P. Ahrens, H. D. Nguyen, and J. , Efficient reproducibile floating point summation and BLAS, 2016.

A. Arteaga, O. Fuhrer, and T. Hoefler, Designing Bit-Reproducible Portable High-Performance Applications, 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp.1235-1244, 2014.
DOI : 10.1109/IPDPS.2014.127

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Bientinesi, E. S. Quintana-ortí, and R. A. Van-de-geijn, Representing linear algebra algorithms in code: the FLAME application program interfaces, ACM Transactions on Mathematical Software, vol.31, issue.1, pp.31-58, 2005.
DOI : 10.1145/1055531.1055533

C. Chohra, P. Langlois, and D. Parello, Efficiency of Reproducible Level 1 BLAS, LNCS. Scientific Computing, 2014.
DOI : 10.1007/978-3-319-31769-4_8

URL : https://hal.archives-ouvertes.fr/lirmm-01101723

S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, Numerical reproducibility for the parallel reduction on multi- and many-core architectures, Parallel Computing, vol.49, pp.83-97, 2015.
DOI : 10.1016/j.parco.2015.09.001

URL : https://hal.archives-ouvertes.fr/lirmm-01206348

J. Demmel and H. D. Nguyen, Fast Reproducible Floating-Point Summation, 2013 IEEE 21st Symposium on Computer Arithmetic, pp.163-172
DOI : 10.1109/ARITH.2013.9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Demmel and H. D. Nguyen, Parallel Reproducible Summation, IEEE Transactions on Computers, vol.64, issue.7, pp.2060-2070, 2015.
DOI : 10.1109/TC.2014.2345391

J. J. Dongarra, J. Du-croz, S. Hammarling, and I. Duff, A set of level 3 basic linear algebra subprograms, ACM Transactions on Mathematical Software, vol.16, issue.1, pp.1-17, 1990.
DOI : 10.1145/77626.79170

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, p.33, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00070266

Y. Hida, X. S. Li, and D. H. Bailey, Algorithms for quad-double precision floating point arithmetic, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp.155-162, 2001.
DOI : 10.1109/ARITH.2001.930115

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics (SIAM), 2002.
DOI : 10.1137/1.9780898718027

R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, ExBLAS: Reproducible and accurate BLAS library, Proceedings of the Numerical Reproducibility at Exascale (NRE2015) workshop held as part of the Supercomputing Conference (SC15)
DOI : 10.1007/978-3-319-31769-4_11

URL : https://hal.archives-ouvertes.fr/hal-01140280

R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, Reproducible triangular solvers for high-performance computing Special track on: Wavelets and Validated Numerics, Proceedings of the 12th International Conference on Information Technology: New Generations (ITNG 2015), pp.353-358, 2015.
DOI : 10.1109/itng.2015.63

URL : https://hal.archives-ouvertes.fr/hal-01116588/document

R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, ExBLAS (Exact BLAS) library, Available on the WWW, https: //exblas.lip6, pp.2016-2040

R. Iakymchuk, D. Defour, S. Collange, and S. Graillat, Reproducible and Accurate Matrix Multiplication, Computer Arithmetic, and Validated Numerics: SCAN 2014, pp.126-137, 2014.
DOI : 10.1007/978-3-319-31769-4_11

URL : https://hal.archives-ouvertes.fr/hal-01102877

I. Team, MAGMA project home page, http://icl.cs.utk, 2016.

D. E. Knuth, The Art of Computer Programming, Seminumerical Algorithms, 1997.

U. Kulisch and V. Snyder, The exact dot product as basic tool for long interval arithmetic, Computing, vol.205, issue.3, pp.307-313, 2011.
DOI : 10.1007/s00607-010-0127-7

T. Thompson, D. J. Tung, and . Yoo, Design, implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Softw, vol.28, pp.152-205, 2002.

N. Louvet, Algorithmes compensés en arithmétique flottante : précision, validation, performances, 2007.

R. Lucas, Top Ten Exascale Research Challenges, DOE ASCAC Subcommitee Report, 2014.

J. M. Muller, N. Brisebarre, F. De-dinechin, C. P. Jeannerod, V. Lefèvre et al., Handbook of Floating-Point Arithmetic, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

R. M. Neal, Fast exact summation using small and large superaccumulators, 2015.

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, 2005.
DOI : 10.1137/030601818

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. M. Ortega, The ijk forms of factorization methods I. Vector computers, Parallel Computing, vol.7, issue.2, pp.135-147, 1988.
DOI : 10.1016/0167-8191(88)90035-X

S. M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing, vol.31, issue.5, pp.3466-3502, 2009.
DOI : 10.1137/080738490

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. D. Skeel, Scaling for Numerical Stability in Gaussian Elimination, Journal of the ACM, vol.26, issue.3, pp.494-526, 1979.
DOI : 10.1145/322139.322148

Y. K. Zhu and W. B. Hayes, Algorithm 908, ACM Transactions on Mathematical Software, vol.37, issue.3, pp.1-3713, 2010.
DOI : 10.1145/1824801.1824815