Projection under pairwise distance control

Hiba Alawieh, Nicolas Wicker, Christophe Biernacki

Laboratoire Paul Painlevé, Université Lille 1, 59655, Villeneuve d’Ascq, France.

CMStatistics 2016
9-11 December 2016
Table of contents

1 Introduction

2 Projection under pairwise distance control method

3 Application

4 Conclusions & Perspectives
Multidimensional Data
Multidimensional data in \mathbb{R}^p

Data visualization in \mathbb{R}^2

Dimensionality reduction in \mathbb{R}^k
Aim: Project the original data set in a reduced space by preserving as much of the variance from the original data set as possible.
Short reminder of the PCA method

- **Aim:** Project the original data set in a reduced space by preserving as much of the variance from the original data set as possible.

- **Local quality:** Squared cosine of angle between the principal space and the vector of the point gives the local measure.
 - usable in linear projection.
 - unusable in non-linear projection.
 - Not interpretable as distances.
Our objective

Propose a new **non-linear** projection method taking into account the **local projection quality** that is **interpretable** as distances.

- The idea is to bound the distance d_{ij} by a minimal and maximal distances calculated on the projected points and the radii.

$$d_{ij} \leq d_{min} \leq d_{ij} \leq d_{max}$$
Basic of the method:

\[
D = \begin{bmatrix}
 d_{11} & d_{12} & \cdots & d_{1n} \\
 d_{21} & d_{22} & \cdots & d_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{n1} & d_{n1} & \cdots & d_{nn}
\end{bmatrix}
\]

\[
X = \begin{bmatrix}
 x_{11} & \cdots & x_{1k} \\
 x_{21} & \cdots & x_{2k} \\
 \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nk}
\end{bmatrix}
\]

\[
(r_1, \ldots, r_n) \rightarrow (r_1, \ldots, r_n)
\]

- The variables \((r_1, \ldots, r_n)\) are called radii given for each point \(i\) such that \(r_i \in \mathbb{R}\) for all \(i = 1, \ldots, n\).
Characteristics of Radii

- Radii are important elements introduced to assess how much the distance $\|x_i - x_j\|$ is far from d_{ij}.
- (r_i, r_j) are small $\Rightarrow \|x_i - x_j\|$ is close to d_{ij}.
- Radii indicate to which extent the projection of each point is accurate.
- The local quality is then given by the values of the radii.
- Both units of d_{ij}’s and r_i’s are identical.
The projection under pairwise distance control problem can be written as the following optimization problem:

\[\mathcal{P}_{r,x} : \begin{cases} \min_{r_1, \ldots, r_n \in \mathbb{R}, x_1, \ldots, x_n \in \mathbb{R}^k} \sum_{i=1}^{n} r_i \\ \text{s.t} \quad |d_{ij} - \|x_i - x_j\| | \leq r_i + r_j, \text{ for } 1 \leq i < j \leq n \end{cases} \]

Problem \(\mathcal{P}_{r,x} \) is a hard non-linear optimization problem.
Simplification of problem $\mathcal{P}_{r,x}$:

- (x_1, \ldots, x_n) are fixed using PCA or any other projection method.
- Problem \mathcal{P}_r is a new linear optimization problem obtained after fixing (x_1, \ldots, x_n).
- It can easily be solved in (r_1, \ldots, r_n) using linear programming.

$$\mathcal{P}_r : \begin{cases} \min_{r_1, \ldots, r_n \in \mathbb{R}} \sum_{i=1}^{n} r_i \\ s.t \ |d_{ij} - \|x_i - x_j\|\| \leq r_i + r_j, \text{ for } 1 \leq i < j \leq n \end{cases}$$

- Solution of \mathcal{P}_r is not in general the optimum of problem $\mathcal{P}_{r,x}$.

Different ways to find a solution of problem $\mathcal{P}_{r,x}$:

- Lower bound.
- Optimization.
- Simulation.
Lower Bound of problem $\mathcal{P}_{r,x}$

Let $x_1, \ldots, x_n; r_1, \ldots, r_n$ a feasible solution of $\mathcal{P}_{r,x}$, and $M \in \mathbb{R}$ such that:

$$M = \max \left\{ \left\| x_i - x_j \right\| \right\}.$$

The objective is to find three functions noted f, g, h depending on M such that:

$$n \sum_{i=1}^{n} r_i \geq \min \left\{ f(M), g(M), h(M) \right\} \quad \text{for all feasible solutions.}$$
Lower Bound of problem $\mathcal{P}_{r,x}$

- Let $x_1, \ldots, x_n; r_1, \ldots, r_n$ a feasible solution of $\mathcal{P}_{r,x}$, and $M \in \mathbb{R}$ such that:

$$M = \max\{ \| x_i - x_j \| \}_{(i,j)}.$$

- The objective is to find three functions noted f, g, h depending on M such that:

$$\sum_{i=1}^{n} r_{i}^{opt} \geq \min_{M} \max\{ f(M); g(M); h(M) \} \text{ for all feasible solutions.}$$
Computation of the functions

Function $f(M)$: This function is obtained by:

- summing all the squared constraints $d_{ij}^2 \leq (\|x_i - x_j\| + r_i + r_j)^2$.
- bounding $\sum_{1 \leq i < j \leq n} \|x_i - x_j\|^2$ by $\frac{n(n-1)}{3} M^2$ after maximizing the inertia of the projected points x_i under constraints: $\|x_i - x_j\| \leq M$ for all (i, j).

Indeed, we consider:

- (C) be the smallest circle containing the n points
- A, B and C belong to (C) and $\|x_B - x_C\| = M$.
Introduction

Projection under pairwise distance control method

Application

Conclusions & Perspectives
Projection under pairwise distance control method
We have proved that the maximum of the inertia
\[\sum_{i=1}^{n} \| y_i - g \|^2, \]
under the constraint that \(y_1, \ldots, y_n \) are inside \((C)\), is equal to \(nr^2 = n \frac{M^2}{3} \).

Thus,

\[\sum_{i=1}^{n} \| x_i - g \|^2 \leq n \frac{M^2}{3}. \]
Function $g(M)$: This function is obtained using the maximal distance of d_{ij}.

$$g(M) = |M - d_{\text{max}}|$$

Function $h(M)$: This function is obtained by taking four distinct points i, j, k and l such that:

- For couple (i, j), $\|x_i - x_j\| = M$ and x_i or x_j is equal to zero.
- We consider the following linear combinations:

$$x_j = \alpha x_k + \beta x_l$$

$$x_i = \alpha x_k + \beta x_l$$
Illustration of the three function f, g and h.
Simulation algorithm

Stochastic optimization method \Rightarrow Metropolis-Hastings algorithm.
Simulation algorithm

Stochastic optimization method \Rightarrow Metropolis-Hastings algorithm.

Target distribution

- The target distribution is related with the objective function of problem $\mathcal{P}_{r,x}$.
- An application E is given by:

$$E : \mathcal{M}_{n\times p} \rightarrow \mathbb{R}
\quad X = (x_1, \ldots, x_n) \mapsto E(X) = \text{Solution of } \mathcal{P}_{r} \text{ with } x \text{ fix.}$$

- The target distribution is: $\pi(s) \propto \exp(-E(x)/T)$.
The proposal distribution $q(X \rightarrow .)$ has been constructed by giving priority to the selection of points involved in saturated constraints.
The proposal distribution \(q(X \rightarrow .) \) has been constructed by giving priority to the selection of points involved in saturated constraints.

Proposal distribution

- For each point \(i \), choose a point \(j^{(i)} \) with probability equal to:
 \[
P_{j^{(i)}} = \frac{\exp \left(-\lambda \left(r_i + r_{j^{(i)}} - |d_{ij^{(i)}} - \|x_i - x_{j^{(i)}}\|\right)\right)}{\sum_{k=1, k \neq i}^{n} \exp \left(-\lambda (r_i + r_k - |d_{ik} - \|x_i - x_k\|)\right)}.
\]

- Choose a constant \(c_{ij^{(i)}} \) using Gaussian distribution \(\mathcal{N}_k(0, \sigma) \).

- Generate a matrix \(X^* \) by moving each vector \(x_i \) of matrix \(X^{t-1} \) as follows:
 - If \(d_{ij^{(i)}} - \|x_i - x_{j^{(i)}}\| > 0 \) then \(x_i^* = x_i + |c_{ij^{(i)}}|L_i \).
 - else \(x_i^* = x_i - |c_{ij^{(i)}}|L_i \).

With
\[
L_i = \frac{x_i - x_{j^{(i)}}}{\|x_i - x_{j^{(i)}}\|}.
\]
Algorithm 1 Metropolis-Hastings Algorithm:

\[
\text{for } t = 1 \text{ to } N \text{ do}
\]

Generate \(X^* \) from the \textit{proposal distribution} \(q(X^{t-1} \rightarrow X^*) \).
Solve linear optimization problem \(P_r \).

Calculate \(\alpha = \frac{g(s^*)q(X^* \rightarrow X^{t-1})}{g(s^{t-1})q(X^{t-1} \rightarrow X^*)} = \frac{g(s^*) \prod_{i=1}^{n} P_{i,t}^*}{g(s^{t-1}) \prod_{i=1}^{n} P_{i,t-1}^*} \).

\[
\text{if } \alpha = 1 \text{ then}
\]
Take \(X^t = X^* \).

\[
\text{else}
\]
\(u = \mathcal{U}(0; 1) \).
\[\text{if } u \leq \alpha \text{ then} \]
Take \(X^t = X^* \)
\[\text{else} \]
\(X^t = X^{t-1} \).
\[\text{end if} \]
\[\text{end if} \]
\[\text{end for} \]
Different types of real data sets are used.
- For example: Quantitative data (Iris data set).

Parameters of Metropolis-Hastings:
- Parameter $\lambda = 100$.
- The standard deviation $\sigma = 0.01$.
- Temperature $T = 100$.
Projection under pairwise distance control method

Application

Conclusions & Perspectives

PCA
Projection under pairwise distance control method

Application

Conclusions & Perspectives
Conclusions & Perspectives

Conclusions

- new non-linear projection method based on a new local measure of projection quality.
- The quality of projection is given here by additional variables called radii.
- Radii enable to give a bound on the original distances.
- The idea can be written as an optimization problem in order to minimize the sum of the radii under some constraints.
- Different algorithms and a lower bound for the objective function are developed.
Conclusions & Perspectives

Conclusions
- new non-linear projection method based on a new local measure of projection quality.
- The quality of projection is given here by additional variables called radii.
- Radii enable to give a bound on the original distances.
- The idea can be written as an optimization problem in order to minimize the sum of the radii under some constraints.
- Different algorithms and a lower bound for the objective function are developed.

Perspectives
- Improvement of the lower bound in order to assess how close the algorithms are from the minimum.
Thank you!