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a posteriori stabilized sixth-order finite volume scheme for
one-dimensional steady-state hyperbolic equations

Stéphane Clain · Raphaël Loubère · Gaspar J.
Machado∗

Abstract We propose a new family of finite volume high-accurate numerical schemes devoted
to solve one-dimensional steady-state hyperbolic systems. High-accuracy (up to the sixth-order
presently) is achieved thanks to polynomial reconstructions while stability is provided with an a
posteriori MOOD method which control the cell polynomial degree for eliminating non-physical
oscillations in the vicinity of discontinuities. Such a procedure demands the determination of a
chain detector to discriminate between troubled and valid cells, a cascade of polynomial degrees
to be successively tested when oscillations are detected, and a parachute scheme corresponding to
the last, viscous, and robust scheme of the cascade. Experimented on linear, Burgers’, and Euler
equations, we demonstrate that the schemes manage to retrieve smooth solutions with optimal
order of accuracy but also irregular solutions without spurious oscillations.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 The MOOD method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Advection problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 The Burgers’ equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 The Euler system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1 Introduction

Numerical approximations of the steady-state Euler system date back to the early seventies with
the NASA Ames group [39]. The development of implicit time algorithm [8] with high-order finite
difference methods [9] led to the first simulations for two- and three-dimensional complex geometries
calculated on Illiac IV Computer [42,41,40]. The steady-state was achieved as the limit stage of
the non-stationary problem using ficticious time step (time marching method) [47]. The main
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E-mail: clain@math.uminho.pt, E-mail: gjm@math.uminho.pt
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difficulties are, on one hand, to achieve an accurate approximation where the solution is smooth
enough, and, on the other hand, to produce a robust solution without non-physical oscillations.

Most of the high-order technologies developed for the non-stationary case were adapted to the
steady-state case with the time marching algorithm using an explicit scheme [25] or an implicit
formulation [50,30] equipped with a Newton-Krylov iterative procedure [47,45,37]. Taking the time
step to infinity leads to a Newton-Krylov method for the steady-state problem which represents
an alternative to the time marching method [27]. Second-order finite volume approximations with
MUSCL limiter [43–46] on structured [49,25] or unstructured meshes [15,5,24,31] revealed to be
the standard approach in the nineties and have been widely developed. Unfortunatly, the accuracy
remains below the optimal value two due to an excessive limiting even for smooth solution where
limiting should not act toprovide the maximum order. Moreover, higher-order methods are appeal-
ing because they may dramatically reduce the computational time since they provide an excellent
approximation with coarse meshes for smooth solutions. Of course, shocks and vortices still require
an adequate local mesh to catch all the structures but high-order schemes prove to be efficient
in reducing the numerical diffusion. For instance the k-exact reconstruction [3,4,34] increases the
method accuracy using quadratic or cubic polynomial approximations [32,35,36]. Nevertheless,
traditional TVD (Total Variation Diminishing) limiting procedures drastically reduce the order
of accuracy despite the construction of alternative limiters [45,33] to enhance the quality of the
solution.

More recently, Weighted Essentially Non-Oscillatory (WENO) technology [1,48,26,20] delivers
more accurate approximations while preserving the robustness for the numerical solution and it
enables to achieve higher-orders than traditionnal TVD methods. The technique was to a later time
adapted for the steady-state situation [53,28]. The main difficulties lie on the non-differentiability
of the numerical scheme leading to the creation of slight oscillations nearby shock discontinuities.
More adapted WENO schemes then have been developed [52,23,21] to overcome the problem of
convergence toward the steady-state solution. We also mention some interesting developments for
the steady-state case based on the Discontinuous Galerkin method [6,7,38], the Spectral Volume
technique [10,18], and the Residual Distribution schemes [12,2,22].

All the technologies listed above employ an a priori limiting procedures to reduce the accuracy
or the degree of the polynomial reconstructions in the presence of non-physical oscillations. Indeed,
the reconstructed values are modified before feeding the numerical flux for the subsequent update
stage. Consequently, unexpected over-limiting usually happens since the correction is carried out
with the spirit to eliminate any potential risks. Moreover, the limiting procedure is only based
on the numerical regularity of the approximation and rarely on the physics of the problem. For
example, the positivity preserving is a consequence of the TVD restriction on the reconstruction
but is not directly imposed as a restriction per se. The Multidimensional Optimal Order Method
(MOOD) has been designed in [13,16,17] on different paradigms. It is an a posteriori method
since the modification of the polynomial reconstruction is performed after calculating a candidate
solution. The main avantage is that we only modify the solution where it is necessary leading to an
improvement of the accuracy with respect to other methods. Another point is the capacity of the
method to directly take into account the physics of the problem (positivity, entropy production,
etc.). The MOOD paradigm has been developed for non-stationary hyperbolic system [51,29,14]
and we aim at demonstrating that the methodology is adapted to steady-state situations. The
key point is the introduction of an additional unknown vector which represents the maximum
admissible polynomial degree on each cell. We seek for the numerical solution (density, the velocity,
and the pressure for Euler system for instance) as well as the cell polynomial degree that produce
the best approximation exempt from non-physical oscillations. In this work we only tackle the
one-dimensional situation in order to focus on the MOOD algorithm and prove the ability of
the method to provide high-order approximations for classical hyperbolic equation or system of
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equations. We also skip the question of the iterative solver efficiency since most of the implicit or
explicit techniques used in the WENO, DG, or SV methods do apply in our context.

This document is divided in seven sections. After the introduction, we present in section 2 the
framework (notation, mesh, schemes) while section 3 is devoted to the MOOD methodology. We
start by considering the simple scalar linear equations in section 4, then the non-linear Burgers’
equation case in section 5, and dedicate section 6 to the Euler system. Numerical experiments
involving regular and irregular solutions are presented for each equation or system of equations.
We end the document with the conclusions of this work and present some perspectives.

2 Framework

Let Ω =]xL, xR[ be the computational domain discretized into a regular mesh Th constituted of
cells Ki = [xi− 1

2
, xi+ 1

2
] for i = 1, . . . , I (see Fig. 1) of constant length h = (xR− xL)/I with center

xi = 1
2 (xi+ 1

2
+ xi− 1

2
). The boundaries of Ω are denoted by x 1

2
= xL and xI+ 1

2
= xR.

h

x 1
2

K1
b

x1

x 3
2

xi− 1
2

Ki
b

xi

xi+ 1
2

xI− 1
2

KI
b
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2

Fig. 1 Notation: point/interface, mesh, and cells.

For any bounded function φ defined on Ω, φi stands for an approximation of the mean value
φexi of function φ over cell Ki, that is

φi ≈ φexi =
1

h

∫ x
i+1

2

x
i− 1

2

φ(x) dx, i = 1, . . . , I,

while vector Φ = (φi)i=1,...,I ∈ RI gathers the values of the approximation.

2.1 Polynomial reconstruction

Let Ki be a cell and d ∈ N. The stencil Si is composed of the ni closest neighbor cells (excluding
cell Ki) such that ni > d. The polynomial of degree d associated to cell Ki and approximation φi
is defined as

φi(x; d) = φi +

d∑
k=1

Ri,k
(
(x− xi)k −Xi,k

)
,

with Ri = (Ri,k)k=1,...,d the vector that gathers the unknown polynomial coefficients. We set
Xi,k = 1

h

∫
Ki

(x− xi)k dx to achieve the conservative property

1

h

∫
Ki

φi(x; d) dx = φi. (1)
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For a given stencil Si, we consider the quadratic functional

Ei(Ri) =
∑
j∈Si

(
1

h

∫
Kj

φi(x; d) dx− φj

)2

.

We denote by R̂i = (R̂i,k)k=1,...,d the unique vector which minimizes the quadratic functional and

set φ̂i(x; d) the associated polynomial that corresponds to the best approximation in the least
squares sense of the data of the stencil

φ̂i(x; d) = φi +

d∑
k=1

R̂i,k
(
(x− xi)k −Xi,k

)
.

Such a reconstruction satisfies the conservation property (1).

Remark 1 We have adopted the following notations: φi represents an approximation of φ over
cell Ki while φi(x; d) is a generic polynomial function of degree d associated to Ki which satisfies
the conservation property (1).

2.2 Generic finite volume scheme

We consider the steady state one-dimensional equation with source term

dF(φ)

dx
= S, in Ω, (2)

where F(φ) stands for the physical flux, S represents a regular source term, and Dirichlet boundary
conditions φD are prescribed on the boundaries.

Integration of (2) over a cell Ki gives∫ x
i+1

2

x
i− 1

2

dF(φ(x))

dx
dx =

∫ x
i+1

2

x
i− 1

2

S(x) dx,

and integration by parts yields

(
F(φ(xi+ 1

2
)− F(φ(xi− 1

2
)
)
− h

 1

h

∫ x
i+1

2

x
i− 1

2

S(x) dx

 = 0.

We substitute the exact relation with the numerical scheme(
F(φi+ 1

2 ,−
, φi+ 1

2 ,+
;xi+ 1

2
)−F(φi− 1

2 ,−
, φi− 1

2 ,+
;xi− 1

2
)
)
− hSi = 0, (3)

where F(φi+ 1
2 ,−

, φi+ 1
2 ,+

;xi+ 1
2
) is the two-point numerical flux evaluated at point xi+ 1

2
, scalar

values φi+ 1
2 ,−

and φi+ 1
2 ,+

stand for approximations on the left and right sides of interface xi+ 1
2

respectively, and Si is an approximation of the source term computed over the cell with Gaussian
quadrature formula. Boundary conditions are taken into account for the first and last cell equations
taking φ 1

2 ,−
= φD(xL) and φI+ 1

2 ,+
= φD(xR).
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2.3 Cell polynomial degree and residual formulation

Polynomial reconstruction is an efficient tool to provide accurate approximations. Nonetheless, one
has to pay attention to the local regularity and choose the appropriate degree for the representation.
For a cell Ki, we denote by di its associated degree and M = (di)i=1,...,I stands for the Cell
Polynomial Degree (CPD) map, that is, the vector which indicates the degree of the reconstruction
for each cell. Moreover, we denote by

di+ 1
2

= min(di, di+1)

the effective polynomial degree we use to compute approximations on interface xi+ 1
2

and set

φi+ 1
2 ,−

= φ̂i(xi+ 1
2
; di+ 1

2
), φi+ 1

2 ,+
= φ̂i+1(xi+ 1

2
; di+ 1

2
).

We introduce the residual Gi(Φ,M) at cell Ki that is given by

Gi(Φ,M) =
(
F(φi+ 1

2 ,−
, φi+ 1

2 ,+
;xi+ 1

2
)−F(φi− 1

2 ,−
, φi− 1

2 ,+
;xi− 1

2
)
)
− hSi, (4)

and the global residual G(Φ,M) ∈ RI gathers the residual expressions Gi(Φ,M) for all cell i.
For a given CPD map M, we introduce the residual operator

Φ ∈ RI → G(Φ,M) ∈ RI

and seek a solution ΦM for the system of equations G(Φ,M) = 0 using an iterative solver and
given an initial guess.

We also notice that the case where di = 0 corresponds to the first-order approximation. On
the other hand, if we are dealing with smooth solutions, let us choose di = d with d given by the
user and solving G(Φ,M) = 0 provides a d + 1th-order approximation. The point is to deal with
solutions involving discontinuities. In this case the CPD map can not be constant and requires a
low degree where the solution is rough and high degree where the solution is smooth. Since we do
not know the regularity of the solution, M also turns to be an unknown of the problem and one
search a solution (Φ?,M?) such that G(Φ?,M?) = 0.

2.4 Steady-state iterative solvers

Even dealing with linear equations, the problem is nonlinear due to the choice of M. Therefore
iterative procedures have to be designed to produce a succession of approximations (Φk,Mk)
that converge to a satisfying solution (Φ?,M?). Furthermore, if the system is nonlinear (Burgers
equation, Euler system), an extra inner loop is required to solve the nonlinear problem for a fixed
CPD map.

One way to proceed requires a solver which is problem dependent Φ → G(Φ,M) such that,
being given a CPD mapMk and an initial guess Φk, the (non)linear ((N)L) solver computes Φk+1

solution of G(Φ,Mk) = 0. Then a new CPD map Mk+1 is provided on the base of the data of
Φk+1 (evaluation ofMk+1 will be explained in the next section) and the iterative process goes one
until we reach to a limit CPD map, i.e. Mk =Mk+1 since in that case, we have Φk = Φk+1 and
the steady-state approximation is obtained.

A second strategy consists in reformulating equation (2) by introducing a fake time dependency

∂φ̃

∂t
+
∂F(φ̃)

∂x
= S (5)
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with prescribed initial and boundary conditions. The time parameter t is devoted to tend to infinity
providing the steady state solution as φ = limt→∞ φ̃(·, t) . Equation (5) is solved using an explicit
high accurate finite volume code as presented in [17] and we tag the solver as “Time Marching
solver” (TM).

3 The MOOD method

The dynamical determination of the CPD mapM is of paramount importance to ensure stability,
robustness, and accuracy where appropriate. In the case of a discontinuous solution, high-order
schemes produce numerical instabilities resulting into non-physical oscillations in the vicinity of
the shocks. Consequently, in the presence of a discontinuous solution or a steep gradient, the cell
polynomial degree di must drop to zero to avoid spurious oscillations whereas the maximal user-
defined degree dmax can be employed in the zones where the solution is regular enough, ensuring
de facto a local high accuracy of the approximate solution.

3.1 MOOD loop

We dynamical determine the CPD map using a a posteriori MOOD-like approach developed in [13,
16,17]. Namely, for a given stage k and its associated mapMk, a candidate solution Φk is computed.
We then perform a detection procedure to identify which cells present numerical artifacts that
would demand more dissipation. For those cells only we reduce the polynomial degree following a
cascade, i.e. a decreasing sequence of polynomial degrees, keeping the good cell polynomial degrees
alike. This determines the updated CPD mapMk+1 which is further employed to compute the new
candidate solution Φk+1. We depict in Fig. 2 the MOOD loop embedding the solver that provides
solution Φk for a fixed CPD map Mk.

MΦ
k k

Φ
k+1

M
k+1

M
k+1

M
k

=

MΦ
0 0

k=0

Initial guess

POLYNOMIAL

RECONSTRUCTION

OUT

E
L

S
E

if

k
 =

 k
+

1 SOLVE

DETECTIONDECREMENTING

IN

MOOD loop

SOLVER

EXIT with solution

MΦ
* *

Fig. 2 Sketch of the MOOD loop. Starting from an initial guess Φ0 and an initial CPD map M0 (k = 0), the
solver furnishes a candidate solution Φk+1 which is tested (detection) and subsequent decrementing of the polynomial
degree map may occur giving a new CPD mapMk+1. If so, or if convergence is not reached then another iterate is
performed.
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3.2 Detection chain

The detection chain is the procedure by which the algorithm analyses a candidate solution. For
each cell Ki, we apply the chain to assess if the value is considered as acceptable (with respect
to the neighbor cells). If not, the solution needs to be recomputed with more dissipation locally
by reducing the degree of the polynomial reconstruction associated to Ki. The detection chain
is composed of a succession of elementary detector procedures that focus on a specific potential
problem of the solution. We list in the following the elementary detectors used in the applications.

3.2.1 Basic detectors

The basic detectors are designed to check if the candidate solution is physically admissible and to
prevent the appearance of oscillations characterized by the creation of local extrema.

Physical Admissible Detector (PAD) The candidate solution satisfies the PAD condition on cell
Ki if φki is a physical state associated with the solved system of PDEs. Such a condition is crucial
for the Euler system and it consists of the positivity of the density and pressure values.

Extrema Detector (ED) One states that the candidate solution does not present an extremum at
cell Ki if

min(φki−1, φ
k
i+1) ≤ φki ≤ max(φki−1, φ

k
i+1).

When such a condition is violated, we have detected a potential oscillation of the discrete candidate
solution.

3.2.2 Relaxation detectors

New extrema may derive from local oscillations associated to the Gibbs phenomenon, but may also
correspond to smooth physical extrema. Another false detection situation arises when the solution
is locally constant and extremely small perturbations due to the real number IEEE format may
be interpreted as oscillations. Relaxation detectors aim at eliminating non-critical situations that
have been falsely detected by ED. To this end, we compute an approximation of the local curvature
setting

Ci(Φ) = φ̂
′′

i (x; 2), i = 1, . . . , I.

We then define the following local curvature indicators

χi,m = min(Ci−1, Ci, Ci+1), χi,M = max(Ci−1, Ci, Ci+1), i = 2, . . . , I − 1,

where we omit dependency on the vector Φ for the sake of simplicity. Notice that one can have
|χi,m| > |χi,M|.

Plateau Detector (PD) Let εPD be a given tolerance parameter. Then, di is not modified if

max(|χi,m|, |χi,M|) ≤ εPD.

Such condition means that the local curvature is so small that the numerical solution is locally
linear and therefore the degree of the polynomial reconstruction should not be altered.
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check

Cell to

bad

valid valid valid

bad bad

continue continue continuecontinue

PAD LODED PD SD

ACCEPT

RECOMPUTE

Fig. 3 Chain of detectors used to check if a cell value is valid and accepted, or, if it is discarded and needs to be
recomputed after reduction of the local cell polynomial degree. Each of the top/bottom arrow permits to exit the
chain prematurely. PAD: Physical Admissible Detector, ED: Extrema Detector, PD: Plateau Detector, LOD: Local
Oscillation Detector, SD: Smoothness Detector.

Local Oscillation Detector (LOD) We must reduce the cell polynomial degree di if one has

χi,mχi,M ≤ 0,

for any new extrema. This condition detects a local oscillation due to the variation of the curvature
signs.

Smoothness Detector (SD) This detector determines if the minimum and the maximum curvatures
are close enough with respect to the threshold parameter, meaning that the numerical solution is
considered locally smooth. Let εSD be a given tolerance parameter. The numerical solution is
considered locally smooth if

1 ≥ min(|χi,m|, |χi,M|)
max(|χi,m|, |χi,M|)

≥ 1− εSD.

If that is the case we do not modify the polynomial degree, otherwise the degree should be reduced.

In Fig. 3 we present a sketch of the chain of detectors proposed in this work. Note that some
detectors may be removed depending on the system of equations (for instance the PAD may not
make sense in the case of linear advection of a scalar). Note also that the PD permits to validate
and accept a cell which is on a “plateau” and not wasting time trying to compute and compare
zero valued curvatures in the subsequent detectors of the chain. The top/bottom arrows permit to
exit the chain sooner if possible. In this work we fix εPD = h and εSD = 1/2.

3.3 The cascade

The last ingredient of a MOOD approach is to choose the cascade of polynomial degrees that the
algorithm will successively try. A costly but systematic cascade consists in decrementing the poly-
nomial degree by one from dmax to 0. A less expensive choice consists in ignoring some intermediate
stages. For example, dmax = 5→ 2→ 0 is a less computational demanding cascade since we ignore
the intermediate stages 4, 3, and 1.
In this work we mainly use the cascade dmax = 5→ 2→ (1→)0 or dmax = 1→ 0.

4 Advection problem

We first consider the scalar linear convective steady-state problem

d

dx

(
u(x)φ(x)

)
= S(x), x ∈ Ω, (6)
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where u(x) is a given velocity function. We also prescribe boundary function φD, which is just rele-
vant at the boundary interfaces with inflow velocities. Since u or S may present some irregularities,
the solution is not necessarily smooth enough to perform all the polynomial reconstructions with
dmax hence the CPD map will be adapted with respect to the numerical approximation.

4.1 Numerical flux

The numerical flux F(φi+ 1
2 ,−

, φi+ 1
2 ,+

;xi+ 1
2
) is the classical upwind one. For a given CPD map M

and noticing that the problem G(Φ,M) = 0 is affine, we use a GMRES procedure to nullify the
residual and tagged this first strategy as “Linear solver” (L).

Next, the chain detector associated to this linear equation follows the chain depicted in Fig. 4
where all detectors have been defined in the previous section. We consider only two cascades:

check

Cell to
valid valid valid

bad bad

continue continue continue

LODED PD SD

ACCEPT

RECOMPUTE

Fig. 4 Chain of detectors used for Linear and Burgers’ equation to check if a cell value is valid and accepted, or, if
it is discarded and need to be recomputed after reduction of the local cell polynomial degree. ED: Extrema Detector,
PD: Plateau Detector, LOD: Local Oscillation Detector, SD: Smoothness Detector.

dmax = 1 → 0, or dmax = 5 → 2 → 1 → 0, that is second-order and sixth-order accurate schemes.
The first-order accurate scheme with dmax = 0 is also employed for comparison purposes.

4.2 Numerical experiments

The L1 and L∞ errors calculated for the whole mesh are given by

E1 =

I∑
i=1

|φi − φexi |h, E∞ =
I

max
i=1
|φi − φexi |. (7)

Note that the previous norms explicitely depend on the numerical solution Φ and mesh size I,
as E1(Φ, I) and E∞(Φ, I). Next we define the rate of convergence between two solutions/meshes
(Φk, Ik), for k = 1, 2 where I1 < I2 as

Oα ≡ Oα ((Φ1, I1); (Φ2, I2)) =
| logEα(Φ1, I1)/Eα(Φ2, I2)|

| log I1/I2|
, α = 1,∞. (8)

In order to derive an exact solution, we systematicaly choose φ(x) = 1/u(x), where u(x) is
non-zero on the considered computational domain Ω = [0; 1]. This leads to u(x)φ(x) = 1, hence(
u(x)φ(x)

)′
= 0, for all x in Ω and S(x) = 0. Consequently, an exact solution associated to a given

velocity field u is easily accessible. Moreover boundary conditions are given by φ 1
2 ,−

= 1/u(0) and

φI+ 1
2 ,+

= 1/u(1), where u is known.

We experiment two algorithms: the linear (L) and the time-marching (TM) solvers which both
employ a MOOD like approach to stabilize the computation. The methodology of testing is based
on the following test cases with the previous manufactured solutions.
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Fig. 5 Exact solutions (black) and associate velocities (red) for the linear equation on Ω = [0; 1] — φ(x) = 1/u(x)
— Left: regular solution u(x) = 2 sin(2πx) + 3 — Right: irregular solution u(x) = x + 2, if x < 1/2 or u(x) =
50(x− 1/2) + 5/2, otherwise.

Regular solution (see Fig. 5-left). With this test, one tries to retrieve a regular steady-state
solution of (6) with high accuracy. The unlimited version of the schemes are used to determine
the maximal possible accuracy, then the MOOD-stabilized version of the schemes are employed
and it is shown that optimal order of accuracy is attained. In other words we expect that no
bad cells should be detected, leading de facto to a strict equivalence between unlimited and a
posteriori MOOD schemes.

Irregular solution (see Fig. 5-right). An irregular solution is simulated to prove the oscillatory
character of the unlimited schemes, which, however is cured by the MOOD approach leading
to a stable, yet more accurate, solution than the one provided by the first-order scheme.

4.2.1 Regular solution

Let us consider the case where u(x) = 2 sin(2πx) + 3 (see Fig. 5-left for a plot of the solution
and the velocity) and the Linear and Time Marching schemes employ polynomial reconstructions
P0, P1, and P5. That is to say first-, second-, and sixth-order accurate schemes. The boundary
conditions are set to 1/3 at x = 0 and an outflow condition at x = 1. In Table 1 we present
E1 the errors in L1 and E∞ the L∞ norms, the rates of convergence O1 and O∞ for L and
TM schemes. Successively refined meshes made of I = 70 to 200 cells are considered. We also
report the number of bad cells detected by the chain detector during the whole simulation (column
labeled with the tag “B”). From the numbers in this table we observe that the optimal convergence
rates are systematicaly attained. Moreover no bad cells are detected meaning that the a posteriori
MOOD scheme would produce exactly the same results. As a consequence, because no bad cells
were detected, a a posteriori MOOD L or TM scheme also reaches the optimal order of accuracy
associated to its dmax for this smooth test case.

4.2.2 Irregular solution

In this second test we consider velocity

u(x) =

{
x+ 2, if x ∈ [0; 1/2],

50(x− 1/2) + 5/2, if x ∈ [1/2; 1],

leading to the solution depicted in Fig. 5 on right panel. This solution is continuous but not regular
at location x = 1/2. The boundary conditions are set to 1/2 at x = 0 and an outflow condition at
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Table 1 Errors and convergence rates for a regular solution of linear equation for the Linear (L) and Time-Marching
(TM) schemes. B represents the number of bad cells detected by MOOD loop.

Linear scheme Time Marching scheme

I E1 O1 E∞ O∞ B E1 O1 E∞ O∞ B

P0

70 1.1E−02 — 2.8E−02 — 0 1.1E−02 — 2.8E−02 — 0
80 1.0E−02 1.0 2.4E−02 1.0 0 1.0E−02 1.0 2.4E−02 1.0 0
90 8.9E−03 1.0 2.2E−02 1.0 0 8.9E−03 1.0 2.2E−02 1.0 0
100 8.0E−03 1.0 2.0E−02 1.0 0 8.0E−03 1.0 2.0E−02 1.0 0
200 4.0E−03 1.0 9.8E−03 1.0 0 4.0E−03 1.0 9.8E−03 1.0 0

P1

70 2.9E−04 — 1.4E−03 — 0 2.9E−04 — 1.4E−03 — 0
80 2.2E−04 2.1 1.1E−03 2.0 0 2.2E−04 2.1 1.1E−03 2.0 0
90 1.7E−04 2.1 8.2E−04 2.1 0 1.7E−04 2.1 8.2E−04 2.1 0
100 1.4E−04 2.1 6.7E−04 2.0 0 1.4E−04 2.1 6.7E−04 2.0 0
200 3.4E−05 2.0 1.7E−04 2.0 0 3.4E−05 2.0 1.7E−04 2.0 0

P5

70 3.7E−07 — 3.2E−06 — 0 3.6E−07 — 3.1E−06 — 0
80 1.7E−07 6.0 1.4E−06 6.1 0 1.6E−07 5.8 1.4E−06 6.2 0
90 8.2E−08 6.1 7.4E−07 5.6 0 8.2E−08 5.9 7.0E−07 5.7 0
100 4.3E−08 6.0 3.9E−07 6.1 0 4.5E−08 5.7 3.6E−07 6.2 0
200 6.9E−10 6.0 6.4E−09 5.9 0 8.1E−10 5.8 5.6E−09 6.0 0

x = 1. The first set of simulations considers unlimited schemes and the results are presented in top
panel of Fig. 6. Note that the L and TM solvers are producing the very same solutions, therefore
we skip TM results (only the number of iterations, and, consequently the CPU time is larger for
the TM scheme).

From the figures we deduce that the schemes are capturing the correct solution but with spurious
oscillations for the high accurate schemes. On the same figure, on bottom panels, we plot the a
posteriori MOOD limited solutions when the following cascades are employed: P0 (left panel, red
color), P1 → P0 (middle panel, blue color) and P5 → P2 → P1 → P0 (right panel, green color).
We can observe that the numerical solutions are now exempt from spurious oscillations in the
vicinity of the irregularity. There, cells are updated with lower order schemes employing either P1

or P0 reconstructions. Note that the color of the cell corresponds to its cell polynomial degree.
Consequently we observe that for the cascade P1 → P0 two cells are updated with first order of
accuracy, while, for the nominaly sixth-order accurate scheme two extra cells are updated with P1

reconstructions. As such the convergence rate can not exceed a first order.
Nonetheless, it may still be of interest to employ high accurate schemes. Indeed, in Fig. 7, we

present the logscale of the cell error for the first-, second-, and sixth-order accurate L schemes
and three meshes I = 80, 240, and 320 cells. (The results for the TM scheme are equivalent.) As
expected the schemes behave alike close to the discontinuity. There, the high accurate schemes are
not more accurate than first order as expected. Contrarily, in the smooth parts of the flow, the high
accurate schemes perform with an appreciable high accuracy. Note that, even if the discontinuity
is located on one point, its effect on the numerical error spreads along a cone, the width of which
is larger with the nominal accuracy of the scheme. Away from this cone the error produced by a
high accurate scheme dramaticaly drops towards machine precision.

5 The Burgers’ equation

Burger’s equation is an attractive benchmark equation since we are dealing with a very simple
scalar non-linear model which may provide discontinuous solutions. The equation writes

1

2

dφ2

dx
= S(x, φ), x ∈ Ω, (9)
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where S(x, φ) is a nonlinear source depending on the position and the solution.

5.1 Numerical flux

The numerical flux F(φi+ 1
2 ,−

, φi+ 1
2 ,+

;xi+ 1
2
) is the classical Rusanov one and the chain detector

associated to the Burgers’ equation follows the chain depicted in Fig. 4 for the linear case. For
Burgers equation we consider only two cascades: dmax = 1 → 0, dmax = 5 → 2 → 1 → 0, that is
second-order and sixth-order accurate schemes. Moreover the first-order accurate scheme is carried
out for comparison purposes.
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5.2 Numerical experiments

In this section we again experiment with the two algorithms, the nonlinear (NL) and the explicit
time-marching (TM) solvers which both employ a MOOD like approach to stabilize the computa-
tion. The methodology of testing is based on simulating a regular solution (see Fig. 8-left) and an
irregular one (see Fig. 8-right) following the experiments carried out for the linear equation. We
adopt the same error norms and rate of convergence as for the linear equation, refer to (7)-(8).

5.2.1 Regular solution

In order to test the implementation of the numerical method we manufacture an exact solution.
Let us consider the regular function

φ(x) = sin (3πx) expx+ 2 (10)

and formaly compute the source term

S(x) =
1

2

dφ2

dx2
= (sin (3πx) expx+ 2) (3π cos (3πx) expx+ sin (3πx)) . (11)

We set the domain to be Ω = [0, 1] and compute the boundary conditions according to the exact
solution, namely φ 1

2 ,−
= φ(0) and φI+ 1

2 ,+
= φ(1).

In Table 2 we present E1 the errors in L1 and E∞ the L∞ norms, and the rates of convergence
O1 and O∞ for the NL and TM schemes employing P0, P1, and P5 polynomial reconstructions.
Successively refined meshes made of 70, 80, 90, and 100 cells are considered. We also report the
number of bad cells detected by the chain detector during the whole simulation with value B the
number of bad cells detected by the MOOD loop.

From the table we can conclude that both solvers provide the optimal expected order of ac-
curacy. The NL solver converges in about 10 outer iterations for all simulation with a residual at
machine tolerance. The TM scheme demands from 4000 to 5000 iterations to converge at machine
tolerance for P0 and P1 polynomial degrees due to its explicit nature while the P5 reconstructions
demands about 8000 to 10000 iterations to reduce the residual around 5× 10−5, hence explaining
the non optimal order of convergence. We illustrate this behavior in Fig. 9 where we plot on the
bottom panels the evolution of the residuals as a function of the nonlinear solver iterations (NL
scheme) or as a function of the time cycles (TM scheme). From this plot we can observe that
the evolution of the residual for the TM scheme presents a plateau at 0.1 during few thousands
of cycles before dropping to another plateau at ∼ 10−6. For all other simulations, that is with
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Table 2 Errors and convergence rates for a regular solution of Burgers’ equation for the Nonlinear (NL) and
Time-Marching (TM) schemes. B represents the number of bad cells detected by MOOD loop.

Nonlinear scheme Time Marching scheme

I E1 O1 E∞ O∞ B E1 O1 E∞ O∞ B

P0

70 7.8E−02 — 1.9E−01 — 0 7.8E−02 — 1.9E−01 — 0
80 6.8E−02 1.1 1.6E−01 1.0 0 6.8E−02 1.1 1.6E−01 1.0 0
90 6.0E−02 1.0 1.5E−01 1.0 0 6.0E−02 1.0 1.5E−01 1.0 0
100 5.4E−02 1.0 1.3E−01 1.0 0 5.4E−02 1.0 1.3E−01 1.0 0

P1

70 1.8E−03 — 7.4E−03 — 0 1.8E−03 — 7.4E−03 — 0
80 1.4E−03 2.0 5.4E−03 2.4 0 1.4E−03 2.0 5.4E−03 2.4 0
90 1.1E−03 2.0 4.1E−03 2.3 0 1.1E−03 2.0 4.1E−03 2.3 0
100 8.6E−04 2.0 3.2E−03 2.3 0 8.6E−04 2.0 3.2E−03 2.3 0

P5

70 1.1E−07 — 8.8E−07 — 0 1.8E−07 — 6.2E−07 — 0
80 4.9E−08 6.0 3.8E−07 6.2 0 1.0E−07 4.3 3.6E−07 4.0 0
90 2.4E−08 6.1 1.8E−07 6.2 0 5.7E−08 4.8 2.1E−07 4.7 0
100 1.2E−08 6.2 1.1E−07 5.2 0 3.3E−08 5.1 1.2E−07 5.0 0

different dmax = 0, 1, the same plateau at 0.1 is systematicaly observed, but the dropping reaches
machine precision.

On top panel of Fig. 9 we plot the solution provided by both schemes for 100 cells and P5

reconstructions. As expected, even if machine precision has not been reached for the TM scheme,
the solution is visually indistinguishible from the NL converged one. Note that the solution is
visually improved when the mesh is refined and/or the maximal polynomial degree dmax increases
(not shown). Also we have observed that the MOOD detector does not flag any cell during the
whole simulation, B = 0 systematically in Table 2, proving that a limiting procedure is not needed.
As such MOOD limited TM or NL schemes provide exactly the same results as the unlimited ones.
Consequently we do not show these tables and curves.

We have also tested other regular solutions such as polynominals, exponentials, etc., and the
same conclusions hold. Consequently we also omit those results.

5.2.2 Irregular solution

Next, following [11] for instance, we will consider a discontinuous solution. Considering the source
term S(x) = −π cos(πx)φ(x) and the boundary conditions φ 1

2 ,−
= 1 and φI+ 1

2 ,+
= −0.1, we can

determine the exact solution with shock

φ(x) =

{
1− sin(πx), if x ∈ [0;xs],

−0.1− sin(πx), if x ∈ [xs; 1],
(12)

where xs is the location of the shock. Two shocks are possible — xs = 0.1486 and xs = 0.8514 —
but only the first shock is stable for small perturbation. Exact solution is imposed at the boundaries
of the domain. We plot in Fig. 8 the solutions (black line) along with the source term (red line).

Unlimited solvers. Let us first observe the behavior of unlimited TM and NL solvers. We represent
in Fig. 10 the solutions produced by the NL and TM solvers when dmax = 0, 1, and 5 and I = 70
cells are considered. We observe that all simulations are capable of capturing the shock wave but
only the schemes without reconstructions (P0) produce monotone solutions. Any high accurate
unlimited scheme, P1, P5 for TM or NL solvers does produce parasitical oscillations in the vicinity
of the shock as expected. The same behavior is observed when the mesh is refined up to I = 100
cells. This behavior is confirmed by the number of bad cells detected which is of the order 5 for
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P1 and P5 simulations, and, of course 0 for P0 simulation. All simulations have converged with
machine precision residual apart from the TM P5 simulations for which the residual saturates at
about 10−4.

Both solvers, NL and TM, are performing alike in terms of accuracy and, from now on we will
only use the NL solver to pursue our test campaign.

2nd order limited MOOD NL solver. In this paragraph we only test the 2nd order limited MOOD
NL solver, that is, with the cascade dmax = 1→ 0. The MOOD loop does produce several candidate
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Fig. 11 Simulation of irregular solution of Burgers equation for the Nonlinear (NL) scheme with a posteriori
MOOD limiting — 120 cells and P1 → P0 polynomial reconstructions — Top: numerical solutions for the first 4
iterations. Bottom: last iteration and valid solution.

solutions, each at convergence of the residual and an associated cell polynomial degree map that
we plot in Fig. 11. As observed, for I = 120 cells, five MOOD iterations are needed to produce a
valid solution in terms of the detection citeria. In red we emphasize the bad cells, updated with a
first order accurate scheme, while in blue the cells updated with maximal 2nd order accuracy.

6th order limited MOOD NL solver. Next we test the 6th order limited MOOD NL solver with the
cascade dmax = 5→ 2→ 0. The MOOD loop produces several candidate solutions. Each candidate
solution is obtained at convergence of the residual, and, has an associated cell polynomial degree
map that we plot in Fig. 12 (colours). For I = 120 cells, ten MOOD iterations are needed to produce
a valid solution in terms of the detection citeria. In red we emphasize the bad cells, updated with
a first order accurate scheme, while in purple the cells updated with maximal 3rd order accuracy
and in green the cells updated with the 6th order scheme. We present nine iterations in the figure,
the final solution being plotted on the larger bottom panel. We observe that the bad cells are
located in the vicinity of the shock wave as expected. About five bad cells for the final iterations
need limiting. Note that the first MOOD iteration produces a solution which is not correct, but,
when used as initial guess for the second iteration, it permits to capture the correct solution in the
smooth parts. Then the other iterations fix the shock region.

Mesh refinement for the limited MOOD NL solver. Next, in Fig. 13, top panels, we present the
behavior of the 6th order scheme when the mesh is refined (80, 120, 240, and 320 cells). The number
of MOOD iterations is respectively 8, 10, 10, and 13. From this figure we can clearly observe that no
spurious oscillations are present, while they were produced in previous iterations, and the number
of corrected cells in the vicinity of the shock is about 4. For comparison purposes we have added
on bottom panels the results obtained with a different cascade adding P1 reconstructions, i.e.
P5 → P2 → P1 → P0. The results are almost equivalent even if some cells are updated with P1

reconstructions. The number of iterations are respectively 5, 12, 15, and 17.
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Fig. 12 Simulation of irregular solution of Burgers equation for the Nonlinear (NL) scheme with a posteriori
MOOD limiting — 120 cells and P5 → P2 → P0 polynomial reconstructions — Top: numerical solutions for 8
iterations. Bottom: last iteration and valid solution.
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Fig. 13 Simulation of irregular solution of Burgers equation for the Nonlinear (NL) scheme with a posteriori
MOOD limiting — Top: P5 → P2 → P0 polynomial reconstructions — Bottom: P5 → P2 → P1 → P0 polynomial
reconstructions — From left to right: last and valid solutions for 80, 120, 240, and 320 cells.
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Fig. 14 Simulation of irregular solution of Burgers equation for the Nonlinear (NL) scheme with a posteriori
MOOD limiting — Top: cascade P1 → P0, Bottom: cascade P5 → P2 → P0 — From left to right: logscale of the
errors for 120, 240, and 320 cells for the first iteration (red), intermediate iterations (green/purple), and the last
iteration (blue).

Last, we display in Fig. 14 the absolute value of the difference between the exact and the
approximate solution for each cell for three of the previous meshes in logscale and for cascades
P1 → P0 and P5 → P2 → P0. Due to the discontinuous nature of the solution we can not expect
more than first-order accuracy. Nonetheless we observe that the errors visually decrease with the
iteration number and the mesh size. The maximal error is appropriately located in the vicinity of
the shock wave, but the smooth parts of the flow are genuinely better approximated for the last
iterations.

The a posteriori MOOD limiting is preserving the non-oscillatory character of the numerical
solution for the highest order schemes. We observe that the procedure demands several iterations
to reach a steady cell polynomial degree map. Nevertheless, once found, this map ensures the
correctness of the solution by having the cell polynomial degrees reduced in the vicinity of the
shock wave but nowhere else. We remind that the MOOD limiting de facto produces a (very) good
guess. A very last step of the algorithm consists in using this guess and reseting the cell polynomial
degree map to its maximal value.

In the case of the time-marching solver the MOOD procedure has more difficulties to converge
as a “blinking” phenomena occurs due to the non-differential character of the method with respect
to the CPD map (we jump from one degree to another one). Some pairs of cells alternatively
drop then increase their degree so that the cell polynomial degree map can never attain a steady
situation which is mandatory for convergence. This drawback could be solved (unsatisfactory) by
setting a maximal number of iterations after which the map is kept fixed. Doing so the scheme
converges at the price of fixing such a sensitive parameter.

6 The Euler system

We seek V ≡ V (x) = (ρ, u, p)T ≡ (ρ(x), u(x), p(x))T , the vector of state variables density, velocity,
and pressure, solution of the steady-state one-dimensional Euler equations with source terms given
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by

dF (V )

dx
= S, in Ω, (13)

where the flux vector is given by F (V ) = (ρu, ρu2 + p, u(E + p))T and the regular source vector
term is given by S ≡ S(x) = (dD

dx ,
dF
dx ,

dH
dx )T ≡ (dD

dx (x), dFdx (x), dHdx (x))T . Total energy E, specific
internal energy e, and sound-speed a are expressed as

E =
1

2
ρu2 + ρe, e =

p

ρ(γ − 1)
, a =

√
γp

ρ
, (14)

respectively, where γ > 1 is the ratio of specific heat. System (13) is completed with Dirichlet
boundary conditions

V (xL) = VL ≡ (ρL, uL, pL)T and V (xR) = VR ≡ (ρR, uR, pR)T ,

depending on the flow regime at xL and xR. On the other hand, U = (ρ, ρu,E)T stands for the
the conservative variables vector.

We deduce the algebraic system to be solved

ρu = D, (15)

ρu2 + p = F, (16)

u(E + p) = H, (17)

1

2
ρu2 +

p

γ − 1
= E. (18)

Notice that D, F , and H depend on additional constants we shall fix with the boundary conditions.

6.1 Solution for the Euler system

We aim to derive exact solutions for system (15)-(18) that we shall employ as manufactured
solutions in the numerical section. First of all, functions F and H have to respect some restrictions

to provide a physical solution. From (15) and (16), we deduce that p = F − D2

ρ . The pressure and
density non-negativity yields that

F ≥ 0, ρ ≥ D2

F
. (19)

On the other hand from relations (17) and (14), we deduce that

p =
γ − 1

γ

(
H

u
− 1

2
ρu2
)
.

The non-negativity of the pressure and (15) implies

p =
γ − 1

γ

(
H

u
− 1

2
ρu2
)
≥ 0 =⇒ Hu ≥ 1

2
ρu4 =⇒ DH ≥ 1

2

D4

ρ2
. (20)
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6.1.1 Supercritical and subcritical solutions

Eliminating p and u from system (15)-(18) provides an implicit relation between D, F , H, and ρ
given by

F =
γ + 1

2γ

D2

ρ
+
γ − 1

γ

ρH

D
, (21)

such that ρ is a positive solution.

Equation (21) is rewritten as a quadratic polynomial in ρ of the form

(2(γ − 1)H) ρ2 − (2γDF ) ρ+ (γ + 1)D3 = 0. (22)

Existence of solution demands that

4D2(γ2F 2 − 2(γ − 1)(γ + 1)DH) ≥ 0 =⇒ DH

F 2
≤ γ2

2(γ2 − 1)
(23)

leading to an additional restriction. From restrictions (19), (20), and (23) we define the admissible
space

Λ =
{

(D,F,H), F ≥ 0, DH ≥ 0, γ2F 2 − 2(γ2 − 1)DH ≥ 0
}
. (24)

Assuming (D,F,H) ∈ Λ, the supersonic solution ρ̂sup(D,F,H) and the subsonic solution ρ̂sub(D,F,H)
correspond to the solution of (22) and are given by

ρ̂sup(D,F,H) =
γF −

√
γ2F 2 − 2(γ2 − 1)DH

2(γ − 1)HD
,

and

ρ̂sub(D,F,H) =
γF +

√
γ2F 2 − 2(γ2 − 1)DH

2(γ − 1)HD
,

respectively.

Remark 2 Solutions of the steady-state problem are constituted of branches of the supersonic
and subsonic solutions with possible jump transitions. Consequently, since boundary conditions
on the left and right sides have to satisfy the same relations (15)-(18), they also correspond to
subcritical or subcritical states.

Remark 3 We also deduce an important relation between the total energy and the density. Indeed,
eliminating ρu2 between (16) and (18) and mutipling (17) by ρ, we obtain

F − p
2

+
p

γ − 1
= E, E + p =

H

D
ρ.

Eliminating the pressure between the two last equations gives an affine relation between the total
energy and the density

E =
γ − 1

γ + 1
F +

3− γ
γ + 1

H

D
ρ. (25)
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6.1.2 Shock condition

We now analyse the condition to provide an admissible entropic steady-state shock.

Theorem 4 Assume that a steady-state solution admits an entropic stationary genuinely nonlin-
ear shock at point xc. Then there only exist two admissible situations:

(a) the solution is supercritical on the left and subcritical on the right with D > 0 and H > 0;
(b) the solution is subcritical on the left and supercritical on the right with D < 0 and H < 0.

Proof. We present the proof for the case D > 0 and H > 0, i.e. the velocity is positive. A steady-
state genuinely nonlinear shock requires that the flow regime on the left and righ sides of xc are
differents. We state that a subcritical state on the left and supercritical state on the right is not
possible. Indeed, a supercritical flow on the right side u > 0 means that three simple waves go
out of the shock while only two simple waves enter on the left side (u and u + c). Consequently
the shock is not entropic in the Lax sense. On the contrary, if the supercritical state lies on the
left side, three simple waves enter in the shock while only two waves go out in accordance to the
entropy principle. The entropic steady-state shock is then associated to the simple wave u− c. �

One difficulty when dealing with steady-state solution is that the shock can take place at any
point xc of the domain. The transition location is not contained in system (15)-(18) and requires
an additional restriction. To this end, we consider the steady-state situation as the limit case of the
non-stationary problem solution Ũ = (ρ̃, ρ̃u, Ẽ)T in conservative variables with initial conditions
ρ0, ρ0u0, and E0. We prescribe the same Dirichlet boundary conditions as in the steady-state
situation.

Theorem 5 Assume that density ρ̃(x, t), the mass flow ρ̃u(x, t), and the total energy Ẽ are con-
tinuous at the boundary for t > 0, that is, there are no jumps between the boundary conditions
and the solution at xL and xR (as a limit from the inner domain) for ρ, ρu, and E. Then for any
time t > 0, we have ∫ xR

xL

φ̃(x, t) dx =

∫ xR

xL

φ0(x) dx, φ̃ = ρ̃, ρ̃u, Ẽ.

Moreover, if the solution converges to a steady-state solution in time, denoted by ρ, u, and E, then
we have∫ xR

xL

ρ0(x) dx =

∫ xR

xL

ρ(x) dx,

∫ xR

xL

ρ0(x)u0(x) dx =

∫ xR

xL

D(x) dx,

∫ xR

xL

E0(x) dx =

∫ xR

xL

E(x) dx.

Proof. Integrating the non-stationary mass conservation equation on the whole domain provides∫ xR

xL

(
∂ρ̃

∂t
+
∂(ρ̃u)

∂x

)
dx =

∫ xR

xL

dD

dx
dx.

Integration by part yields

d

dt

∫ xR

xL

ρ̃dx+ (ρ̃u)|x=xR
− (ρ̃u)|x=xL

= D(xR)−D(xL).

Since the boundary conditions satisfy the algebric relation (15) with no discontinuity, we deduce
that (ρ̃u)|x=xL

= D(xL), (ρ̃u)|x=xR
= D(xR) and so

d

dt

∫ xR

xL

ρ̃dx = 0.
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Integration in time over the interval [0, t] gives∫ xR

xL

ρ̃(x, t) dx =

∫ xR

xL

ρ0(x) dx.

Similar operations provide the two other relations.

Assuming that the unstationary solution converges to a limit steady-state solution, we get∫ xR

xL

ρ(x) dx =

∫ xR

xL

ρ0(x) dx,∫ xR

xL

ρ(x)u(x) dx =

∫ xR

xL

ρ0(x)u0(x) dx =

∫ xR

xL

D(x) dx,∫ xR

xL

E(x) dx =

∫ xR

xL

E0(x) dx. �

Remark 6 The second relation is automatically satisfied if one assumes that for ρ0 > 0 given, we
define u0 such that ρ0u0 = D. In the following, we assume that the velocity u0 satisfies relation
(15). In the same way, we assume that E0 is compute with the relation (25) and provides

E0 =
γ − 1

γ + 1
F +

3− γ
γ + 1

H

D
ρ0. (26)

Corollary 7 Assume that the steady-state solution is the limit of the unstationary problem with a
unique discontinuity at point xc. Moreover, assume that the initial density ρ0 satisfies the condition∫ xR

xL

ρsup(x) ≤
∫ xR

xL

ρ0(x) dx ≤
∫ xR

xL

ρsub(x). (27)

Assume at last that there exists C ∈ R such that on the whole domain

H(x)

D(x)
= C. (28)

Then we have only two situations.

(a) Case D > 0, H > 0.
The steady-state solution is constituted of the supercritical solution in [xL, xc[ and the subcrit-
ical solution on ]xc, xR] with a shock located at the unique point xc such that∫ xc

xL

ρsup(x) dx+

∫ xR

xc

ρsub(x) dx =

∫ xR

xL

ρ0(x) dx. (29)

(b) Case D < 0, H < 0.
The steady-state solution is constituted of the subcritical solution in [xL, xc[ and the supercrit-
ical solution on ]xc, xR] with a shock located at the unique point xc such that∫ xc

xL

ρsub(x) dx+

∫ xR

xc

ρsup(x) dx =

∫ xR

xL

ρ0(x) dx. (30)
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Proof. We only consider the first case. Steady-state solutions have to satisfy relation (21), hence
are composed of subsonic and supersonic branches we join with discontinuities. Under the assump-
tions given in Theorem 5, mass conservation reads∫ xR

xL

ρ(x) dx =

∫ xR

xL

ρ0(x) dx.

From Theorem 4, the entropic shock requires that the supercritical solution lies on the left side of
the shock situated at point xc. Hence ρ = ρsup for x < xc while ρ = ρsub for x > xc leading to
relation (29). Let

Asup =

∫ xR

xL

ρsup(x) dx, Asub =

∫ xR

xL

ρsub(x) dx.

Since ρsup < ρsub, function

xc →
∫ xc

xL

ρsup(x) dx+

∫ xR

xc

ρsub(x) dx ∈ [Asup, Asub]

is strictly increasing with respect to xc. Consequently condition (27) is mandatory to provide
existence and uniqueness of xc such that (29) holds. Relation (30) is obtained in a similar way.

The last point we have to check is that we must respect the additional constraint for the total
energy. Since the initial total energy is defined by (26), we have, using relation (25)∫ xR

xL

E(x) dx =

∫ xR

xL

(γ − 1

γ + 1
F +

3− γ
γ + 1

H

D
ρ
)

dx

=
γ − 1

γ + 1

∫ xR

xL

F +
3− γ
γ + 1

C

∫ xR

xL

ρ dx

=
γ − 1

γ + 1

∫ xR

xL

F +
3− γ
γ + 1

C

∫ xR

xL

ρ0 dx

=

∫ xR

xL

E0(x) dx.

Consequently, the additional constraint is automatically fulfilled. �

Remark 8 Notice that the corollary requires that H
D is constant otherwise, the compatibility does

not hold. In that case, continuity of the density and total energy at the boundary no longer holds.

Corollary 7 suggests the additional condition to fix the shock position by imposing the total mass.
Therefore, the system (13) will be augmented with the relation∫ xR

xL

ρ(x) dx = A, (31)

for a given A ∈ [Asup, Asub].

Remark 9 Since the boundary conditions have to correspond to one of the two states (subsonic or
supersonic), we have 4 possible situations. Attending to Theorem 4 and Corollary 7, and assuming
D > 0 and H > 0, we have

(a) supersonic states on both boundary points — the solution for this case will be the regular
function ρsup;

(b) subsonic states on both boundary points — the solution for this case will be the regular function
ρsub;
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(c) supersonic state on the left boundary and subsonic state on the right boundary point — one
shock sharing the supersonic solution situated on the left and the subsonic one on the righ;

(d) subsonic state on the left boundary point and supersonic state on the right boundary point
— the case is impossible since no entropic shock transition is possible from a subcritical to a
supercritical branch.

6.2 High accurate numerical scheme

The high-accurate scheme is derived from the one proposed for Burgers’ equation. Namely, one has
to define the numerical flux to plug into the residual formulation. Let us denote by U = (Ui)i=1,...,I

the 3×I matrix containing the approximations of the mean-values for ρ, ρu, and E while Uk stands
for the data associated to stage k. The numerical flux F(U−,U+;x) is the HLL one proposed in
[19] where U− and U+ represent the left and right states at interface x.

For a given CPD map Mk, we introduce the nonlinear operator

U ∈ R3×I → G(U ,Mk) ∈ R3×I

and we seek for Uk+1 such that G(Uk+1,Mk) = 0. Again we consider either a nonlinear solver
(NL) and the time-marching (TM) technique to solve the set of equations. Notice that for the NL
case, an additional condition is considered to fix the shock position when dealing with two different
regimes on the left and right boundaries. For the TM method, the initial condition for density will
fix the position of the shock.

The chain detector associated to the Euler equation follows the chain depicted in Fig. 15. Here
the PAD box checks the positivity of density and pressure. The MOOD procedure is adapted to this

check

Cell to

bad

valid valid valid

bad bad

continue continue continuecontinue

PAD LODED PD SD

ACCEPT

RECOMPUTE

Fig. 15 Chain of detectors used for Euler system of equations to check if a cell value is valid and accepted, or, if it is
discarded and need to be recomputed after reduction of the local cell polynomial degree. PAD: Physical Admissible
Detector, ED: Extrema Detector, PD: Plateau Detector, LOD: Local Oscillation Detector, SD: Smoothness Detector.

system of equations. Because we consider only one polynomial degree per cell for each component
of U i.e. density, mass flow and total energy, we determine only one polynomial degree map by only
testing the density variable for the ED, LOD, and SD detection criteria. Consistently with Burgers’
equation experiments we consider only two cascades: dmax = 1 → 0 or dmax = 5 → 2 → 1 → 0.
The MOOD loop is escaped if Mk+1 =Mk.

6.3 Numerical experiments

To assess the validity of the method, we consider the following data. The domain is given by
xL = 0, xR = 1 and we take D(x) = 1, F (x) = 0.027x + 0.6137, and H(x) = 0.375. The first two
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conditions for the admissible space (24) are trivially satisfied. The third condition, DH
F 2 ≤ γ2

2(γ2−1)
is also satisfied since

max
x∈[0,1]

DH

F 2
= max
x∈[0,1]

0.375

(0.027x+ 0.6137)2
= 0.9957 ≤ γ2

2(γ2 − 1)
= 1.0208.

The expressions for the supersonic solution and the subsonic solution are given by

ρsup(x) = 0.126x− 3.3333
√

1.96(0.027x+ 0.6137)2 − 0.72 + 2.8639, (32)

ρsub(x) = 0.126x+ 3.3333
√

1.96(0.027x+ 0.6137)2 − 0.72 + 2.8639, (33)

respectively and depicted in Fig. 16.
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Fig. 16 Plots of the supersonic and subsonic branches ρsup (red) and ρsub (blue) from (32), and the exact solution
of the irregular density (shock located at x = 0.6) employed in this paper (black).

As mentioned in Remark 9, only three situations have to be considered. We have two regular
situations if considering supersonic or subsonic states on both boundary points. The case where
we prescribe subsonic state at the left boundary point and supersonic state at the right does not
provide an entropic solution and must be discarded. At last, prescribing supersonic state on the
left boundary point and subsonic state on the right boundary produces a solution with a shock
wave located at xc. We adopt the same error norms and rate of convergence as for the linear and
Burgers equations, refer to (7)-(8), and only monitor the error for the density variable.

6.3.1 Regular case

We first try to retrieve a regular steady-state solution of (13) with high accuracy. The unlimited
versions of the schemes are used by canceled the MOOD stage to determine the maximal possible
accuracy. Then the MOOD-stabilized version of the scheme is employed and it is shown that
optimal order of accuracy is attained. We consider the regular supersonic/supersonic case which
corresponds to the bottom-red curve of Fig. 16 and regular meshes made of I = 25, 50, 75, and 100
cells and report in Table 3 the errors when the first-, second-, and sixth- order accurate MOOD
NL and explicit TM schemes are used. Note that no bad cells are detected for this test case which
implies that the unlimited or a posteriori MOOD limited schemes behave strictly equivalently. In
the same way, the simulations for the regular solution on the subsonic/subsonic branch lead to the
same conclusions and we omit those tables.
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Table 3 Errors and convergence rates for the numerical density — Regular solution of Euler system for the
Nonlinear (NL) and Time-Marching (TM) schemes. B represents the number of bad cells detected by MOOD loop.

Nonlinear scheme Time Marching scheme

I E1 O1 E∞ O∞ B E1 O1 E∞ O∞ B

P0

25 7.8E−03 — 1.3E−02 — 0 7.8E−02 — 1.9E−01 — 0
50 3.9E−03 1.0 6.6E−03 1.0 0 6.8E−02 1.1 1.6E−01 1.0 0
75 2.6E−03 1.0 4.4E−03 1.0 0 6.0E−02 1.0 1.5E−01 1.0 0
100 2.0E−03 1.0 3.3E−03 1.0 0 5.4E−02 1.0 1.3E−01 1.0 0

P1

25 9.0E−05 — 9.3E−04 — 0 1.8E−03 — 7.4E−03 — 0
50 1.9E−05 2.3 2.6E−04 1.8 0 1.4E−03 2.0 5.4E−03 2.4 0
75 7.7E−06 2.2 1.2E−04 1.9 0 1.1E−03 2.0 4.1E−03 2.3 0
100 4.1E−06 2.2 6.9E−05 1.9 0 8.6E−04 2.0 3.2E−03 2.3 0

P5

25 1.5E−07 — 3.4E−06 — 0 1.8E−07 — 6.2E−07 — 0
50 2.9E−09 5.7 1.3E−07 4.7 0 1.0E−07 4.3 3.6E−07 4.0 0
75 2.4E−10 6.1 1.6E−08 5.2 0 5.7E−08 4.8 2.1E−07 4.7 0
100 4.0E−11 6.3 3.4E−09 5.4 0 3.3E−08 5.1 1.2E−07 5.0 0

6.3.2 Discontinuous case

A solution with a steady shock wave is simulated to prove that the oscillatory character of the
unlimited scheme is cured by the MOOD approach leading to a stable and more accurate solution
than the first order scheme. To fix the position at xc = 0.6, we set

A =

∫ xR

xL

ρ0(x) dx =

∫ xR

xL

(
(ρL − ρR)(1− x)0.4550 + ρR

)
dx = 2.8975.

The exact solution for the density variable is depicted in Fig. 16. We enforce the position by using
the additional restriction (31). Notice that the restriction is not necessary for the time marching
method if we use ρ0 and u0 = D/ρ0 as initial conditions. p0 derives from relation (16) and E0 is
deduced from relation (18).

Parachute and first-order accurate schemes In Fig. 17 we present the numerical solutions for den-
sity variable and I = 25, 50, and 100 cells for the NL scheme with polynomial degree 0. From this
plot we observe a convergence towards the exact solution when the mesh size increases without
any spurious oscillation. This validates the robust and least accurate scheme that is used in the
following as the parachute scheme of the cascade. On the right panel of Fig. 17 are displayed the
logscale of the cell error for meshes of size I = 50, 75, 100, and 200. Because the scheme is nominaly
of first order of accuracy we observe on the smooth regions that the error decreases by a factor
2 from the 50 to 100 sizes. Obviously the maximal error is located in the vicinity of the shock
and do not decrease when the mesh is refined, only the “numerical region of influence” reduces in
size, nonetheless the number of cells in this region remains constant, about 4. The same study is
carried out for the first-order accurate scheme with cascade P1 → P0 and the results are reported
in Fig. 18. The same conclusions applies and the error in the smooth parts of the flow are about
two orders of magnitude smaller.

a posteriori MOOD NL schemes. Next we test the nominaly sixth-, second-, and first-order accu-
rate NL scheme, that is, schemes using a maximal polynomial degree of 5, 1, and 0 and a MOOD
loop to drop the degree to 0 if needed. The cascade of degrees are P5 → P2 → P1 → P0 for the
sixth-order scheme and P1 → P0 for the second-order one. The numerical densities obtained for
75 cells are shown in Fig. 19 and the cells are colored according to their polynomial degree. The
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Fig. 17 Numerical solutions for density variable for the NL scheme a posteriori limited with maximal degree 0 —
Left panel: density for I = 25, 50, and 100 cells — Right panel: error for each cell for I = 50, 75, 100, and 200 cells.
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Fig. 18 Numerical solutions for density variablefor the NL scheme a posteriori limited with maximal degree 1 —
Left panel: density for I = 25, 50 and 100 cells — Right panel: error for each cell for I = 50, 75, 100 and 200 cells.

first-order accurate scheme needs one iteration while the second- and sixth-order accurate schemes
demands two and nine respectively. We conclude that all the schemes produce a non-oscillatory
solution, capture the correct shock location, employ the most accurate reconstructions far from the
shock region, and decrement the polynomial degree of only few cells in the vicinity of the shock
wave. We observe that the first iteration of any high-accurate scheme presents spurious oscilla-
tions. Then, the MOOD loop further decreases the polynomial degree up to capturing a monotone
solution. The exact same behavior is observed when the mesh size is increased or decreased, so we
skip these figures. The sixth-order accurate scheme can reproduce the sharp shock wave obtained
by the second-order accurate scheme, by restricting its spread over one cell, while the first-order
accurate scheme demands about three cells.

An interesting behavior can be observed when the cascade skips the P1 reconstruction, that
is when the choices are restricted to P5 → P2 → P0. Formaly the scheme is still nominally sixth
order accurate. The results are displayed in Fig. 20 and we observe that the spread of the shock
is ressembling the first-order scheme from top-panel of Fig. 19. We conclude that it is rather
important to let the numerical method to choose P1 reconstructions when appropriate.

Next, we present in Fig. 21 the logscale of the cell error produced by the three schemes (first-,
second-, and sixth-order accurate) for 75, 100, and 200 cells at convergence, that is for the final
MOOD iteration. The left panel results are associated to the right-most curves of Fig. 20. We
observe that the highest the maximal polynomial degree, the lower the error in smooth regions,
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Fig. 19 Numerical solutions for density variable and I = 75 cells for the NL scheme a posteriori limited with
maximal degree 0 (top line), 1 (middle line), and 5 with cascade P5 → P2 → P1 → P0 (bottom line) — Left to right
panels: iteration 1, intermediate, and final. The right-most panel of each line is the last iteration of the MOOD loop.
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Fig. 20 Numerical solutions for density variable and I = 75 cells for the NL scheme a posteriori limited with
maximal degree 5 with cascade P5 → P2 → P0 — Left to right panels: iteration 1, intermediate, and final. The
right-most panel of each line is the last iteration of the MOOD loop.

i.e. away from the shock wave. We notice a “characteristics error value” of ∆xk, where k = 1,
2, and 6 for the three schemes, for the error produced in the smooth regions when enough cells
are employed. Obvisouly, the maximal error is systematicaly reached in the vicinity of the shock
wave, and, there, all schemes behave alike. However, moving away of 5 cells from this region, the
high-accurate schemes are performing much better, and, the influence of the presence of a shock
follows some sort of a “light cone”. The width of this cone does not seem to be related to the
number of iterations needed to reach the steady-state solution.
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Fig. 21 Numerical errors for density variable and I = 75, 100, and 200 cells for the NL scheme a posteriori limited
with maximal degree 0 (red), 1 (blue), and 5 (green). Only the errors at final iteration are shown. The 75 cell results
correspond to the right-most curves of Fig. 19.
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Fig. 22 Numerical solutions for density variablefor the NL scheme a posteriori limited with maximal degree 5
with cascade P5 → P2 → P1 → P0 — Left panel: density for I = 25, 50, and 100 cells — Right panel: error for each
cell for I = 50, 75, 100, and 200 cells.

Mesh convergence for the sixth-order NL scheme. In Fig. 22 we present the numerical solutions for
density variable and I = 25, 50, and 100 cells for the NL scheme a posteriori limited with maximal
degree 5 and an a posteriori MOOD correction loop. From this plot we observe a convergence
towards the exact solution when the mesh size increases and no spurious oscillations are observed.
This shows that the nominaly sixth-order accurate numerical method is able to converge towards
the exact solution. Obvisouly the convergence rate is still limited to the first-order one but, as
previously seen, away from the shock wave, better accuracy can be expected. On the right panel
of Fig. 22 are displayed the logscale of the cell error for meshes of size I = 50, 75, 100, and 200.
Because the scheme is nominally of sixth order of accuracy we observe on the smooth region to
the left away from the cone of influence, a drop of error of a factor ∼ 100 when the mesh size is
doubled (from 50 to 100 and 100 to 200). This roughly corresponds to 26, the factor expected for
a sixth-order accurate scheme.

7 Conclusion and perspectives

A new strategy to construct high accurate finite volume numerical schemes has been presented
to solve the one-dimensional steady-state linear, Burgers, and Euler equations. High accuracy is
gained via polynomial reconstructions whereas, in the presence of steep gradients or shock waves,
the numerical schemes are stabilized with an a posteriori MOOD strategy. The technique consists
in detecting bad cells on a candidate solution, and further recomputing the solution using lower
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degree polynomial reconstructions in the vicinity of the bad cells. Doing so we define: (1) a chain
of detectors which determines if a cell is valid or not, (2) a cascade of polynomial degree, that is a
list of ordered polynomial degrees that one wishes to try, and (3) a parachute scheme that always
produces a valid solution. The chain detector is based on classical physical admissibility, local
smoothness, plateau, and extrema detection. The parachute scheme is always the first-order finite
volume scheme. The cascades are of two kinds, a nominaly second-order accurate one P1 → P0,
and a sixth-order accurate one P5 → P2(→ P1)→ P0.

To perform the simulations, two solvers are considered: a non-linear implicit solver and a
so-called explicit pseudo-time marching solver. The one-dimensional scalar linear equation, the
Burgers scalar non-linear equation, and the one-dimensional Euler system with source terms were
simulated. For each system of equation, several exact regular and irregular solutions are derived.
The unknows of these problems are not only the cell-centered finite volume values of the solution,
but also the cell polynomial degree (CPD) map.

In the vicinity of a discontinuous solution, a low-order scheme must be employed (i.e. for
instance using a polynomial of degree 0) to avoid Gibbs phenomenon, whereas the maximal degree
is expected to produce a valid and acurate solution on smooth parts of the flow. An iterative
MOOD loop is used to compute a candidate solution associated to its CPD map, then the chain
detection checks for bad cells and modifies the CPD map accordingly. A new candidate solution is
then recomputed and again checked for possible detected troubled cells.

Numerical experiments show that the optimal order of accuracy is systematicaly reached for
smooth solutions. For non-smooth solutions, the a posteriori MOOD stabilization leads to non-
oscillatory solutions while maintaining reasonable accuracy on the smooth parts of the flow. As
expected the troubled cells are mostly located in the vicinity of discontinuities. We have numerically
observed that the stabilization technique performs for a nominaly second-order scheme but also
for the sixth-order one without visible spurious effects.

The goal of the study is to present a proof of concept that the a posteriori MOOD stabilization
strategy can be applied to the steady-state case. In the near future we plan to extend this approach
to multi-dimensional situations taking into account classical boundary conditions (inflow, outflow,
wall, symetry) and to efficient solvers. The results for the one-dimensional geometry indicate that
the method performs well and motivate to tackle the more complex situations involving two- and
also three-dimensional geometries.
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