Skip to Main content Skip to Navigation
Conference papers

Model-Based Co-clustering for Ordinal Data

Julien Jacques 1, 2 Christophe Biernacki 3, 2
2 MODAL - MOdel for Data Analysis and Learning
LPP - Laboratoire Paul Painlevé - UMR 8524, Université de Lille, Sciences et Technologies, Inria Lille - Nord Europe, METRICS - Evaluation des technologies de santé et des pratiques médicales - ULR 2694, Polytech Lille - École polytechnique universitaire de Lille
Abstract : A model-based coclustering algorithm for ordinal data is presented. This algorithm relies on the latent block model using the BOS model (Biernacki and Jacques, 2015, Stat. Comput.) for ordinal data and a SEM-Gibbs algorithm for inference. Numerical experiments on simulated data illustrate the efficiency of the inference strategy.
Document type :
Conference papers
Complete list of metadata

Cited literature [3 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01420648
Contributor : Christophe Biernacki <>
Submitted on : Thursday, December 22, 2016 - 3:03:26 PM
Last modification on : Friday, November 27, 2020 - 2:18:02 PM

Identifiers

  • HAL Id : hal-01420648, version 1

Citation

Julien Jacques, Christophe Biernacki. Model-Based Co-clustering for Ordinal Data. Working Group on Model-Based Clustering Summer Session, Jul 2016, Paris, France. ⟨hal-01420648⟩

Share

Metrics

Record views

418

Files downloads

121