Quantile and Expectile Regression for random effects model

Abstract : Quantile and expectile regression models pertain to the estimation of unknown quantiles/expectiles of the cumulative distribution function of a dependent variable as a function of a set of covariates and a vector of regression coefficients. Both approaches make no assumption on the shape of the distribution of the response variable, allowing for investigation of a comprehensive class of covariate effects. This paper fits both quantile and expectile regression models within a random effects framework for dependent/panel data. It provides asymptotic properties of the underlying model parameter estimators and suggests appropriate estimators of their variances-covariances matrices. The performance of the proposed estimators is evaluated through exhaustive simulation studies and the proposed methodology is illustrated using real data. The simulation results show that expectile regression is comparable to quantile regression, easily computable and has relevant statistical properties. In conclusion, expectiles are to the mean what quantiles are to the median, and they should be used and interpreted as quantilized mean.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01421752
Contributeur : Arthur Charpentier <>
Soumis le : jeudi 22 décembre 2016 - 17:56:47
Dernière modification le : lundi 13 mars 2017 - 16:59:35
Document(s) archivé(s) le : jeudi 23 mars 2017 - 12:17:05

Fichier

QuantExpect.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01421752, version 1

Collections

Citation

Amadou Diogo Barry, Arthur Charpentier, Karim Oualkacha. Quantile and Expectile Regression for random effects model. 2016. <hal-01421752>

Partager

Métriques

Consultations de
la notice

523

Téléchargements du document

195