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Abstract

NMR is a tool of choice for the measure of diffusion coefficients of species in solution. The
DOSY experiment, a 2D implementation of this measure, has proven to be particularly useful
for the study of complex mixtures, molecular interactions, polymers, etc. However, DOSY
data analysis requires to resort to inverse Laplace transform, in particular for polydisperse
samples. This is a known difficult numerical task, for which we present here a novel approach.
A new algorithm based on a splitting scheme and on the use of proximity operators is
introduced. Used in conjunction with a Maximum Entropy and `1 hybrid regularisation, this
algorithm converges rapidly and produces results robust against experimental noise. This
method has been called PALMA. It is able to reproduce faithfully monodisperse as well as
polydisperse systems, and numerous simulated and experimental examples are presented. It
has been implemented on the server http://palma.labo.igbmc.fr where users can have
their datasets processed automatically.

1. Introduction

Diffusion coefficients can be efficiently measured in NMR by the use of magnetic field gra-
dients. The most classical approach consists in applying a symmetric pair of pulsed field
gradients (PFG) of varying intensity, separated by a diffusion delay ∆. Random displace-
ments of the molecule during ∆ because of Brownian motion result in modulation of the
signal intensity I following the Stejskal-Tanner equation [1, 2]:

I(q) = Ioexp(−D∆q2) (1)

where D is the diffusion coefficient of the molecular species and q = γδg, the measure of
the phase dispersion created by the PFG. Here, γ is the gyromagnetic ratio of the studied
spin, and δ and g are the duration and intensity of the PFG respectively. A least squares fit
of the experimental values to an exponential decay provides an estimate of the value of D.
The DOSY experiment, introduced by Johnson [3] is a representation of this measure as a
2D spectrum, with chemical shifts presented horizontally and diffusion coefficients vertically.
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DOSY has been used intensively to analyse molecular interactions, to sort the component
in complex mixtures, or to evaluate molecular size distributions[4, 5, 6].
A monodisperse sample presents a well defined diffusion coefficient, and a simple exponential
adjustment of equation (1) allows the determination of D. When several compounds share
the same chemical shift, resulting in overlapping lines in the NMR spectrum, the result of
a mono-exponential fit becomes incorrect. A simple column-wise least squares fit to two or
more exponentials presents instabilities in noisy data-sets which make this approach difficult
to use on complex cases.
Several methods have emerged in the literature for the analysis of complex mixtures of
monodisperse species, where the difficult mostly arises from the presence in the spectrum of
many overlapping species Approaches based on a global analysis of the whole experimental
matrix have been proposed, based on a clever decomposition of the 2D spectrum matrix
into multivariate model, which allows to extract the spectra of each species along with their
respective diffusion profiles[7, 8]. Some developments on this approach have been based on
a harmonic analysis of the decay[9, 10, 11, 12, 13, 14]. The exponential hypothesis can even
be relaxed using methods related to blind source deconvolution[15, 16, 17, 18].
All these approaches model the sample as a mixture of species with a characteristic decay
pattern. Some samples such as polydisperse polymers, dendrimers, nanoparticles, gels and
aggregated species, because of the variation in size, length or aggregate state of the different
molecules in the sample, present a distribution of diffusion coefficients rather than a single
coefficient. Moreover, the presence of common decay patterns at different chemical shifts
cannot really be assumed anymore, as in these complex systems a subtle coupling between
the chemical shift and the size usually broadens the spectral line, with each spectral channel
sampling a slightly different subset of the species, so that each spectral channel has to be
processed independently.
For these strongly polydisperse samples a precise determination of the diffusion distribution
is of great analytical importance, it is however a difficult task. Because of this difficulty,
polydispersity is commonly measured by a polydispersity index (PDI) defined as the ratio of
the mass average molar mass Mw to its number average molar mass Mn : PDI = Mw/Mn.
This quantity characterises the breadth of the distribution independently of the details of its
shape, a PDI of 1.0 indicates monodispersity. PDI is commonly measured by size exclusion
chromatography, (electron) microscopy, light or X-Ray scattering, or even NMR-DOSY[19].
A polydisperse sample has to be analysed with a distribution X(D) of diffusion coefficients
and equation (1) becomes:

I(q) =

∫ Dmax

Dmin

X(D)exp(−D∆q2)dD (2)

Determining the distribution X(D) from I(q) requires to solve the Laplace inversion of the
q2 dependency of I(q).
The shape of the distribution X can be modelled by a Gaussian function or by any other
symmetric or asymmetric analytical shape, and the parameters for this shape fitted to the
experimental data[20]. This straight-forward approach is very sensitive to the choice of the
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shape, and will fail if it is not well adapted to the data, or if the distribution contains several
isolated massifs, and it should be used with care.
In this work, we present a general approach that solves the Laplace inversion problem pre-
sented in equation (2). A new algorithmic approach based on a splitting scheme and on the
use of proximity operators is introduced. Used in conjunction with Maximum Entropy and
`1 regularisations, the algorithm is stable against experimental noise, reproduces faithfully
monodisperse as well as polydisperse situations, and converges rapidly.

2. Theory

2.1. Problem description

We assume that the diffusion experiment was performed over a series of M values of q (by
varying δ, g or both) and measured as a series of intensities ym for a given chemical shift
value. The problem stated by equation (2) can be discretised to be solved numerically:

ym =
N∑

n=1

xnexp(−Dn∆q2
m)

with Dn ranging from Dmin to Dmax. As this expression is linear in xn, it can be rewritten
as follows:

Y = HHHX (3)

where Y = {ym, 1 ≤ m ≤M} is the experimental series, X = {xn, 1 ≤ n ≤ N} is a sampling
of the distribution, and HHH is an M ×N matrix with entries HHHm,n = exp(−Dn∆q2

m). In this
work, we call X the Laplace spectrum of Y . Determining X from the knowledge of HHH and
Y is an ill-posed problem as the experimental points are inevitably tainted with noise, and
HHH is usually a non-square matrix, with N > M . A simple inversion does not provide a valid
solution, and one has to resort to alternative approaches.

2.2. Lagrangian formulation

A general approach for solving equation (3) is to generate a solution X that solves the
following regularised minimisation problem:

minimise
X∈RN

‖HHHX − Y ‖2 + µΨ(X) (4)

The first term evaluates the distance between data and the reconstruction, while the second
term is the regulariser, the Lagrangian coefficient µ > 0 acting as a weight between the
two. The regularisation function Ψ is aimed at selecting among all possible distributions,
the most natural one, given the experimental evidences, using some a-priori information
on the problem. It is usually built as a measure of the cost of the reconstruction (in
terms of energy, information, number of signals, etc. . . see below) and tends to favour an
empty spectrum. Depending on the expression chosen for Ψ, the problem can be solved by
different approaches. The CONTIN method [21] solves this problem for Ψ(X) = ‖ΓX‖2,
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where Γ is a matrix that contains prior assumptions about the data. Classical choices are
Γ = Id which selects the solution with the least energy, or the first or second derivatives thus
removing fluctuations not required for a faithful reconstruction. It has known a great success
since its introduction more than 30 years ago, however it suffers from slow convergence
and over-smoothed solutions. Choosing the opposite of the entropy as the regularisation
function (Ψ(X) =

∑
(xn/a) log(xn/a)) allows to produce the distribution with the least

information in the sense of Shannon [22]. This Maximum Entropy (MaxEnt) approach has
shown to be of great efficiency and robustness for solving the DOSY problem [23] and has
been widely used. However, because of the strong curvature of the entropy function, the
classical implementations[24, 23] of this approach are known to present slow convergence
rates. Kazimierzuck et al [25] proposed recently to use Ψ(X) =

∑ |xn| = ‖X‖1 where Ψ
is the `1 norm of X. Their approach relies on previous works that have shown that this is
equivalent to select the spectrum with the less non-null values. The principal advantage of
their approach is to rely on recent major advances in the field of convex minimisation and
compressed sensing. The algorithm ITAMeD they developed is based on the soft thresholding
approach and allows a rapid convergence toward the solution. Enforcing a minimum number
of non-null values in X is a good approach when the sample is a mixture of monodisperse
compounds, and the Laplace spectrum a set of sharp lines, it is not appropriate however for
the analysis of polydisperse samples that may present very large distributions. Urbańczyk

et al. [26] recently extended this work to minimising the `p norm (‖X‖p = (
∑ |xn|p)

1
p ) with

1 ≤ p ≤ 2. As expected, the authors show that adapting the p parameter to the kind of
data allows to reconstruct spectra of various widths. However, the choice of p is somewhat
ad hoc and has to be adapted to each situation, additionally the authors rely here on the
IRLS [27] algorithm that is slower than ITAMeD. The TRAIn method [28] that has been
proposed recently is not explicitly based on a regularisation approach, but rather on an early
stopping strategy, in conjunction with a trust region algorithm. This method is claimed to
be efficient on polydisperse distributions. The early stopping approach creates a bias in the
final solution which can be assimilated to an implicit regularisation albeit with no analytical
definition, and this could be seen as a deficiency[29].

2.3. Constrained formulation

The Lagrangian coefficient µ involved in equation (4) may be difficult to adjust in practice.
However, one has often some precise knowledge about the level of noise corrupting the data.
We propose to adopt a more practical formulation by solving the following constrained
optimisation problem:

minimise
X∈RN

Ψ(X) subject to ‖HHHX − Y ‖ ≤ η (5)

where η > 0 is related to the expected quality of the fit, based on an estimate of the
experimental noise. This has the advantage to shift the burden of determining the adequate
value of a Lagrangian coefficient to the much simpler task of estimating a noise level.
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2.4. Hybrid regularisation
In order to favour both smooth (polydisperse) and sparse (monodisperse) shapes in the
estimated signal, we propose a novel regularisation defined as follows:

Ψ(X) = λ ent(X, a) + (1− λ)`1(X) (6)

where ent (X, a) is given by

ent(X, a) =





∑N
n=1

xn
a

log
(
xn
a

)
if xn > 0

0 if xn = 0

+∞ elsewhere,

and is the opposite of the Shannon entropy with a flat prior a > 0, typically chosen here
from an estimate value of

∑
xn. `1(X) is the `1 norm of the vector X defined as [30]:

`1(X) =
N∑

n=1

|xn|

and λ ∈ [0, 1] allows to control the balance between the sparsity prior and the entropy prior.

2.5. Proximity operator
The general problem expressed in equation (5) can be elegantly solved by the convex optimi-
sation algorithm PPXA+, based on the use of proximity operators [31]. This allows a generic
solver for any choice of convex function Ψ while insuring a very rapid convergence toward
the optimal solution. The proximal approach is also the basis of the ITAMeD method. The
FISTA algorithm on which it is based [32] is derived from the soft-thresholding operator, the
proximity operator of the `1 norm operator. To our knowledge, it has never been applied to
the MaxEnt penalty nor to a hybrid approach as proposed here.
It can be shown[33] that the proximity operator of the functional Ψ used in equation (6)
can be expressed as follows (see ESI sections 1 and 2† for details):

proxΨ(X) = (p(xn))1≤n≤N (7)

where,

p(xn) =

{
λ
a
W
[
a
λ

exp(axn−a(1−λ)
λ

+ log(a)− 1)
]

if λ ∈]0, 1]

sign(xn) max (|xn| − (1− λ), 0) if λ = 0
(8)

In the above expression, W states for the Lambert function, defined as the inverse function
of f : z → zez for all z ∈ C, [34] i.e:

z = wew ⇔ w =W(z).

In the current context, only a restriction of W to R+ is required. It should be noted that
for pure Maximum Entropy (λ = 1) we recover the result from Combettes and Pesquet [35]:

pent(x) =
1

a
W (a exp(x) + log(a)− 1)

Similarly, pure `1 regularisation (λ = 0) brings the soft thresholding operator:

p`1(x) = sign(x) max (|x| − 1, 0)

5



2.6. Algorithm

With the expression of the proximity operator given in equations (7)-(8), the convex op-
timisation problem (5) can be easily solved using a proximal splitting algorithm. At each
iteration, such a method alternates between the proximity operator of Ψ, and the proximity
operator associated to the constraint ‖HHHX −Y ‖ ≤ η, (i.e. the projection operator onto this
constrained set).
In order to ensure good convergence properties of our algorithm, we adopt the PPXA+
approach from Pustelnik et al. [36], generalizing the PPXA method from Combettes and
Pesquet [37]. These algorithms both rely on the Douglas-Rachford scheme [38], which con-
sists in replacing the involved proximity operators by their reflections (see ESI sections 3, 4
and 5† for details).
This leads us to the so-called PALMA algorithm, standing for “Proximal Algorithm for L1

combined with MAxent prior”. This algorithm is fully detailed in the Electronic Supple-
mentary Information†.

3. Material & Methods

3.1. Simulations.

Several simulated data-sets, chosen to represent various analytical situations, were used for
the evaluation of the algorithm. Set A consists in three monodisperse components with
diffusion coefficients 16µm2/s , 63µm2/s and 230µm2/s, with respective intensities 1.0,
0.33, 0.66. This data-set is equivalent to the simulation used in Urbańczyk et al. [25]. Set B
is a wide distribution, simulated as a log-normal distribution centred at 35µm2/s, it presents
a PDI estimated to 6.26. Sets C1 and C2 are asymmetric distributions built from 15 log-
normal components, ranging from 18 to 85 µm2/s, with intensities ranging from 0.1 to 10,
they have PDI estimated respectively to 1.79 and 1.32. In all simulations, 64 gradient values
were simulated, and a Gaussian noise equal to 0.001%, 0.01%, 0.1%, or 1% of the initial
point was added. The gradient values were chosen with a harmonic progression for set A,
and with linear increments for sets B, C1, and C2. All Laplace spectra were reconstructed
on 256 logarithmically sampled points. Other simulations with varying distributions and
noise levels are also presented in ESI (see section 6 †).

3.2. NMR measure.

A set of PEO standards were purchased from American Polymer Standards Corporation
(Mentor, OH, USA), and 3 samples were prepared. Sample a) is a standard PEO with Mw =
2343.3 g mol−1 and PDI = 1.07; sample b) is a standard PEO with Mw = 4051.2 g mol−1

and PDI = 1.28; sample c) is a mixture prepared from standard PEOs ranging from 350
to 5250 g mol−1 for a theoretical Mw of 3238.5 g mol−1 and a theoretical PDI of 2.01. Each
sample was prepared and measured as described in Viéville et al. [19].
The crude plant extract was obtained from the brown algae Sargassum muticum as described
in Vonthron-Sénécheau et al. [39]. Two equivalent samples were prepared by dissolving each
time 18.3mg in 0.75mL MeOD plus 0.4mL D2O, chloroquine was added to one sample
at a concentration of 0.16mgmL−1 (1%w/w of plant dry extract). The NMR experiments
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were run on a Avance III Bruker spectrometer, operating at 700 MHz, and equipped with a
TXI cryo-probe. DOSY were acquired with the convection compensated experiment using
bipolar pulses [40] (dstebpgp3spr pulse program). 50 gradient increments from 0.5G/cm to
52.5G/cm were used, with a cosine roll-off PFG shape. Each elementary PFG had a duration
of δ = 1.1ms and the diffusion delay ∆ was set to 150ms. For each gradient intensity,
64 scans were acquired with a relaxation of 1.5 s, for a total experimental time of 1 hour
50 minutes. Each 1D spectrum was apodised with an unshifted sine-bell, zerofilled once and
Fourier transformed. A spline baseline correction was applied, as well as a correction of
small shifts caused by possible instabilities of the temperature control[41].

3.3. Processing.

The PALMA algorithm was implemented with the programming language python version
2.7 using the numpy/scipy libraries. The algorithm was then packaged in a plugin to the
SPIKE program developed in our group[42]. All programs are available from the authors.
All computations were performed on a Macintosh Mac Pro dual Xeon with a total of 8 cores,
equipped with 32 GB of memory and running MacOsX 10.7.
The DOSY experiments presented in Fig.2 and Fig.3 were processed column-wise with λ =
0.01. The noise level along the gradient axis was estimated by the difference of the actual
data to the result of a polynomial smoothing, this value being used to estimate η in equation
(5) (See ESI, section 5.2† for more details). The diffusion axis was logarithmically sampled
from 50 to 10.000µm2s−1 over 256 points.
Experiments on PEO were processed with a maximum of 20.000 iterations, for a total time
of about 30 seconds for 110 DOSY profiles computed. Experiments on plant extract were
processed taking all signals with an estimated SNR above 20 (26 dB) in the first 1D spectrum
of the experimental matrix, with a maximum of 200.000 iterations, for a total time of about
1 hour for 1200 to 1400 DOSY profiles.
The algorithms ITAMeD, `p tailored-ITAMeD, and TRAIn utilised in the ESI were used
as downloaded from the respective web-sites, using MATLAB program version R 2013b on
MacOs.

3.4. Server.

A Web server is available at http://palma.labo.igbmc.fr, where users may submit data-
sets for automatic processing. The python code of the PALMA algorithm is available on the
same server as well as on https://github.com/delsuc/PALMA.

4. Results

4.1. Tests on Simulated Data

The PALMA algorithm described above was first tested on a series of simulated data-sets.
Fig.1a presents the results obtained on the simulated experiment A consisting in the su-
perposition of three monodisperse species, separated by less than a factor of 4 in diffusion
coefficients, equivalent to the test used in Urbańczyk et al. [25]. When analysed with PALMA
using a null λ value, indicating a pure `1 regularisation, a Laplace spectrum consisting of 3
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a)

b)

Figure 1: PALMA Reconstruction for various values of λ of the simulated experiments, with an added 0.1%
Gaussian noise. a) experiment A with 3 monodisperse species, indicated by the black vertical lines, λ = 0
spectrum was divided by 3 for clarity; b) experiment B with a large polydisperse Gaussian profile λ = 0
spectrum was divided by 8 for clarity.

sharp peaks is produced as expected. Using the pure MaxEnt mode (λ = 1) on the same
dataset, a broader spectrum is reconstructed. PALMA allows the weight between the two
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approaches to be freely varied. When doing so it can be observed a narrowing of the MaxEnt
distribution for decreasing value of λ, characteristic of a bias toward monodisperse distribu-
tions, with a sudden transition to sharp lines for λ = 0. In Fig.1b the same procedure was
applied on a broad Gaussian line simulating a polydisperse polymer with a PDI of about 6,
corresponding to experiment B. Again it can be observed that a null λ gives rise to sharp,
sparse lines, this time only sampling the broad line in an inadequate manner. However, in
contrast with the previous case, all the non-null values of λ lead to a nearly perfect recon-
struction of the line-shape, with a correct determination of its width. In this example, the
minimal reconstruction error was obtained for λ = 0.05. Tests performed on asymmetric
distributions (see ESI figures S5 and S6 and table S1†) show the same tendency, with stable
results for all non-null values of λ. It should be noted that, because of the algorithm that
maintains the analysis within the noise distance of the data, i.e. ‖HHHX − Y ‖ / η (see (5))
all the reconstructed Laplace spectra fit equally well the data. They differ only in how they
match the regularisation term, a term which holds and expresses the a priori information
we have on the data-set.
The PALMA algorithm was tested against ITAMeD[25], `p tailored-ITAMeD[26], and
TRAIn[28] algorithms, using the same simulated data as above. Table 1 presents synthetic
results, extensive results are presented in ESI (see figures S7 to S14 and tables S2 and S3†).

Algorithm noise level

1% 0.1% 0.01% 0.001%

ITAMeD 3.37 18.65 29.04 29.40

ITAMeD with `p 6.06 25.26 36.69 37.08

TRAIn 24.75 28.63 26.53 19.47

PALMA λ = 0.01 20.54 28.57 41.69 53.25

PALMA λ = 0.05 24.01 32.51 48.28 51.37

Table 1: Quality of reconstruction of signal B with different algorithms for various noise levels. Quality is

computed as ‖Xsim‖
‖Xsim−Xcalc‖ expressed in dB. For each noise level, the highest quality results are outlined.

In our hands, PALMA and TRAIn present the best results in terms of faithfulness and
robustness, in particular for polydisperse data-sets, with TRAIN showing better results on
the C2 data-set, while PALMA behaving better for data sampled with a small number of
data-points.

4.2. Application to polydisperse polymers.

It is acknowledged that experimental data are quite different from simulated one, with a
mixture of sharp and large diffusion distribution, tainted with instrumental artifacts and non-
stationary noise. To the behaviour of the method on polydisperse systems, the program was
first applied on DOSY experiments measured from poly-ethyleneoxide (PEO) polymers in
water with calibrated chain lengths and polydispersity. Fig. 2 presents the results obtained
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for three PEO samples with polydispersity ranging from 1.07 to 2.0 measured in a standard
manner, and processed with PALMA. The polydispersity of the different samples can be
clearly seen in the profile widthes. Sample a) is a standard PEO polymer, with a rather low
polydispersity. Sample c) was prepared from a set of rather monodisperse polymers, in order
to cover regularly a large range of chain lengths. Sample b) on the other hand is a PEO
polymer given to have a standard polydispersity, however the details of the composition is
not known.

102 103 104

Diffusion in µm2 sec−1

0.0

0.2

0.4

0.6

0.8

1.0 a

b

c

Figure 2: DOSY profile of the main NMR signal of different standard PEO samples, a) a reference PEO
with PDI of 1.07, b) a reference PEO with PDI of 1.28, c) a mixtures of reference PEOs with a global PDI
of 2.01,

4.3. Application to plant extract.

To test the robustness of the approach, it was applied to crude ethanolic plant extract
obtained from brown algae.
Fig. 3 shows the aliphatic region of the DOSY experiment performed on this algae extract.
Only the more abundant species are visible at this plot level. This kind of analysis on com-
plex mixture has been extensively used to analyse natural products, plant extract [43], or
even adulteration of herbal and dietary supplements[44]. Here the presence of a particular
molecule or family of molecule is characterised by the alignment at the same diffusion co-
efficient of the characteristic lines located at their corresponding chemical shift positions.
For instance, in Fig. 3, the polyol and fatty acid signals are outlined. The fatty acids are
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Figure 3: DOSY experiment on a brown algae methanol/water extract showing only the major constituents.
Dashed horizontal label lines are indicated for fatty acid chains (220µm2s−1), glycerol and short polyol
(380µm2s−1), methanol (1100µm2s−1).

c)

b)

a)

x4

x4

x4

⇐
⇐

Figure 4: Comparison of two DOSY experiments on a brown algae extracts. a) the aromatic (empty) and
aliphatic regions of the same experiment as shown in Fig. 3, but plotted at a level four times lower; b) the
same brown algae extract with 0.16mgmL−1 of chloroquine added, showing the aromatic signals and the
methyl signal outlined with an arrow in the spectrum, the dashed horizontal label is at 285µm2s−1; c) the
1D spectrum of the brown algae extract with added chloroquine. In all three spectra, the aromatic panel is
plotted four times lower than the aliphatic panel.

certainly partly aggregated in this sample, as indicated by the width of the line, both along
the spectral and Laplace axes. The DOSY is useful in this context because it provides a
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high dynamic analysis, where the most intense lines do not ”hide” less intense ones.
In Fig. 4, the chloroquine molecule was added at a low concentration (1%w/w) to the same
sample. While the aromatic signals of chloroquine, located in a rather empty region of the
spectrum, are easily detected, the aliphatic chain signals fall in crowed region where they
are difficult to observe. The methyl groups that fall at position 1.3 ppm and 1.45 ppm are
completely buried under the fatty acid signals and the diffusion coefficient are not different
enough. In contrast, the signals from the methylene moieties are observed around 1.9 ppm,
in a relatively free spectral region. Despite being about ×100 smaller than the larger signals
(methanol, polyol or fatty acid chains), the signal is well separated in the DOSY spectrum,
and is aligned with the aromatic signals.
One can also observed the reproducibility of the PALMA-processed DOSY spectra, as the
main features of the spectra are nearly identical for both samples.

5. Discussion

The hybrid regularisation proposed in eq (6) implements two well known approaches, namely
the `1 regularisation, which tends to minimise the number of signals required to explain the
data, and the MaxEnt regularisation usually presented as a way to maximise the posterior
probability of the analysis while preserving the positivity of the retrieved spectra [45]. While
both regularisation are well established and based on clear principles, the MaxEnt is known
to be somewhat more difficult to implement. The hybrid regularisation proposed here allows
to produce very robust results even in the case of complex signals such as the one presented
in the simulated examples.
The constrained problem is solved using a new convex optimisation algorithm, based on
the use of proximity operators and a split version of the Douglas-Rachford procedure. The
use of the proximity operators allows to implement a simple incremental step, requiring
no inner line-search minimisation step, where the main burden is three applications of the
linear operator HHH or of its generalised inverse BBB = (III +HHHTHHH)−1. This algorithm allows a
rapid convergence even with the hybrid regularisation used here. In the simulation presented
here, an approximate solution is obtained very rapidly (in less than a second). The results
presented in this work were obtained with longer convergences, using typically 10.000 to
100.000 iterations, however thanks to the rapidity of the iterative step, this corresponds
typically to a few seconds on a laptop.
Because of the constrained approach used here, there is no need to determine a Lagrangian
parameter as in most other techniques (sometimes called a smoothing parameter). Neverthe-
less, the approach requires some parameters, of which the prior a and the noise η can readily
be estimated from the experimental data-set, using respectively the first point of the decay
and an estimate of the noise from a polynomial smoothing of the experimental data-set (see
ESI section for details†). The weight λ between the MaxEnt and the `1 regularisations em-
bodies a prior assumption on the presence of sparse component in the Laplace spectrum. In
the simulations of a sparse theoretical spectrum (Fig.1a) λ = 0 corresponding to a pure `1

regularisation provides the best reconstruction as expected. Simulations performed on sev-
eral wide distributions (Fig.1b and ESI figures S4, S6, S15, and S16†) show that the method
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recovers faithfully the position of the signal and the theoretical profile, for most non-null
values of the λ parameter, even in the presence of noise. Results are more contrasted for the
sparse spectrum in Fig.1a, where the pure MaxEnt analysis (λ = 1.0) presents large features
located at the position of the three components, and it can be observed a narrowing of the
MaxEnt distribution for decreasing value of λ. The results of pure MaxEnt analysis pro-
duced by the PALMA algorithm were checked to be equivalent to the results obtained with
the original algorithm[23] based on a fixed point approach, however the convergence is much
faster, and processing times are about 10 times shorter for the same results. It should be
recalled that the MaxEnt analysis produces a statistical analysis of the data, where the final
spectrum is the density distribution which maximises the posterior probability of finding
a signal[46, 45]. The width of the actual signals can thus be considered as an uncertainty
on the position of the monodisperse components, uncertainty that is present in the pure `1

case as errors in the position of the lines, but not directly manifest. These results suffer
however from a lack of resolutive power, and the possibility to bias toward a sparser re-
sult is certainly a plus. In a general approach, the optimal value for λ should be chosen
from assumptions on the data based on explicit previous knowledge, however on a practical
point, this is not feasible. Even on a sample known to be composed solely of monodisperse
species, the choice of a null λ is problematic. On the one hand, some polydisperse impurities
might be present with the risk of overlooking them as we observe in Fig.2 and Fig.3; on the
other hand, most instrument imperfections such as temperature drift, gradient non-linearity,
phase distortions, convection, etc. will distort the pure exponential decay and create some
apparent polydispersity. Confronted with the same difficulty, Urbańczyk et al. [26] chose
to vary the p parameter of their tailored-ITAMeD algorithm, somewhat similar to λ and
chose the larger value which allows a minimal residual. The same approach could easily be
used here, however considering the fact that polydisperse samples are correctly analysed for
most non-null values of λ, with the better results obtained for small values, we suggest using
values between 0.01 and 0.05 as monodisperse data are well described with these values.
The quality of these results are in sharp contrast with equivalent analyses presented in the
literature. The λ = 1 mode reproduces the classical MaxEnt regularisation[23] although in
less processing time. The λ = 0 mode, compared to the `1 based ITAMeD approach [25],
the final resolution resulting from PALMA reconstruction is much higher, as observed in our
simulations, in agreement to what has been published. Intermediate values of λ, creating a
bias of the MaxEnt solution toward more sparse data, produce more resolved spectra, which
usually better match the patterns expected in solution NMR.
We recommend using a value of λ in the range 0.01 to 0.05 for safe results, with the possi-
bility to adapt this value in particular cases (for instance extreme polydispersity or spectral
superposition). We do not recommend to use the pure `1 mode (λ = 0), even in the case
of monodisperse samples, because the instrumental fluctuations mentioned above certainly
disturb this pure behaviour, and because of the difficulty to estimate the uncertainty of the
result from a sparse spectrum alone.
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6. Conclusion

The DOSY experiment holds a special position among the different experiments available
to the NMR spectroscopist. Whilst it provides invaluable information on the size and the
interaction of the molecules in solution, it presents an important challenge for its acquisition
and its analysis. he acquired data are usually corrupted by many artefacts produced by the
very high sensitivity of this experiment to instrument imperfections such as temperature
drift, non-linearity of the gradients and of the detection electronics, phase distortions, con-
vection, etc. In parallel, while the parameter dependency expressed in the basic evolution
equations is extremely simple, it is well established that a simple fit of the data to this equa-
tion usually fails in providing a faithful analysis of the data in the general case, and one has
to resort to inverse Laplace transform for the analysis step, a problem well known to be of
extreme noise sensitivity. For these reasons, the stability and robustness of the acquisition
and processing schemes are of great importance for the quality of DOSY spectroscopy, and
many acquisition schemes and many processing procedures have already been proposed in
the literature for this purpose. In this work, we have introduced a general method to solve
the inverse problem as found in the analysis of DOSY experiments that we believe provides
an unequalled level of quality and robustness in the processing step.
The method is based on a constrained regularisation of the least square problem, and we
showed that an hybrid regularisation, combining maximum sparsity and maximum entropy
provides optimal results in the general case. This approach is controlled by a single pa-
rameter λ weighting between these two criteria, and the results are not very sensitive to
the exact value of this parameter as long as extreme values are not chosen. This method,
that we called PALMA, is faster and more robust than previous MaxEnt implementation
and provides better results. It requires only weak assumptions from the user, and can be
run in a fully automatic manner. It has been implemented on a server freely available
at http://palma.labo.igbmc.fr, where users may submit their data-sets for automatic
processing. The code of the algorithm is available at the same address.
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1 Variational formulation

A well-known and very efficient strategy for solving ill-posed inverse problems is to
adopt a penalization approach that provides an estimate X̂ ∈ RN of the original signal
X ∈ RN , that is the solution of the constrained minimization problem:

minimize
X∈RN

Ψ(X) subject to ‖HHHX − Y ‖ ≤ η, (1)

where Ψ is the regularization function and η is an estimate of the experimental noise.
In this work, we choose to define Ψ for every X ∈ RN and λ ∈ [0, 1], as:

Ψ(X) = λ ent(X, a) + (1− λ)`1(X), (2)

where the Shannon entropy with a flat prior a > 0 and the `1 norm are defined, respec-
tively, as:

(∀X = (xn)1≤n≤N ∈ RN ) ent(X, a) =





∑N
n=1

xn
a log

(
xn
a

)
if xn > 0

0 if xn = 0

+∞ elsewhere

and

(∀X = (xn)1≤n≤N ∈ RN ) `1(X) =

N∑

n=1

|xn|.

2 Proximity operator

To solve Problem (1), we propose to rely on a proximal optimization method, that makes
use of the so-called proximity operator. Since Ψ is convex on RN , its proximity operator

at a given point X ∈ RN is defined as the unique minimizer of
1

2
‖ · −X‖2 + Ψ. Since Ψ

in (2) takes a separable form, i.e. it can be written as:

(∀X = (xn)1≤n≤N ∈ RN ) Ψ(X) =
N∑

n=1

ψ(xn), (3)

its proximity operator is given by:

proxΨ(x) = (p(xn))1≤n≤N . (4)

Hereabove, for every n ∈ {1, . . . , N}, p(xn) ∈ R is the unique minimizer of:

φ : u 7→ 1

2
(u− xn)2 + ψ(u). (5)
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Let us first consider the case when λ ∈]0, 1]. Then,

φ̇(u) = 0⇔ u− xn +
λ

a
log(u) +

λ

a
− λ

a
log(a) + 1− λ = 0

⇔ log(u) =
a

λ

(
−u+ x− λ

a
+
λ

a
log(a)− 1 + λ

)

⇔ u = exp

(
−a
λ
u+

ax− a(1− λ)

λ
+ log(a)− 1

)
.

Finally:

u =
λ

a
W
(
a

λ
exp

(
ax− a(1− λ)

λ
+ log(a)− 1

))
. (6)

In the above expression, W states for the Lambert function, also called Omega, defined
as the inverse function of f : x→ x exp(x) for all x ∈ C:

z = x exp(x)⇔ x =W(z).

If λ = 0, we have:

xn − u ∈ ∂|u| ⇐⇒ xn − u ∈
{

sign(u) if u 6= 0
[−1, 1] elsewhere

⇐⇒ u =





xn − 1 if u > 1
0 if u ∈ [−1, 1]

xn + 1 elsewhere.

Finally, we can conclude that (∀X = (xn)1≤n≤N ∈ RN ), proxΨ(X) is given by (4),
where, for all n ∈ {1, . . . , N},

p(xn) =

{
λ
aW

(
a
λ exp

(
axn−a(1−λ)

λ + log(a)− 1
))

if λ ∈]0, 1]

sign(xn) (max(|xn| − 1, 0)) if λ = 0.
(7)

3 Asymptotic development

Let us emphasize that the Lambert function has many interesting properties. In partic-
ular:

W(ex) −→
x→+∞

x

(
1− log(x)

1 + x

)
(8)

This asymptotic development is of main interest in our context. Indeed, when λ ∈]0, 1],
for all n ∈ {1, . . . , N},

p(xn) =
λ

a
W (exp(cn)) , (9)

with cn = axn−a(1−λ)
λ − 1 + 2 log(a) − log(λ). When cn is large (typically cn > 102),

standard numerical implementation of the Lambert function yields infinity as an output.
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We thus propose to use, for large cn, the following approximation of the proximity
operator, which is a consequence of the asymptotic development (8):

p(xn) =
λ

a

(
cn −

cn
1 + cn

log(cn)

)
. (10)

Figure 8 illustrates relative error of the approximation, when λ = a = 1.
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Figure S1: Relative error value between W(ecn) and the approximation of p(xn) in 9.
The relative error becomes lower than 10−3 for cn > 20.

4 PALMA algorithm

Using the PPXA+ algorithm, we propose a new proximal algorithm to solve (1) that
makes use of the proximal formula (7). The so-called PALMA algorithm, standing for
“Proximal Algorithm for L1 combined with MAxent prior”, is given below:

Initialization

V (0,1) ∈ RN , V (0,2) ∈ RM
X(0) = (IN +HHH>HHH)−1(V (0,1) +HHH>V (0,2))
BBB = (IN +HHH>HHH)−1

γ ∈ (0, 2),
Minimization
For k = 0, 1, . . .

Z(k,1) = proxΨ(V (k,1))

Z(k,2) = proj‖·−Y ‖≤η
(
V (k,2)

)

U (k) = BBB(Z(k,1) +HHH>Z(k,2))

X(k+1) = X(k) + γ(U (k) −X(k))

V (k+1,1) = V (k,1) + γ
(
2U (k) −X(k) − Z(k,1)

)

V (k+1,2) = V (k,2) + γ
(
HHH(2U (k) −X(k))− Z(k,2)

)

4



where IN is the identity matrix of RN and the projection proj‖·−Y ‖≤η is defined as
follows:

proj‖·−Y ‖≤η(Z) = Z + (Z − Y ) min

(
η

‖Z − Y ‖ , 1
)
− Y (∀(Y,Z) ∈ (RN )2).

5 Choice of processing parameters

As it is detailed in the previous theoretical section, the PALMA algorithm is controlled
by several scaling parameters which have to be adapted to the current problem.

5.1 Choice of a

The entropy approach requires an expression of the prior knowledge on the system, which
in the present case corresponds to a priori spectrum in the absence of experimental
evidences. A general expression is thus a flat spectrum of intensity a, the value of which
has to be adapted to the scaling of the experimental measurement. A natural approach
consists in estimating the area under the signal expected signal:

∑
n xn and scaling the

prior with this value. Due to the properties of the Laplace transform, we have chosen
here a = y0 ≈

∑
n xn.

5.2 Choice of η

If we assume that the experimental values are tainted by an additive random noise:
ym = ŷm + εm, and if this noise is supposed to be centered and Gaussian i.i.d. with
variance σ2, then we can expect the residual of the fit to be η ≈ σ

√
M . The value of σ

can be measured here either from additional measures or from a simple polynomial fit
of the ym curve as it is done in the current implementation. The case of a correlated
Gaussian noise ε, with covariance matrix Σ, is encompassed by our method. Indeed, the
least squares constraint becomes:

(∀X ∈ RN )
(

(HHHX − Y )>Σ−1(HHHX − Y )
)1/2

≤ η,

which is equivalent to ‖HHHX − Y ‖2 ≤ η, up to any change of variable with the form
HHH ←− θΣ−1/2HHH and Y ←− θΣ−1/2Y , η ←− θη, for some θ > 0. In order to facilitate
the choice of η, we propose to take θ = σmax, i.e. the maximal singular value of Σ, so
that a suitable choice for η is σmax

√
M .
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5.3 Choice of λ

In order to evaluate the influence of the λ factor on the balance between sparsity and
the amount of information in the processed signal, we launch our PALMA algorithm for
different signal of monodisperse and polysdisperse species (A, B, C1 and C2) and we
trace on Figures S2 to S6, the recovered signal by variying λ from 0 to 1.
The associated reconstruction quality, measured in terms of signal to noise ratio (SNR)

= 10 log 10
(
‖X‖
‖X̂−X‖

)
of each tested case, is reported in Table S1.

Larger value of quality of reconstruction correspondents to the best recon-
struction.
• Signal A
Signal A consists in three monodisperse components with diffusion coefficients 16µm2/s,
63µm2/s, and 230µm2/s, with respective intensities 1.0, 0.33 and 0.66. This data-set
is equivalent to the simulation used in Kazimierczuk et al.

• Signal B
Signal B is a wide monodisperse distribution, simulated as a symmetric log-normal
distribution centered at 35µm2/s and with variance 25.

• Signals C1 & C2
C1 and C2 signals are asymmetric distributions built from 15 log-normal components,
ranging from 18 to 85µm2/s, with intensities ranging from 0.1 to 10 s. They have PDI
estimated respectively to 1.79 and 1.32.
For C1, the intensities are chosen as 10.0/(1.4i), i = 1, . . . , 15, and for C2, as
10.0/(1.415−i), i = 1, . . . , 15.
In all simulations, an additive zero-mean white Gaussian noise and standard deviation
σ equals 0.1% of the initial point of HHHX was added to the observed data. The number
of measurement is M = 64 and the original signal has the dimension N = 256.
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Figure S2: Measurement of A, B, C1 and C2 signals
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Figure S3: Reconstruction of signal A using PALMA with different λ. The minimal
error is obtained for λ = 0 (Spectra obtained with λ 6= 0 have their intensities multiplied
by 3 for clarity).
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Figure S4: Reconstruction of signal B using PALMA with different λ. The minimal error
is obtained for λ = 0.05 (Spectra obtained with λ = 0 have their intensities divided by
8 for clarity).
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Figure S5: Reconstruction of signal C1 using PALMA with different λ. The minimal
error is obtained for λ = 0.01 (Spectra obtained with λ = 0 have their intensities divided
by 8 for clarity).
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Figure S6: Reconstruction of signal C2 using PALMA with different λ. The minimal
error is obtained for λ = 0.01 (Spectra obtained with λ = 0 have their intensities divided
by 8 for clarity).
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λ
Qlty reconstruction of Signal

A B C1 C2

0.0 5.65 −11.04 −9.87 −12.58

0.01 1.05 28.57 15.21 16.15

0.02 0.80 31.87 13.76 14.89

0.05 0.58 32.51 12.92 14.06

0.1 0.47 31.11 12.71 13.66

0.2 0.39 31.17 12.37 13.35

0.5 0.30 31.44 11.65 12.91

1 0.26 31.55 11.21 12.44

Table S1: Quality of reconstruction of A, B, C1 and C2 signals for various λ values.
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6 Comparison with state-of-the-art algorithms

Several algorithms have been developed to solve the ill-posed problem in DOSY experi-
ence. In Table S2, we present the comparison results between our approach and several
recent algorithms, namely ITAMeD, ITAMeD with `p, and TRAIN.
As an illustration, we present in Figures S7 to S10, the reconstruction of B and C2
signals with different algorithms for 4 different noise levels.
The following settings have been used, which lead to the best performance in terms of
both reconstruction quality and computational cost:
PALMA: λ = 0.01.
ITAMED : Regularization parameter = 10−6.
ITAMeD with `p: Smoothing parameter τ = 10−7, ration between 1st and 2nd term
ε = 10.
TRAIn: τ = 1.02

Signal
Algorithm

Noise level Qlty reconstruction in dB

1% 0.1% 0.01% 0.001%

B

ITAMeD 3.37 18.65 29.04 29.40

ITAMeD with `p 6.06 25.26 36.69 37.08

TRAIn 24.75 28.63 26.53 19.47

PALMA with λ = 0.01 20.54 28.57 41.69 53.25

PALMA with λ = 0.05 24.01 32.51 48.28 51.37

C
2

ITAMeD 1.57 15.13 14.36 14.06

ITAMeD with `p 3.37 6.30 6.29 6.29

TRAIn 8.62 15.39 23.36 25.5

PALMA with λ = 0.01 10.6 12.72 17.72 23.24

PALMA with λ = 0.05 7.62 10.97 16.59 20.75

Table S2: Quality of reconstruction of signals B and C2 with different algorithms for
various noise levels. Here, M = 64
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M
Algorithm

Noise level Qlty reconstruction in dB

1% 0.1% 0.01% 0.001%

6
4

ITAMeD 1.57 15.13 14.36 14.06

ITAMeD with `p 3.37 6.30 6.29 6.29

TRAIn 8.62 15.39 23.36 25.5

PALMA with λ = 0.01 10.6 12.72 17.72 23.24

PALMA with λ = 0.05 7.62 10.97 16.59 20.75

32

ITAMeD −3.72 8.89 12.89 13.91

ITAMeD with `p 0.57 6.18 6.27 6.27

TRAIn 3.68 6.60 9.396 18.04

PALMA with λ = 0.01 11.09 14.60 19.48 23.04

PALMA with λ = 0.05 8.69 13.09 18.92 20.56

Table S3: Quality of reconstruction of signal C2 for various noise levels and problem
sizes.
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Figure S7: Reconstruction of signal B, using different algorithms. Here, M = 64 and
noise level = 1%.
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Figure S8: Reconstruction of signal B, using different algorithms. Here, M = 64 and
noise level = 0.1%.
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Figure S9: Reconstruction of signal B, using different algorithms. Here, M = 64 and
noise level = 0.01%.
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Figure S10: Reconstruction of signal B, using different algorithms. Here, M = 64 and
noise level = 0.001%.
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Figure S11: Reconstruction of signal C2, using different algorithms. Here, M = 64 and
noise level = 1%.
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Figure S12: Reconstruction of signal C2, using different algorithms. Here, M = 64 and
noise level = 0.1%.
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Figure S13: Reconstruction of signal C2, using different algorithms. Here, M = 64 and
noise level = 0.01%.
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Figure S14: Reconstruction of signal C2, using different algorithms. Here, M = 64 and
noise level = 0.001%.
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7 Robustness against noise

We propose to evaluate the quality of reconstruction of signal C2 for different λ values
and for 4 different noise levels. Figure S15 shows that the best quality reconstruction is
obtained when λ = 0.01 whatever the different noise level. For this optimal λ PALMA
algorithm ensures a great quality of reconstruction as it is illustrated in Figure S16.
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Figure S15: Quality of reconstruction of signal C2 with different λ.
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Figure S16: Reconstruction of signal C2 with λoptimal for different noise levels.
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