordered by the following partial order defined on conjugacy classes

[K1] � [K2] if ∃g ∈ SO(3,R), K1 ⊂ gK2g
−1.

Recall that a closed SO(3,R) subgroup is conjugate to one of the following
list [19]:

SO(3), O(2), SO(2), Dn(n ≥ 2), Zn(n ≥ 2), T, O, I, and1

where:

• O(2) is the subgroup generated by all the rotations around the z-
axis and the order 2 rotation σ : (x, y, z) 7→ (x,−y,−z) around the
x-axis.

• SO(2) is the subgroup of all the rotations around the z-axis.
• Zn is the unique cyclic subgroup of order n of SO(2), the subgroup
of rotations around the z-axis.

• Dn is the dihedral group. It is generated by Zn and σ : (x, y, z) 7→
(x,−y,−z).
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• T is the tetrahedral group, the (orientation-preserving) symmetry
group of a tetrahedron. It has order 12.

• O is the octahedral group, the (orientation-preserving) symmetry
group of a cube or octahedron. It has order 24.

• I is the icosahedral group, the (orientation-preserving) symmetry
group of a icosahedra or dodecahedron. It has order 60.

• 1 is the trivial subgroup, containing only the unit element.

The symmetry classes of a second order symmetric tensor are described
by the following partially ordered set:

orthotropic
[D2]

−→ transversely isotropic
[O(2)]

−→ isotropic
[SO(3,R)]

For H4(R3), it is known that there are only 8 symmetry classes (the same
classes as for the Elasticity tensor [16]). The corresponding partial ordering
is illustrated in figure 1, with the convention that a subgroup at the starting
point of an arrow is conjugate to a subgroup of the group pointed by the
arrow.

Figure 1. The partial ordering set for symmetry classes of H4(R3).
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