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Abstract

We study discretizations of polynomial processes using finite state Markov processes
satisfying suitable moment matching conditions. The states of these Markov processes
together with their transition probabilities can be interpreted as Markov cubature rules.
The polynomial property allows us to study such rules using algebraic techniques. Markov
cubature rules aid the tractability of path-dependent tasks such as American option
pricing in models where the underlying factors are polynomial processes.
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1 Introduction

Polynomial processes have recently gained popularity thanks to their tractability and flexibil-
ity. For instance, they have been applied in financial market models for interest rates (Delbaen
and Shirakawa, 2002; Zhou, 2003; Filipović et al., 2017), credit risk (Ackerer and Filipović,
2016), variance swaps (Filipović et al., 2016), stochastic volatility (Ackerer et al., 2018),
stochastic portfolio theory (Cuchiero, 2019), life insurance liabilities (Biagini and Zhang,
2016), energy prices (Filipović et al., 2018), and foreign exchange rates (De Jong et al., 2001;
Larsen and Sørensen, 2007). Polynomial processes, as considered by Cuchiero et al. (2012)
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and Filipović and Larsson (2016, 2017), are stochastic processes with the property that the
conditional expectation of a polynomial is a polynomial of the same or lower degree. This
implies that conditional moments can be computed efficiently and accurately, which can be
exploited to construct tractable models. Despite these advantages, the tractability of poly-
nomial processes deteriorates as one faces path-dependent tasks such as American option
pricing or computation of path-dependent functionals.

In this paper, we develop a method for tackling such problems. We approximate a given
polynomial process by a finite state Markov process that matches moments up to a given
order. We call such a finite state process a Markov cubature rule because the states of the
process together with their transition probabilities can be interpreted as cubature rules for the
law of the original process at different times. Markov cubature rules facilitate the implemen-
tation of polynomial models by simplifying costly computational tasks such as Monte-Carlo
simulation and pricing of path-dependent and American options.

The polynomial property allows us to study the existence of Markov cubature rules using
algebraic techniques. Contrary to the classical cubature problem, we look for cubature rules
that use the same set of cubature points at all times, as this is desirable for numerical
applications like the calculation of American option prices in finance. Additionally, the
moments to be matched depend on the cubature points chosen. In continuous time, the
exact moment matching condition turns out to be too stringent as we explain in Section 2.1.
Instead, we find approximate Markov cubature rules by solving a quadratic programming
problem. This quadratic programming problem arises naturally from our first main result,
Theorem 3.2, which gives an algebraic and geometric characterization of continuous time
Markov cubature rules. While a systematic analysis of computational cost, accuracy, and
convergence falls outside the scope of the present paper, we provide numerical examples
which indicate that the approximate Markov cubature rules work well in practice. In discrete
time, our second main result, Theorem 5.2, yields existence of Markov cubature rules on an
appropriately chosen time grid, under suitable assumptions involving the asymptotic moments
of the given polynomial process. The existence of asymptotic moments is a crucial hypothesis
and lies at the core of the proof of this theorem.

Approximations by discretization of stochastic models using finite state Markov processes
appear regularly in the numerical methods literature. In finance, these techniques have
been used in order to price and hedge exotic and American options via finite state Markov
chain and binomial tree approximations; see e.g. Gruber and Schweizer (2006); Kifer (2006);
Bayraktar et al. (2018). As explained by Kushner (1984) and Kushner and Dupuis (2013),
these approximations are linked to numerical analysis techniques such as the finite difference
method. It is also relevant to mention quantization methods that address the optimal choice
of the approximation grid on a finite time domain and in higher dimensional state spaces.
Quantization has been employed to price American options by Bally et al. (2005), and in the
context of polynomial processes by Callegaro et al. (2017). In all these cases, discretization
happens at two levels: the discretization of the time domain, as it is performed in simula-
tion algorithms, and the discretization of the space domain. We add to this literature by
developing a cubature based discretization of stochastic models.

Cubature methods play a crucial role in numerous numerical algorithms. For instance,
classical cubature techniques have been applied within the context of filtering in Arasaratnam
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and Haykin (2009). Additionally, the cubature formulas on Wiener space, developed by Lyons
and Victoir (2004), have been used in multiple applications: in filtering problems by Lee and
Lyons (2015), to calculate greeks of financial options by Teichmann (2006), and to numer-
ically approximate solutions of Stochastic Differential Equations by Bayer and Teichmann
(2008) and Doersek et al. (2013), Backward Stochastic Differential Equations (BSDEs) by
Crisan and Manolarakis (2012, 2014), and Forward-Backward Stochastic Differential Equa-
tions (FBSDEs) by Chaudru de Raynal and Garcia Trillos (2015). Cubature methods ease
the calculation of conditional expectations, which are at the core of the above mentioned
numerical problems. Contrary to the techniques mentioned in the previous paragraph where
discretization is performed in the time and space domains, cubature on Wiener space dis-
cretizes path space directly. These cubature rules extend Tchakaloff’s cubature theorem, as
studied by Putinar (1997) and Bayer and Teichmann (2006), to the Wiener space of con-
tinuous paths. Our Markov cubature of polynomial processes provides a practically feasible
variant of cubature of stochastic processes, as it is based on elementary matrix exponential
calculus.

Our paper is organized as follows. In Section 2 we define Markov cubature rules and
provide some basic facts about polynomial processes. In particular, in Section 2.1 we explain
why the notion of Markov cubature rule is too stringent in continuous time. In Section 3, we
give algebraic and geometric characterizations of continuous time Markov cubature rules for
polynomial processes; see Theorem 3.2. Motivated by this result we introduce, in Section 4,
a notion of approximate continuous time Markov cubature rule, and describe the quadratic
programming problem through which it is obtained. The performance of these approximate
Markov cubature rules is illustrated through numerical examples. Specifically, in Sections 4.1
and 4.2 we use them to price American options in the Black–Scholes model and in a Jacobi
model of exchange rates. In Section 5, we study existence of discrete time Markov cubature
rules; see Theorem 5.2. In Section 6 we discuss another possible relaxation of the Markov
cubature problem by allowing negative weights. However, as we then illustrate, these nega-
tive weights are not suitable for numerical computations. The conclusions of our study are
summarized in Section 7. Appendix A presents results on asymptotic moments of polynomial
processes needed throughout the paper, and Appendix B contains the proofs of all results in
the main text.

We adopt the following notation: We write R+ for the set of nonnegative real numbers,
R++ for the set of positive real numbers, and N for the set of positive natural numbers.
For N,M ∈ N, RN×M denotes the vector space of N × M matrices, and by convention
RN = RN×1 consists of column vectors. Given d ∈ N and a set E ⊆ Rd, we say that q is
a polynomial on E if there exists a polynomial p on Rd such that q = p|E . Its degree is
defined by deg q = min{deg p : q = p|E}. We let Pol(E) and Poln(E) denote the algebra of
polynomials on E and the vector space of polynomials on E of degree less than or equal to
n, respectively. For N ∈ N and a set A ⊆ RN we write conv(A) for the convex hull of A.

2 Setup and overview

Fix a state space E ⊆ Rd. We consider a càdlàg adapted process X defined on a filtered
measurable space (Ω,F ,Ft), along with a family of probability measures Px, x ∈ E, such
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that X is an E-valued Markov processes under each Px, starting at X0 = x. We assume
that X admits an extended generator G, whose domain contains all polynomials. That is, we
assume

p(Xt)−
∫ t

0
Gp(Xs) ds is a Px-local martingale

for every x ∈ E and every p ∈ Pol(Rd). This implies in particular that X is a semimartingale
under each Px. Moreover, the positive maximum principle holds, in the sense that for any
p ∈ Pol(Rd),

if p(x) = max
E

p for some x ∈ E, then Gp(x) ≤ 0.1 (2.1)

In particular, Gp = 0 on E whenever p = 0 on E, which implies that G is well-defined as an
operator on Pol(E).2

2.1 Markov cubature rules

Our goal is to construct a time-homogeneous Markov process with finite state space that
approximates the process X. We base our approximation on moment conditions across initial
states and times. With this goal is mind we make the following definition.

Definition 2.1. We say that a time-homogeneous Markov process Y with finite state space
EY = {x1, . . . , xM} ⊆ E defines an n-Markov cubature rule for X on T ⊆ [0,∞) if

Exi [p(Xt)] = Exi [p(Yt)] (2.2)

holds for all i = 1, . . . ,M , t ∈ T, and p ∈ Poln(E).

Remark 2.2. In condition (2.2), Exi [p(Xt)] denotes the expectation with respect to the proba-
bility measure Pxi while Exi [p(Yt)] denotes the expectation with respect to the probability mea-
sure PYxi associated to the finite state Markov process Y . We adopt this convention throughout
the paper.

Suppose that Y is a n-Markov cubature rule for X on T. The moment-matching condi-
tion (2.2) can be rewritten as

Exi [p(Xt)] =
M∑
j=1

p(xj)PYxi(Yt = xj) (2.3)

for all i = 1, . . . ,M , t ∈ T, and p ∈ Poln(E). Hence, for any i = 1, . . . ,M and t ∈ T, the
points x1, . . . , xM together with the transition probabilities PYxi(Yt = x1), . . . ,PYxi(Yt = xM )
define an n-cubature rule for the law of Xt with respect to Pxi . We highlight that for Markov

1Indeed, suppose p(x) = maxE p, and assume for contradiction Gp(x) = δ > 0. Define Mt = p(Xt) −
p(x) −

∫ t
0
Gp(Xs)ds and τ = inf{t : Gp(Xt) ≤ δ/2}. Then, under Px, Mτ is a nonpositive local martingale

with Mτ
0 = 0, hence Mτ = 0. On the other hand, Mt∧τ ≤ −

∫ t∧τ
0
Gp(Xs)ds ≤ −(δ/2)(t ∧ τ), which is strictly

negative for t > 0. This contradiction proves Gp(x) ≤ 0.
2Indeed, if p ∈ Pol(Rd) is a representative of q = p|E ∈ Pol(E), we define Gq = Gp|E , which is independent

of the choice of representative p.
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cubature rules, contrary to classical cubature rules, the matched moments depend on the
cubature points, and the same points are used for all times t ∈ T. In addition, as stated
in Theorem 2.7 below, the properties of the weights inherited by the Markov property of Y
guarantee time-consistency features of these cubature rules for polynomial processes. This
time-consistency is desirable to conduct path-dependent computations as the ones presented
in the numerical examples in Section 4.

We will also consider relaxed versions of n-Markov cubature rules. Indeed, it turns out
that the notion of an n-Markov cubature rule is too stringent in general. To see why, suppose
X is given as the solution of an SDE of the form

dXt = µ(Xt) dt+ σ(Xt) dWt.

Under linear growth conditions on the coefficients, one has the estimate

Ex[‖Xt − x‖4] ≤ κ(1 + ‖x‖4) t2, 0 ≤ t ≤ 1,

for all x ∈ E, where κ is a constant that only depends on µ and σ; see Problem 5.3.15
in Karatzas and Shreve (1991). If Y is a 4-Markov cubature rule for X on [0,∞), this estimate
carries over to Y , which in conjunction with the time-homogeneous Markov property yields

Ex[‖Yt − Ys‖4] = Ex
[
EYs [‖Yt−s − Y0‖4]

]
≤ κ

(
1 + max

i=1,...,M
‖xi‖4

)
(t− s)2

for any x ∈ EY and any s ≤ t with t − s ≤ 1. By Kolmogorov’s continuity lemma, Y then
has a version with continuous paths, which forces it to be constant. Consequently, in the
generic case, the diffusion X will not admit any non-trivial n-Markov cubature rule on [0,∞),
unless n < 4. Moreover, by a similar argument, unless X exhibits jumps, it is impossible to
construct a non-trivial Markov process Y with countable state space such that (2.2), with
n ≥ 4, holds for all initial conditions. This is a rather severe restriction.

One way to avoid this obstruction is to relax the exact moment matching condition (2.2)
and allow a process Y whose moments approximate the moments of the original process
X. This approach is explained in Section 4. Another possibility is to replace [0,∞) with a
discrete time set T, in which case one remains within the framework of Definition 2.1. This
approach is pursued in Section 5. A different relaxation is obtained if negative weights in the
cubature rule are allowed. This approach is explained in Section 6.

We will study these relaxations of the Markov cubature problem for polynomial processes.
This will allow us to employ algebraic considerations in our study. We give the basic properties
of polynomial processes in the next subsection.

2.2 Polynomial processes

Definition 2.3. The operator G is called polynomial if GPoln(E) ⊆ Poln(E) for all n ∈ N.
In this case X is called a polynomial process.

Remark 2.4. In the present paper, G is assumed to be the extended generator of some given
Markov process X. We are not concerned with the question of existence of such a process
given a candidate operator G. This issue is discussed in Filipović and Larsson (2016) for
polynomial diffusions.
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If X is a polynomial process, then all mixed moments of Xt are polynomial functions
of the initial state. More precisely, fix n and denote by Nn the dimension of Poln(E). Let
h1, . . . , hNn be a basis for Poln(E) and define

Hn(x) = (h1(x), . . . , hNn(x))>. (2.4)

If G is polynomial, one has

GHn(x) = G>nHn(x) (2.5)

for some matrix Gn ∈ RNn×Nn , where G acts componentwise on Hn. From this one obtains
the following lemma.

Lemma 2.5. Assume X is a polynomial process. Then for any polynomial p ∈ Poln(E) with
coordinate representation ~p ∈ RNn, that is, p(x) = Hn(x)>~p, one has

Ex[p(Xt)] = Hn(x)>etGn~p. (2.6)

Thus the left-hand side is a polynomial in Poln(E) with coordinate representation etGn~p.

Remark 2.6. As a consequence of Lemma 2.5, Markov cubature rules for polynomial pro-
cesses are polynomial processes as well when T contains an interval around zero.

We say that the time set T is stable under differences, if t − s ∈ T for all s, t ∈ T such
that s ≤ t. This property turns out to be useful for path-dependent computations involving
polynomial processes, as we illustrate numerically in Section 4. The reason is that stability
under differences leads to the following time consistency result, which states that not only
the one-dimensional marginals satisfy moment matching, but higher dimensional marginals
do as well.

Theorem 2.7. Suppose that X is a polynomial process and that T is stable under differences.
Let Y be a time-homogeneous Markov process with state space EY = {x1, . . . , xM} ⊆ E. Then
the process Y is an n-Markov cubature rule for X on T if and only if given t1, . . . , tl ∈ T
such that 0 ≤ t1 ≤ · · · ≤ tl and polynomials p1, . . . , pl ∈ Poln(E) with

∏
i pi ∈ Poln(E), we

have

Ex

[
l∏

i=1

pi(Xti)

]
= Ex

[
l∏

i=1

pi(Yti)

]
(2.7)

for all x ∈ EY .

Remark 2.8. Assume that Y is an n-Markov cubature rule for a polynomial process X on
T. Set T = {

∑l
i=1 ti : ti ∈ T, l ∈ N}. The time set T is the smallest subset of [0,∞) that is

stable under sums and contains T. The argument in the proof of Theorem 2.7 shows that Y
is also an n-Markov cubature rule for X on T.
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3 Continuous time Markov cubature for polynomial processes

We assume hereafter that X is a polynomial process, and fix n ∈ N. We will study charac-
terizations of continuous time n-Markov cubatures rules for X, namely n-Markov cubature
rules on [0,∞). Even though, as explained in Section 2.1, these cubature rules turn out to
be too stringent in general, the results of this section motivate and facilitate the study of
relaxed notions of Markov cubature in Sections 4, 5 and 6.

We adopt the notation of Section 2 but for simplicity we often omit the index n. Given
points x1, . . . , xM ∈ E we denote by H = H(x1, . . . , xM ) the M ×Nn-matrix whose elements
are

Hij = hj(xi) (3.1)

for all i = 1, . . . ,M and j = 1, . . . , Nn. Notice that the i-th row of the matrix H ∈ RM×Nn
is equal to Hn(xi)

> as defined in (2.4).

By (2.5) and (2.6) we have

Ghj(xi) = (HG)ij , (3.2)

Exi [hj(Xt)] = (H exp(tG))ij (3.3)

for all i = 1, . . . ,M and j = 1, . . . , Nn. Equations (3.2)-(3.3) establish a relationship between
the analytical calculation of the generator and semigroup acting on the function space of
polynomials, and an algebraic calculation involving matrix multiplication.

Theorem 3.2 below is the main characterization theorem for the existence of a continuous
time n-Markov rule. Before stating the theorem we recall that a transition rate matrix is a
matrix whose rows add up to zero and off-diagonal elements are nonnegative. We also need
the following definition.

Definition 3.1. We say that a vector v ∈ Rm points into conv({v1, . . . , vn}) ⊂ Rm at vi if
there exist (Li,j)j 6=i ∈ Rm−1

+ such that

v =
∑
j 6=i

Li,j(vj − vi).

Theorem 3.2. Given a set of points EY = {x1, . . . , xM} ⊆ E the following statements are
equivalent.

(i) There exists a continuous time n-Markov cubature rule Y with state space EY ; see
Definition 2.1.

(ii) Given H as in (3.1), HG = LH for some transition rate matrix L ∈ RM×M .

(iii) Given H as in (3.1), HG = LH for some matrix L ∈ RM×M with nonnegative off-
diagonal elements.

(iv) For each x ∈ EY the vector GHn(x) points into conv({Hn(x1), . . . ,Hn(xM )}) at the
point Hn(x); see Definition 3.1.
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If in addition M = Nn and the matrix H is invertible, there exists a Lagrange basis of
Poln(E), β̃ = (h̃1, . . . , h̃Nn), i.e. a basis with h̃j(xi) = δij, and the above statements are
equivalent to:

(v) Gh̃j(xi) ≥ 0 for i 6= j.

Moreover, when condition (ii) is satisfied, L can be taken as the transition rate matrix of the
n-Markov cubature rule Y .

For the proof of Theorem 3.2 we will need the following lemma.

Lemma 3.3. Suppose that L is a matrix such that HG = LH. Then the rows of L add up
to zero.

As the proof shows, the conditions in Theorem 3.2 imply that if Y is an n-Markov cu-
bature rule then, for each x ∈ EY , the flow (Ex[Hn(Xt)])t≥0 never leaves the convex set
conv({Hn(x1), . . . ,Hn(xM )}). Indeed, notice that (exp(tL))t≥0 is a transition semigroup and
for all i = 1, . . . ,M we have

Exi [Hn(Xt)] = exp(tG>)Hn(xi) = i-th column of H> exp(tL>).

The points {Hn(x1), . . . ,Hn(xM )} lie on the moment curve Hn(E) and correspond to the
rows of H. Their convex hull represents all the possible initial distributions of a Markov
chain with state space {Hn(x1), . . . ,Hn(xM )}.

4 Approximate Markov cubature

According to Theorem 3.2, in order to find a continuous n-Markov cubature rule for a poly-
nomial process X one has to find points x1, . . . , xM ∈ E and a transition rate matrix L such
that

HG = LH,

where H is the matrix defined by (3.1) and G = Gn is the matrix of the generator of
X restricted to Poln(E) with respect to the basis h1, . . . , hNn ; see (2.5). As explained in
Section 2.1, it is actually impossible to solve this problem for polynomial diffusions if n ≥ 4.
In view of this restriction we instead consider the optimization problem

min{‖HG− LH‖2 : L is a transition rate matrix}, (4.1)

where the Frobenius norm is used, and where we have fixed the generator matrix G and the
points x1, . . . , xM , hence the matrix H.3 The constraint that L be a transition rate matrix
can be written

Lij ≥ 0, i 6= j, (4.2)

L1M = 0, (4.3)

3Recall that the Frobenius norm of a matrix A is ‖A‖ =
√

Tr(AA>).
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where 1M ∈ RM is a vector of ones. Through vectorization we can write this optimization
problem as a quadratic programming problem. Indeed, we have

‖HG− LH‖2 = ‖HG‖2 + vec(L)>(HH> ⊗ IdM )vec(L)− 2vec(L)>vec(HGH>),

where vec( · ) is the vectorization operator, ⊗ the Kronecker product, and IdM the M -
dimensional identity matrix. In addition, the constrains (4.2)-(4.3) on L correspond to

z>vec(eie
>
j ) ≥ 0, i 6= j (4.4)

z>vec(ei1M
>) = 0, i = 1, . . . ,M (4.5)

where z = vec(L) and the ei’s are the canonical basis vectors in RM . Therefore the mini-
mization problem (4.1) can be translated into the quadratic programming problem

min{z>(HH> ⊗ IdM )z − 2z>vec(HGH>) : z ∈ Rm×m satisfies (4.4)-(4.5)}. (4.6)

We will illustrate the performance of this type of finite state Markov approximation through
numerical examples.

4.1 American option pricing in the Black–Scholes model

We consider a Black–Scholes model where the financial asset’s return process X is a Brownian
motion with drift. More precisely, X is supposed to have risk-neutral dynamics of the form

Xt = X0 +

(
r − σ2

2

)
t+ σWt

where r is the spot interest rate, σ is the volatility of the returns and W is a one-dimensional
Brownian motion. In this model, the price at time t = 0 of an American put option with
maturity T , strike price K, and initial log-price X0 + x is

PAx = sup{E[e−rτ max(K − ex+Xτ , 0)] : 0 ≤ τ ≤ T a stopping time}. (4.7)

To approximate the value PAx we proceed as follows. We fix equidistant points x1, . . . , xM on
the truncated support of the process X −X0 given by

I = [(r − σ2/2)T − 3σ
√
T , (r − σ2/2)T + 3σ

√
T ].

We further fix n ∈ N and h1(x) = 1, h2(x) = x, . . . , hn+1(x) = xn the standard monomial
basis of Poln(R). Let L be the solution of the quadratic programming problem (4.6) and
define Y as the finite state process on EY = {x1, . . . , xM} with transition rate matrix L. For
Ntime ∈ N let T = {t0 = 0, t1 . . . , tNtime = T} be a uniform partition of the time horizon
[0, T ]. We define P̃A = (P̃Ax1 , . . . , P̃

A
xM

)> by

P̃Axi = sup{Exi [e−rτ max(K − eX0+Yτ , 0)] : 0 ≤ τ ≤ T a stopping time with values in T }

for i = 1, . . . ,M . Since Y is a finite state Markov process and we are only considering finitely
many exercise times in T , the vector P̃A can be computed through a very simple backward
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induction algorithm. This computation resembles the calculation of an American option
price in a binomial tree approximation of the Black–Scholes model; see Cox et al. (1979).
Explicitly, we have P̃A = V0 where

VtNtime = max(K − E, 0)

Vti−1 = max(max(K − E, 0), exp(−r∆) exp(∆L)Vti), i = 1, . . . , Ntime

(4.8)

with E = exp(X0)(exp(x1), . . . , exp(xM ))> ∈ RM and ∆ = T/Ntime. Observe that this
computation gives simultaneously all the values P̃Axi for i = 1, . . . ,M . For any initial value
x ∈ I we can simply perform an interpolation in order to approximate PAx . Moreover, we have
that PAx /e

x is the price of an American put option with strike Ke−x and initial underlying
log-price X0. Hence, the same approximate cubature rule can be used to price American
options for several initial values of the log-price and for different strikes. This observation
remains valid in any stochastic volatility model framework as long as the dynamics of the
volatility process are independent of the initial value of the spot price.

To illustrate the performance of our method we consider the parameters r = 0.06, σ = 0.4,
X0 = log(K) = log(100) and T = 0.5. We compute the approximate American put option
prices with M = 40 cubature points, n = 4 moments and Ntime = 1000 time steps. We
compare these prices with the benchmark prices obtained with a 1000–time step binomial
tree approximation of the Black–Scholes model. The results are reported in Table 1. We find
that with these parameters our approximate Markov cubature method has a mean relative
difference with respect to the benchmark binomial tree prices of the order 10−4. The choice of
M and n is made to achieve this level of accuracy in a comparable amount of time with as few
cubature points and moments as possible. The colormap in Figure 1 shows the off-diagonal
values of the transition rate matrix L. We observe in particular that the majority of nonzero
transition rates in the approximate Markov cubature rule occur around the diagonal, hence
the process Y has a multinomial tree structure. Also the transition rates decrease as we
approach the limits of the interval I. The high transition rates close to the limit points of the
interval are a boundary effect as a consequence of the truncation of the domain of X −X0.
The running time to find the transition rate matrix L by solving the optimization problem
(4.1) in Matlab on a 2.3 GHz Intel Core i5 CPU, is approximately 0.75 seconds. Once the
transition rate matrix is obtained, the computation of the American option prices using the
recursive algorithm (4.8), for a given maturity, a given strike, and all initial prices, is almost
instantaneous and takes only about 0.004 seconds. To illustrate the influence of the moments,
we plot in Figure 2 the American put option prices P̃A for M = 40 and different values of
n. These prices are compared with the benchmark values obtained with a 1000 time step
binomial approximation of the Black–Scholes model on the 40 points of the log-price grid.

4.2 American option pricing in a Jacobi exchange rate model

Suppose that St = exp(Xt) represents the exchange rate between two currencies at time t.
Inspired by De Jong et al. (2001) and Larsen and Sørensen (2007), we model X with a Jacobi
diffusion of the form

dXt = κ(θ −Xt)dt+ σ
√

(Xt − xmin)(xmax −Xt)dWt, (4.9)
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for given parameters −∞ < xmin < xmax < ∞, θ ∈ [xmin, xmax], κ, σ > 0. We assume that

the domestic interest rate r is constant and the foreign interest rate rft is such that (4.9)
describes the risk neutral dynamics of the log exchange rate (for details see De Jong et al.
(2001); Larsen and Sørensen (2007)). In this model the exchange rate between the currencies
stays bounded between exp(xmin) and exp(xmax). As in the previous example, we consider
an American exchange option with payoff of the form max(K−S, 0) and maturity T . We fix
equidistant points x1, . . . , xM on the support of X given by [xmin, xmax] and proceed precisely
as in the previous example. Namely, we approximate PAx , as in (4.7), using the vector P̃A.
To compute P̃A we use the recursive algorithm in (4.8).

For our numerical illustration we consider the following parameters: r = 0, κ = 1, θ = 0.5,
xmin = 0, xmax = 1, X0 = 0, K = exp(0.5) and T = 0.5. We compute the approximate
American put option prices with M = 40 cubature points, n = 4 moments and Ntime = 1000
time steps. We compare these prices with the benchmark prices obtained with a 1000–
time step Longstaff–Schwartz algorithm; see Longstaff and Schwartz (2001). The results
are reported in Table 2. Our experiments suggest that the approximate Markov cubature
method can lead to significant speed-up compared to the simulation based Longstaff–Schwartz
approach. The colormap in Figure 3 shows the off-diagonal values of the transition rate matrix
L. In particular we verify a multinomial nature of our approximate Markov cubature. The
running times to find the transition rate matrix L and to compute American option prices
are comparable to those reported in Section 4.1. To illustrate the influence of the moments,
we plot in Figure 4 the American put option prices P̃A for M = 40 and different values of n
and compare them with the benchmark values obtained with the Longstaff–Schwartz method
for the values of x in Table 2.

5 Discrete time Markov cubature

The construction of a discrete time n-Markov cubature rule for X (see Theorem 5.2 below)
will use cubature methods over the asymptotic moments. According to Theorem A.1, all
the asymptotic moments of order less than or equal to n exist if and only if the following
condition holds.

(H1) For all nonzero eigenvalues λ of G, we have that Re(λ) < 0 and the eigenvalue 0 is a
semisimple eigenvalue, i.e. its algebraic and geometric multiplicities coincide.

In this case, we denote these asymptotic moments by

µj(x) = lim
t→∞

Ex[hj(Xt)]. (5.1)

To use classical cubature rules, we would like the asymptotic moments (5.1) to be inde-
pendent of x. According to Corollary A.3, this is the case under the following assumption,
which is a stronger condition than (H1).

(H2) For all nonzero eigenvalues λ of G, we have that Re(λ) < 0 and the eigenvalue 0 is a
simple eigenvalue, i.e. its algebraic (and hence geometric) multiplicity is 1.

11



In this case we write the asymptotic moments (5.1) simply as µ1, . . . , µNn . In conjunction
with (H2), we will make the following assumption throughout this section.

(H3) There exist points x1, . . . , xM ∈ E and w ∈ RM++ such that

µj =
M∑
i=1

wihj(xi) (5.2)

for all j = 1, . . . , Nn.

Remark 5.1. As a consequence of condition (H3) the weights add up to one. Indeed, suppose
that the constant polynomial can be written as 1 =

∑Nn
j=1 vjhj(x). Then by (5.1) and (5.2)

we deduce

1 =

Nn∑
j=1

vjµj =
M∑
i=1

wi

Nn∑
j=1

vjhj(xi)

 =
M∑
i=1

wi.

Hence, condition (H3) states that the asymptotic moments (5.1) belong to conv(Hn(E)). As
Ex[hj(Xt)] belongs to conv(Hn(E)) for all x ∈ E, t ≥ 0 and j = 1, . . . , Nn (see Putinar
(1997), Bayer and Teichmann (2006)), this would be the case if for instance conv(Hn(E))
is closed. It would also hold if the asymptotic moments are the moments of a probability
distribution; see Proposition A.6. Additionally, as the weights w in (H3) are strictly positive,
there does not exist a strict subset C ( {x1, . . . , xM} such that conv(Hn(C)) contains all the
asymtotic moments (5.1).

Theorem 5.2 below is the main theorem of this section.

Theorem 5.2. Assume that (H2) and (H3) hold. Suppose additionally that for the points
x1, . . . , xM in (H3), the matrix H given by (3.1) satisfies rank(H) = Nn . Then, for ∆ large
enough, there exists a n-Markov cubature rule for X on T = {l∆ : l ∈ N} with state space
EY = {x1, . . . , xM}.

To prove Theorem 5.2 we need the following lemma.

Lemma 5.3. Suppose the hypotheses of Theorem 5.2 hold. Then, for t sufficiently large,
there exists a probability matrix Q(t) with positive entries such that H exp(tG) = Q(t)H.

The proofs of Theorem 5.2 and Lemma 5.3 suggest a possible procedure for finding discrete
cubature rules. In practice, denoting H+ the pseudo-inverse matrix of H, one searches for
large times t so that the matrix Q(t) = H exp(tG)H+ has positive entries. One then takes
∆ to be the first time such that the entries of Q(∆) are nonnegative, in which case Q(∆) is
the transition probability matrix of a discrete cubature rule with time lag ∆.

The following remark shows that the existence of discrete time Markov cubature rules is
true under more general hypotheses.

Remark 5.4. Assume that (H1) holds. Suppose additionally that there exist points

x1, . . . , xM ∈ E
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and
W = (wij)

M
i,j=1 ∈ RM×M++

such that

µj(xk) =

M∑
i=1

wkihj(xi)

for all j = 1, . . . , Nn and k = 1, . . .M , with µj as in (5.1). The proof of Theorem 5.2 shows
that, if the matrix H = H(x1, . . . , xM ), defined in (3.1), satisfies rank(H) = Nn, then the
conclusion of Theorem 5.2 holds.

Example 5.5. Discrete cubature rules can be useful to perform computations in longer time
periods, for example the calculation of prices of European options. To illustrate this we
consider the exchange rate model and parameters described in Section 4.2. To approximate
the price of a European put option PEx = Ex[e−rT max(K − ex+XT , 0)] with maturity T = 1,
strike K = exp(0.5), and initial log rate equal to x, we proceed as follows. We fix a regular
partition x1, . . . , xM of the support of X. In this case the conditions of Theorem 5.2 are
satisfied. The asymptotic moments are

µ1 = E[1] = 1, µ2 = θ = 0.5, µ3 = 0.3333, µ4 = 0.25, µ5 = 0.2.

We observe that for T = 1 there is transition rate matrix P such that H exp(TG) = PH.
We approximate the price of the European put options for the points on the partition using
the vector

P̃E = exp(−rT )PV

where V = max(K − F, 0) and F = exp(X0)(exp(x1), . . . , exp(xM ))> ∈ RM . Figure 5 shows
these approximate prices along with the prices obtained using Monte-Carlo simulation.

6 Markov cubature with negative weights

In this section we explore yet another possible relaxation of the Markov cubature problem.
We first recall the definition of the mapping Hn in (2.4). In the spirit of Bayer and Teichmann
(2006), observe that n-Markov cubatures rules for the process X correspond naturally to 1-
Markov cubature rules for the process X = Hn(X), and that the state space of X is Hn(E),
which lies on the moment curve Hn(Rd). It can be shown that X is a polynomial process
on Hn(E); see Filipović and Larsson (2017, Theorem 4.2). Hence, the study of n-Markov
cubatures rules for polynomial processes can be reduced to the study of 1-Markov cubature
rules by increasing the complexity of the state space.

These observations suggest the following alternative way to relax the notion of Markov
cubature in continuous time. For each x ∈ E, consider the process Zxt = Ex[Xt]. Due to
Lemma 2.5, the process Zxt solves the ODE

dZxt = G>Zxt dt, Z0 = x. (6.1)

While X is only well-defined for initial conditions x ∈ Hn(E), whose geometry is highly
complex in general, the solution Zx of (6.1) admits any point x ∈ RNn as initial condition.
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Therefore, one could seek continuous 1-cubature rules for the deterministic process Z on RNn
instead of X on Hn(E). In view of Theorem 3.2 this amounts to finding points z1, . . . , zR ∈
RNn and a transition rate matrix L ∈ RR×R such that

SG = LS, (6.2)

where S ∈ RR×Nn is a matrix whose rows are z>1 , . . . , z
>
R . Suppose we can find such a matrix

of the form S = S̃H, with a matrix S̃ ∈ RR×M of rank M . Then there also exists A ∈ RM×R
such that AS̃ = IdM the M -dimensional identity matrix, and we can rewrite (6.2) as

HG = L̃H, (6.3)

where L̃ = ALS̃ ∈ RM×M . The matrix L̃ is not necessarily a transition rate matrix. Never-
theless, due to Lemma 2.5 and (6.3) we have

Exi [p(Xt)] =

M∑
j=1

(etL̃)i,jp(xj), for i = 1, . . . ,M and p ∈ Poln(E). (6.4)

Hence, the pseudo transition rate matrix L̃, defines a pseudo Markov cubature rule with
weights that might be negative. These possibly negative weights can be interpreted as the

negative “probabilities” appearing in the pseudo transition probability matrix etL̃. There-
fore, the limitation posed by Kolmogorov’s continuity lemma disappears in a framework with
negative “probabilities”. As we will illustrate below, however, negative weights are not com-
patible with fundamental results such as the dynamic programming principle underlying the
pricing of American options. For this reason, we do not pursue this relaxation of the Markov
cubature problem.

Example 6.1. To illustrate why negative weights are not compatible with the dynamic pro-
gramming principle, we consider the setup of Section 4.1 and the same Black–Scholes model
parameters. In particular, we employ M = 40 cubature points, n = 4 moments and Ntime =
1000 to approximate the American put option prices. We compare in Figure 6 the results ob-
tained by using the solution L of the quadratic programming method described in Section 4 with
those obtained with a matrix L̃ that solves equation (6.3). This figure clearly demonstrates
that the relaxation with negative “probabilities” is not useful for probabilistic applications.

7 Conclusions

In this paper we study discretizations of polynomial processes, via moment conditions, us-
ing finite state Markov processes. We call these discretizations Markov cubature rules. The
polynomial property allows us to conduct our analysis using algebraic techniques; see Theo-
rems 3.2 and 5.2. Due to Kolmogorov’s continuity lemma the moment matching conditions
in continuous time for polynomial diffusions are too stringent. We study instead relaxed
versions of Markov cubature rules. A possible relaxation allowing negative transition “proba-
bilities” shows not to be useful for probabilistic applications; see Section 6. We instead retain
two other relaxations of the Markov cubature problem that are more useful. In Section 4 we
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show how to find approximate Markov cubature rules by means of a quadratic programming
problem. We then illustrate with examples how to employ this approximation to solve time-
dependent problems, like the valuation of American options. In these examples the method
performs well. Then, in Section 5 we discuss conditions on the asymptotic moments that
allow the construction of discrete time Markov cubature rules; see Theorem 5.2. We also
illustrate through a numerical example the use of these discrete rules on longer time grids. A
systematic analysis of computational cost, accuracy, and convergence falls outside the scope
of the present paper, but is an interesting topic for future research.

A Asymptotic moments of polynomial processes

Suppose that X is a polynomial process with extended generator G and state space E.
Fix n ∈ N and let G be the matrix of G restricted to Poln(E) with respect to a basis
β = (h1, . . . , hNn) of Poln(E).

The following theorem shows that Hypothesis (H1) is equivalent to the existence of asymp-
totic moments of order n.

Theorem A.1. The following are equivalent:

(i) Hypothesis (H1) holds.

(ii) The sequence of matrices (exp(tG))t≥0 converges as t→∞.

(iii) Ex[hj(Xt)] converges as t→∞ for all x ∈ E and j = 1, . . . , Nn.

(iv) Ex[p(Xt)] converges as t→∞ for all x ∈ E and p ∈ Poln(E).

Proof. (i)⇔(ii) Suppose that G = V JV −1, where J is the (complex) Jordan normal form of
G. We have that (exp(tG))t≥0 converges as t → ∞ if and only if (exp(tJ))t≥0 converges as
t → ∞. Additionally, (exp(tJ))t≥0 converges as t → ∞ if and only if exp(tJi) converges for
all i, where the Ji’s are the Jordan blocks of the matrix J .

Each Ji is of the form Ji = λiId+Ni where λi is an eigenvalue ofG, Id is the identity matrix
and Ni is a nilpotent matrix. Therefore, exp(tJi) = exp(tλi)pi(tNi), with pi a polynomial.
We remark that pi ≡ 1 if and only if Ni = 0, and pi(tNi) is not a constant polynomial in t if
Ni 6= 0.

Hypothesis (H1) holds if and only if Re(λi) < 0 for all i such that λi 6= 0 and if λi = 0,
Ni = 0. These observations imply the equivalence between (i) and (ii).

(ii)⇒(iii) Suppose that the matrices (exp(tG))t≥0 converge to a matrix P̃ ∈ RNn×Nn as
t→∞. By (2.6), we have that

lim
t→∞

Ex[hj(Xt)] =

Nn∑
i=1

P̃ijhi(x)

for all j = 1, . . . , Nn and x ∈ E. Hence (iii) holds.

(iii)⇔(iv) This follows from the fact that h1, . . . , hNn is a basis of Poln(E).
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(iii)⇒(ii) Suppose now that Ex[hj(Xt)] converges for all x ∈ E and j = 1, . . . , Nn, as t
goes to infinity.

We claim that there exists Nn points, x1, . . . , xNn ∈ E, such that for all p ∈ Poln(E)

p(xi) = 0 for all i ⇒ p ≡ 0. (A.1)

Assume for the sake of contradiction that there are no points x1, . . . , xNn ∈ E such
that (A.1) holds. Let p1(x) 6= 0 be a polynomial on E and x1 ∈ E such that p1(x1) 6= 0.
By assumption, we can find p2 ∈ Poln(E) and x2 ∈ E such that p2(x1) = 0 and p2(x2) 6= 0.
Recursively, we would be able to construct points x1, . . . , xNn , and polynomials p1, . . . , pNn
such that

pi(xi) 6= 0 and pi(xj) = 0 for j < i. (A.2)

These polynomials would be linearly independent and hence a basis of Poln(E).

Assume that p ∈ Poln(E) satisfies p(xi) = 0 for all i. As p is a linear combination of the
polynomials pi we would conclude by (A.2) that all the coefficients of the linear combination
are equal to zero and p is zero everywhere, a contradiction.

Hence we can always find x1, . . . , xNn ∈ E such that (A.1) holds. These points allow us
to define a norm on the space Poln(E) by

‖p‖1 = sup
i
|p(xi)|.

Another norm is given by

‖p‖2 = sup
i
|λi|

where p =
∑

j λjhj . As these norms are equivalent, convergence of a sequence of polynomials
on x1, . . . , xNn implies convergence of the coefficients. The coefficients of the polynomials of
the form Ex[hj(Xt)] are entries of the matrix exp(tG). Hence (ii) holds.

In general, these asymptotic moments might depend on x. In fact we have the following
proposition.

Proposition A.2. Suppose that Hypothesis (H1) holds. Let G = V JV −1 be the canonical
Jordan decomposition of G, with V the matrix of generalized eigenvectors. Then

lim
t→∞

etG =

l∑
i=1

viri, (A.3)

where the vectors v1, . . . , vl are the eigenvectors of G corresponding to the eigenvalue 0 and
r1, . . . , rl are the rows of V −1. Moreover, the asymptotic moments (5.1) are given by

(µ1(x), . . . , µNn(x)) =

l∑
i=1

Hn(x)>viri. (A.4)
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Proof. The proof of the equivalence between (i) and (ii) in Theorem A.1 shows that Hypoth-
esis (H1) implies that

lim
t→∞

etG = V

(
Id 0
0 0

)
V −1,

where the identity matrix Id comes from the block corresponding to the eigenvalue 0. This
implies (A.3). Moreover, (A.3), (3.3) and (5.1) imply (A.4).

An immediate corollary of these results characterizes the case when the asymptotic mo-
ments are independent of x.

Corollary A.3. Hypothesis (H2) holds if and only if the asymptotic moments µ1(x), . . . , µNn(x)
as defined in (5.1) exist and they are independent of x, i.e. constant on E.

Proof. We already have the equivalence between Hypothesis (H1) and the existence of the
asymptotic moments by Theorem A.1. Moreover, observe that (A.4) in the previous propo-
sition implies that for all j = 1, . . . , Nn

µj(x) =

l∑
i=1

ri(j)h̃i(x),

where the eigen-polynomials h̃1, . . . , h̃l (corresponding to the eigenvalue 0 of G) are given by

h̃i(x) = Hn(x)>vi,

for all i = 1, . . . , l. These polynomials are linearly independent, as polynomials in Poln(E).
This linear independence implies that µj(x) is constant on E for all j if and only if l = 1.

Example A.4. Suppose that X is a polynomial martingale. This holds when G1 = 0, where
G1 is the matrix of the generator restricted to the space Pol1(E). A particular example is
geometric Brownian motion. In this case we have that Ex[Xt] = x for all t ≥ 0 and x ∈ E,
and hence,

lim
t→∞

Ex[Xt] = x.

In this example, 0, as an eigenvalue of G1, has algebraic multiplicity 2.

Example A.5. Suppose that d = 1 and Gf(x) = −xf ′(x) + x2f ′′(x). Then

lim
t→∞

Ex[Xt] = 0; lim
t→∞

Ex[X2
t ] = x2.

In this example, 0 has multiplicity 1 as an eigenvalue of G1 (the matrix of the generator
G restricted to Pol1(E).) However, 0 has algebraic multiplicity 2 as an eigenvalue of G2

(the matrix of the generator G restricted to Pol2(E)). The operator G is the infinitesimal

generator of the process Xt = X0e−2t+
√

2Bt, where B is a Brownian motion. In this case,
Xt is a supermartingale converging to zero in expectation while X2

t = X2
0 e−4t+2

√
2Bt is a

martingale starting at X2
0 .
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The following proposition gives sufficient conditions under which the limiting moments
µj(x) are moments of a positive Borel measure.

Proposition A.6. Let Gn+1 be the matrix of the generator restricted to the space Poln+1(E)
with respect to an extended basis β̃ = (h1, . . . , hNn , . . . , hR) of Poln+1(E). Assume that (H1)
holds for Gn+1. Then for all x ∈ E there exists a positive Borel measure πx such that∫

E
hj(y)πx(dy) = µj(x) (A.5)

for all j = 1, . . . , Nn.

Proof. Let x ∈ E and j = 1, . . . , Nn be fixed. We have by Theorem A.1 that Ex[f(Xt)]
converges as t → ∞ for any polynomial f ∈ Poln+1(E). Define Yt = hj(Xt). De La Vallée-
Poussin’s theorem implies that (Yt)t≥0 is uniformly integrable. Additionally, we have that
the sequence of Borel probability measures on E given by (Px ◦X−1

t )t≥0 is tight.

Let πx be an accumulation Borel probability measure of this sequence. We conclude
that (A.5) holds. Indeed, assume with out loss of generality that Px ◦ X−1

t converges in
distribution to πx. By Fatou’s lemma∫

E
|hj(y)|π(dy) =

∫ ∞
0

π(|hj(y)| > z)dz

≤ lim inf
t→∞

∫ ∞
0

Px(|Yt| > z)dz

= lim inf
t→∞

E[|Yt|] <∞.

Therefore, given j = 1, . . . Nn and ε > 0, there exist constants C, T > 0 such that Ex[|Yt|1|Yt|>C ] <
ε for all t ≥ 0,

∫
|hj(y)|>C |hj(y)|π(dy) < ε and for t ≥ T∣∣∣∣∣Ex[Yt1|Yt|≤C ]−

∫
|hj(y)|≤C

hj(y)π(dy)

∣∣∣∣∣ < ε.

Hence, for t ≥ T∣∣∣∣Ex[Yt]−
∫
E
Hj(y)πx(dy)

∣∣∣∣ ≤
∣∣∣∣∣Ex[Yt1|Yt|≤C ]−

∫
|hj(y)|≤C

hj(y)π(dy)

∣∣∣∣∣
+ Ex[|Yt|1|Yt|>C ] +

∫
E
|hj(y)|1|ht(y)|>Cπ(dy)

≤ 3ε.

Since ε > 0 was arbitrary we obtain (A.5); see also Theorem 3.5 in Billingsley (1995).

Remark A.7. In the proof of Proposition A.6, the existence of the asymptotic moments up
to order n+ 1 is simply used in order to apply De La Vallée-Poussin’s theorem and to deduce
uniform integrability.
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In some cases the measure πx of the proposition above is not necessarily an invariant
measure. The following example illustrates this.

Example A.8. Suppose that X is an exponential Brownian motion. In particular X is a
martingale and Ex[Xt] = x for all t, x ≥ 0. Hence, µ2(x) = x, where µ2 is the asymptotic
mean. In this case πx = δx which is not an invariant measure for x > 0.

B Proofs

Proof of Lemma 2.5. In view of (2.5) we obtain the vector equation

Hn(Xt) = Hn(x) +

∫ t

0
G>nHn(Xs)ds+Mt, t ≥ 0, (B.1)

for some local martingaleM withNn components. We claim that the expectation E[‖Hn(Xt)‖]
is locally bounded in t. This follows from the inequality

Ex
[
1 + ‖Xt‖2k

]
≤
(
1 + ‖x‖2k

)
eCt, t ≥ 0,

which holds for some constant C > 0 that depends on G but not on t or x. This inequality is
proved using the argument in the proof of Theorem 2.10 in Cuchiero et al. (2012). Further-
more, in conjunction with Lemma B.1 below, this also implies that M is a true martingale.
Taking expectations on both sides of (B.1) thus yields the integral equation

E[Hn(Xt)] = Hn(x) +

∫ t

0
G>nE[Hn(Xs)]ds, t ≥ 0,

whose solution is E[Hn(Xt)] = etG
>
nHn(x). This yields (2.6).

Lemma B.1. Let p ∈ Pol(E). The local martingale Mt = p(Xt) −
∫ t

0 Gp(Xs)ds admits a

predictable quadratic variation process, given by 〈M,M〉t =
∫ t

0 (Gp2 − 2pGp)(Xs)ds.
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Proof. Squaring the expression for Mt and rearranging yields

p(Xt)
2 −M2

t = 2p(Xt)

∫ t

0
Gp(Xs)ds−

(∫ t

0
Gp(Xs)ds

)2

= 2

(
Mt +

∫ t

0
Gp(Xs)ds

)∫ t

0
Gp(Xs)ds−

(∫ t

0
Gp(Xs)ds

)2

= 2Mt

∫ t

0
Gp(Xs)ds+

(∫ t

0
Gp(Xs)ds

)2

= 2

∫ t

0
MsGp(Xs)ds+

(∫ t

0
Gp(Xs)ds

)2

+ (local martingale)

= 2

∫ t

0

(
p(Xs)−

∫ s

0
Gp(Xu)du

)
Gp(Xs)ds

+

(∫ t

0
Gp(Xs)ds

)2

+ (local martingale)

= 2

∫ t

0
p(Xs)Gp(Xs)ds+ (local martingale),

where the last equality follows from the identity (
∫ t

0 g(s)ds)2 = 2
∫ t

0 g(s)
∫ s

0 g(u)du ds with
g(t) = Gp(Xt). Therefore, since p2 is also a polynomial and hence in the domain of G, we
obtain

M2
t −

∫ t

0

(
Gp2(Xs)− 2p(Xs)Gp(Xs)

)
ds = (local martingale).

This implies the assertion of the lemma.

Proof of Theorem 2.7. Clearly if (2.7) holds then Y is an n-Markov cubature rule for X on
T. Conversely, suppose that Y is an n-Markov cubature rule for X on T. By an induction
argument it is enough to show (2.7) with l = 2. To this end, fix p, q ∈ Poln(E) with
pq ∈ Poln(E) and let s, t ∈ T be such that 0 ≤ s ≤ t. Define the function

p̃(x) = Ex[p(Xt−s)].

Since X is a polynomial process, by Lemma 2.5 the function p̃ is a polynomial and p̃q ∈
Poln(E). On the other hand, by the definition of a Markov cubature rule and the stability
under differences of T we have

Ex[p̃(Xs)q(Xs)] = Ex[p̃(Ys)q(Ys)],

p̃(x) = Ex[p(Yt−s)]

for all x ∈ Ey. Therefore, as X and Y are Markov processes, we conclude that

Ex[p(Xt)q(Xs)] = Ex[q(Xs)EXs [p(Xt−s)]]

= Ex[p̃(Xs)q(Xs)]

= Ex[p̃(Ys)q(Ys)]

= Ex[q(Ys)EYs [p(Yt−s)]]
= Ex[p(Yt)q(Ys)]
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for all x ∈ EY .

Proof of Lemma 3.3. Denote by v ∈ RNn the coordinates of the constant polynomial 1 with
respect to the basis h1(x), . . . , hNn(x). We have that

Hv = 1M,

the vector of 1’s in RM . Additionally by (3.2),

HGv = (G1(xi))
M
i=1 = 0.

Hence

L1M = LHv = HGv = 0.

Proof of Theorem 3.2. (i)⇒ (ii) Let L be the transition rate matrix of the n-Markov cubature
rule Y . Equations (3.3) and (2.2) imply that for all i = 1, . . . ,M , j = 1, . . . , Nn and t ≥ 0

(H exp(tG))ij = (exp(tL)H)ij .

Hence, H exp(tG) = exp(tL)H for all t ≥ 0. Differentiating with respect to t and evaluating
at t = 0 we obtain (ii).

(ii)⇔ (iii) This follows directly from Lemma 3.3.

(ii)⇒ (iv) By (3.2)

the i-th row of HG = GHn(xi)
>

for all i = 1, . . . ,M . On the other hand, the i-th row of LH can be written as a cone
combination of the form ∑

j 6=i
Lij(H>n (xj)−H>n (xi)), (B.2)

where the coefficients Lij are nonnegative. Since HG = LH we conclude (iv).

(iv) ⇒ (i) Condition (iv) implies the existence of coefficients Lij ≥ 0 for i 6= j such
that (B.2) is equal to the i-th row of HG for all i. Hence, we can find a transition rate matrix
L such that HG = LH. This implies, by an induction argument, that

HGl = LlH for all l ∈ N.

This in turn implies that

H exp(tG) = exp(tL)H. (B.3)

Since (exp(tL))t≥0 defines a transition semigroup, we can define a Markov process with state
space EY by

PYxi(Yt = xj) = (exp(tL))ij .

Equations (3.3) and (B.3) imply that Ex[hj(Xt)] = Ex[hj(Yt)] for all x ∈ E and j = 1, . . . , Nn,
i.e. Y defines a continuous time n-Markov cubature rule.
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Suppose now that M = Nn and the matrix H is invertible. For all j = 1, . . . , Nn define
h̃j as the polynomial whose coordinates with respect to the basis (h1, . . . , hNn) are the j-

th column of H−1. We have that β̃ = (h̃1, . . . , h̃Nn) ⊂ Poln(E) is a basis that satisfies
h̃j(xi) = δij .

Given a Markov cubature rule Y , Y is a cubature rule with respect to any basis of Poln(E).
In particular with respect to the basis β̃. Observe that in this case

H̃ = (h̃j(xi))ij = IdNn ,

the identity matrix. Hence, the equivalence between (i) an (v) follows from the equivalence
between (i) and (iii).

Proof of Lemma 5.3. Equations (3.3), (5.1) and (5.2) imply that

lim
t→∞

HetG = W>H,

where W ∈ RM×M is the matrix with all columns equal to w. Since H has rank Nn the set

B = {W̃H : W̃ ∈ RM×M has positive entries}

is an open set in RM×Nn . Then, for t large enough and defining P (t) = etG, we have

HP (t) = Q(t)H ∈ B. (B.4)

The argument to show that the rows of Q(t) add up to 1 is similar to that of Lemma 3.3.
Suppose that v ∈ RNn are the coordinates of the constant polynomial 1 with respect to the
basis h1, . . . , hNn . We have that 1M = Hv, where 1M ∈ RM is the vector of 1’s. Since 1 is an
eigenvalue of G with corresponding eigenvalue 0, v is an eigenvector of P (t) with eigenvalue 1.
Hence, HP (t)v = 1M. This observation together with (B.4) implies that Q(t)1M = Q(t)Hv =
1M and the rows of Q(t) add up to 1, i.e. Q(t) is a probability matrix.

Proof of Theorem 5.2. Lemma 5.3 guarantees that for ∆ large enough, there exists a proba-
bility matrix Q ∈ RM×M such that

He∆G = QH, (B.5)

with H defined in (3.1).

Let Y be the time-homogeneous Markov Process with transition probability matrix Q as
in (B.5) and state space EY = {x1, . . . , xM}. By (3.3), Y is an n-Markov cubature for X on
{∆}. Remark 2.8 implies that Y is also an n-Markov cubature for X on {l∆ : l ∈ N}.
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D. Filipović, M. Larsson, and A. Trolle. Linear-rational term structure models. Journal of
Finance, 72(2):655–704, 2017.
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exp(X0 + x) P̃Ax PA,binx Rel. diff.

80 21.6180 21.6059 0.0006
85 18.0206 18.0374 0.0009
90 14.9271 14.9187 0.0006
95 12.2445 12.2314 0.0011
100 9.9539 9.9458 0.0008
105 8.0282 8.0281 0.0000
110 6.4324 6.4352 0.0004
115 5.1267 5.1265 0.0000
120 4.0697 4.0611 0.0021

Table 1: American put option prices obtained with the approximate Markov cubature method
compared to prices calculated with a binomial tree approximation in a Black–Scholes model.
Parameters of the model and the option: r = 0.06, σ = 0.4, X0 = log(K) = log(100) and
T = 0.5. The first column contains the initial asset prices considered. The second column
contains the prices P̃Ax obtained with the approximate Markov cubature method with M = 40
cubature points, n = 4 moments and Ntime = 1000 time steps. The third column contains
the prices PA,binx obtained with a binomial tree approximation with 1000 time steps. The
last column shows the relative difference.

x P̃Ax PA,LSx Rel. diff.

0.1 0.5436 0.5434 0.0003
0.2 0.4273 0.4286 0.0030
0.3 0.3251 0.3265 0.0043
0.4 0.2468 0.2478 0.0041
0.5 0.1839 0.1852 0.0069
0.6 0.1327 0.1339 0.0087
0.7 0.0912 0.0924 0.0132
0.8 0.0580 0.0590 0.0172
0.9 0.0323 0.0329 0.0196

Table 2: American put option prices obtained with the approximate Markov cubature method
compared to prices calculated with a Longstaff–Schwartz algorithm in a Jacobi model for
exchange rates. Parameters of the model and the option: r = 0, κ = 1, θ = 0.5, xmin = 0,
xmax = 1, X0 = 0, K = exp(0.5) and T = 0.5. The first column contains the initial values
of x considered. The second column contains the prices P̃Ax obtained with the approximate
Markov cubature method with M = 40 cubature points, n = 4 moments and Ntime = 1000
time steps. The third column contains the prices PA,LSx obtained with a 1000 time step
Longstaff–Schwartz algorithm. The last column shows the relative difference.
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Figure 1: Colormap of the off-diagonal values of the transition rate matrix L obtained with
the quadratic programming problem for the Black–Scholes model. Parameters: r = 0.06,
σ = 0.4, T = 0.5, M = 40 and n = 4.
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Figure 2: American put option prices using the approximate Markov cubature method for
different values of n and the 1000–time step binomial tree approximation in a Black–Scholes
model. Parameters: r = 0.06, σ = 0.4, X0 = log(K) = log(100), T = 0.5, M = 40 and
Ntime = 1000.
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Figure 3: Colormap of the off-diagonal values of the transition rate matrix L obtained with
the quadratic programming problem for the Jacobi model of exchange rates. Parameters:
r = 0, κ = 1, θ = 0.5, xmin = 0, xmax = 1, M = 40 and n = 4.
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Figure 4: American put option prices using the approximate Markov cubature method for
different values of n and the 1000–time step Longstaff–Schwartz algorithm in a Jacobi model
of exchange rates. Parameters: r = 0, κ = 1, θ = 0.5, xmin = 0, xmax = 1, X0 = 0,
K = exp(0.5), T = 0.5, M = 40 and Ntime = 1000.
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Figure 5: European put option prices using the discrete time Markov cubature method and
Monte-Carlo simulation in a Jacobi model of exchange rates. Parameters: r = 0, κ = 1,
θ = 0.5, xmin = 0, xmax = 1, X0 = 0, K = exp(0.5), T = 1, M = 40 and n = 4.
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Figure 6: American put option prices using negative “probabilities” and the approximate
Markov cubature method in a Black–Scholes model. Parameters: r = 0.06, σ = 0.4, X0 =
log(K) = log(100), T = 0.5, M = 40, n = 4 and Ntime = 1000.
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