Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

Abstract : In modern engineering, physical processes are modelled and analysed using advanced com- puter simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [77 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01421112
Contributeur : Noura Fajraoui <>
Soumis le : mercredi 21 décembre 2016 - 15:52:49
Dernière modification le : mardi 27 décembre 2016 - 01:00:12
Document(s) archivé(s) le : lundi 20 mars 2017 - 17:10:51

Fichier

RSUQ-2016-009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01421112, version 1

Collections

Citation

R Schöbi, B Sudret. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions. 2016. 〈hal-01421112〉

Partager

Métriques

Consultations de
la notice

31

Téléchargements du document

99