Computing solutions of linear Mahler equations

Abstract : Mahler equations relate evaluations of the same function $f$ at iterated $b$th powers of the variable. They arise in particular in the study of automatic sequences and in the complexity analysis of divide-and-conquer algorithms. Recently, the problem of solving Mahler equations in closed form has occurred in connection with number-theoretic questions. A difficulty in the manipulation of Mahler equations is the exponential blow-up of degrees when applying a Mahler operator to a polynomial. In this work, we present algorithms for solving linear Mahler equations for series, polynomials, and rational functions, and get polynomial-time complexity under a mild assumption. Incidentally, we develop an algorithm for computing the gcrd of a family of linear Mahler operators.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2018, 87, pp.2977-3021. 〈https://www.ams.org/journals/mcom/2018-87-314/S0025-5718-2018-03359-2/〉. 〈10.1090/mcom/3359〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01418653
Contributeur : Frédéric Chyzak <>
Soumis le : mardi 10 avril 2018 - 15:02:59
Dernière modification le : samedi 20 octobre 2018 - 01:16:03

Fichier

mahlersols.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, Marc Mezzarobba. Computing solutions of linear Mahler equations. Mathematics of Computation, American Mathematical Society, 2018, 87, pp.2977-3021. 〈https://www.ams.org/journals/mcom/2018-87-314/S0025-5718-2018-03359-2/〉. 〈10.1090/mcom/3359〉. 〈hal-01418653v2〉

Partager

Métriques

Consultations de la notice

200

Téléchargements de fichiers

81