Information Theoretic Rotationwise Robust Binary Descriptor Learning

Youssef El Rhabi 1 Loic Simon 1 Luc Brun 1 Josep Llados 2 Felipe Lumbreras 2
1 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel of-fline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications.
Type de document :
Communication dans un congrès
Structural, Syntactic, and Statistical Pattern Recognition , Nov 2016, Mérida, Mexico. LNCS, Proceedings of SSPR 2016, pp.368--378, 2016, Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2016, Mérida
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01418934
Contributeur : Luc Brun <>
Soumis le : samedi 17 décembre 2016 - 20:01:33
Dernière modification le : jeudi 7 février 2019 - 17:45:21
Document(s) archivé(s) le : mardi 21 mars 2017 - 00:50:45

Fichier

youssef.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01418934, version 1

Citation

Youssef El Rhabi, Loic Simon, Luc Brun, Josep Llados, Felipe Lumbreras. Information Theoretic Rotationwise Robust Binary Descriptor Learning. Structural, Syntactic, and Statistical Pattern Recognition , Nov 2016, Mérida, Mexico. LNCS, Proceedings of SSPR 2016, pp.368--378, 2016, Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2016, Mérida. 〈hal-01418934〉

Partager

Métriques

Consultations de la notice

151

Téléchargements de fichiers

112