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Abstract

We present a multilinear statistical model of the human tongue that cap-
tures anatomical and tongue pose related shape variations separately. The
model was derived from 3D magnetic resonance imaging data of 11 speak-
ers sustaining speech related vocal tract configurations. The extraction was
performed by using a minimally supervised method that uses as basis an im-
age segmentation approach and a template fitting technique. Furthermore, it
uses image denoising to deal with possibly corrupt data, palate surface in-
formation reconstruction to handle palatal tongue contacts, and a bootstrap
strategy to refine the obtained shapes. Our experiments concluded that lim-
iting the degrees of freedom for the anatomical and speech related variations
to 5 and 4 respectively produces a model that can reliably register unknown
data while avoiding overfitting effects.

Keywords: tongue, vocal tract, MRI, statistical model, shape analysis.

1 Introduction
The tongue as one of the main human articulators plays an important role in
speech production. In speech science, it is therefore of great interest to under-
stand its shape and motion during human articulation. The results of such an
analysis could be used to derive a tongue model that is able to replicate those
shape changes by manipulating a few parameters. Ideally, these parameters
should be separated into two sets: One set should control the appearance of
the tongue that is related to the anatomy of the speaker. The other set adapts
the shape to the sound that should be produced. Such a tongue model would
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also provide insight into how a change of anatomy affects the articulation for
speech production.

Areas of application for a tongue model are, for example, virtual avatars
for multimodal spoken interaction or computer-aided pronunciation training.
In the latter case, the user can be provided with visual information on how to
move the tongue to produce a specific sound (Engwall, 2008). Additionally,
such a model might be employed in an articulatory speech synthesis frame-
work to approximate the vocal tract area function. Finally, a tongue model
can also simply be used as a prior to register new data that is possibly very
sparse.

We notice that we need data about the tongue shape during speech pro-
duction to derive such a model. However, most of the articulators are con-
tained inside the human mouth and therefore partially or completely hidden
from view. This means that traditional imaging modalities based on light, e.g.
photography, are of limited use for acquiring the desired shape information.
Currently, magnetic resonance imaging (MRI) can be regarded as the state-
of-the-art technique for investigating the interior of the human vocal tract
during speech. It is non-invasive and non-hazardous to the observed speaker
and in contrast to ultrasound or electromagnetic articulography (EMA), it is
able to provide dense volumetric measurements of the vocal tract. Moreover,
there is work on adapting the MRI method to the needs of speech research:
Here, advances have been made to improve the measurement time (Kim et al.,
2009) and quality of the acquired scans (Lingala et al., 2016).

The measured MRI data only contains raw image data and has to be fur-
ther processed to extract the desired shape information. In our case, a suitable
shape representation is given by a polygon mesh. Such a representation of-
fers the advantage that it can be directly used in different fields. For example,
in computer graphics such meshes are used to generate animations of com-
plex objects (Botsch et al., 2010, Chapter 9) or to model objects of highly
complex geometry and topology. Furthermore, polygon models have been
used in speech processing to generate acoustical simulations (Blandin et al.,
2015). More importantly, they have been used to perform a statistical analy-
sis of a class of shapes, like for example human bodies (Allen et al., 2003),
faces (Blanz and Vetter, 1999), or tongues (Badin and Serrurier, 2006).

Ideally, the extraction process should be at least minimally supervised,
as doing it manually takes a lot of time and might require the expertise of an
anatomical expert.

Afterwards, the collection of estimated meshes can be analyzed to derive
a statistical tongue model. Such a model offers the advantage that for each
generated tongue shape its probability can be measured. This is helpful in
situations where the tongue model is used as a statistical prior.

In literature, a lot of research has focused on analyzing the tongue shape
during speech production. The works by Engwall (2000), Badin and Ser-
rurier (2006), and Fang et al. (2016) used 3D MRI data of a single speaker
to analyze the speech related shape variations by using principal component
analysis (PCA) or linear component analysis (LCA) in the case of Engwall.
They annotated the contour of the tongue manually in the scan data and used
a mesh as shape representation.

There also exists research that aims at analyzing the anatomical and speech
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related shape variations separately: Harshman et al. (1977) investigated these
variations in 2D X-Ray data. We note that this image modality is nowa-
days no longer used for this purpose due to its known negative health effects.
Analysis on 2D MRI was conducted by Hoole et al. (2000), Ananthakrishnan
et al. (2010), Vargas et al. (2012b), and Vargas et al. (2012a). Finally, Zheng
et al. (2003) performed this analysis on sparse sets of 65 points that were
manually extracted from 3D MRI scans.

On the whole, we see that there are still some open issues: Previous
work focused only on 2D data or sparse 3D data to analyze the anatomi-
cal and speech related variations. This sparse data representation might not
be sufficient to capture the whole complex structure of the tongue. Initial
work investigating these variations in 3D meshes obtained from MRI data
of 9 speakers was presented with Hoole et al. (2003), but neither evaluated
nor published (Hoole, personal communication). Moreover, work that fo-
cused on the speech related shape variations of a more dense 3D representa-
tion of the tongue required manual annotation of the used MRI data, which
makes it infeasible for large collections of data. Here, work exists that aims
at facilitating the tongue shape extraction from MRI data. However, such
approaches are often limited because they are restricted to 2D (Peng et al.,
2010; Eryildirim and Berger, 2011; Raeesy et al., 2013), produce only a low-
level volume segmentation (Lee et al., 2013), or require an anatomical expert
to provide the tongue templates (Harandi et al., 2014).

In this paper, we present an extended version of our previous work (Hewer
et al., 2014). Its contributions can be summarized as follows:

We propose a minimally supervised framework for extracting tongue
meshes from 3D MRI data. It is minimally supervised in the sense that a
user only has to annotate a few landmarks in the scan data, which signif-
icantly reduces the burden on the user compared to annotating the entire
tongue surface. Originally, it combined an image segmentation technique
and a template matching approach to achieve that goal. Here, we add an im-
age denoising method to the framework in order to deal with possibly corrupt
data. Moreover, we modify the template matching approach to better handle
volumetric point clouds. Furthermore, we integrate a strategy for restoring
missing tongue surface information that occurs due to contact between hard
palate and tongue. This improvement increases the amount of tongue shape
configurations we can register. Finally, the framework is augmented by mak-
ing use of a bootstrapping strategy, which refines the quality of the obtained
shape meshes.

All these modifications allowed us to register speech related tongue shapes
of 11 speakers that we used to derive a multilinear statistical model that cap-
tures almost the entire complex 3D surface geometry of the tongue and allows
the anatomy and pose related variations to be modified separately.

We examined the obtained model with respect to its compactness, gen-
eralization, and specificity properties. In the case of the specificity analysis,
we investigated the surface parts of the tongue mesh that play an important
role during human articulation. The results of our experiments motivated us
to choose a model with 5 degrees of freedom for the anatomy and 4 for the
speech related tongue pose.

The remainder of the paper is organized as follows: In the next section,
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we start by describing how surface information of the vocal tract can be ex-
tracted from a given 3D MRI scan by denoising it and applying an image
segmentation approach. We proceed by discussing the modified template
matching approach in section 3 and also present the used templates of our
approach. The next section, section 4, is dedicated to describing how we
estimate a tongue mesh from the surface information by using the template
fitting. Here, we present the bootstrapping strategy used and our approach to
restore missing tongue surface information that is caused by contact between
tongue and hard palate. Next, we turn to the multilinear tongue model in sec-
tion 5. In this section, we outline how the acquired mesh collection can be
aligned to only contain speech and anatomy related tongue shape variations
and how the model is derived. We then turn to the evaluation of our approach
in section 6 where we apply it to MRI scans of two datasets. Furthermore, we
conduct experiments to evaluate the compactness, generalization, and speci-
ficity properties of the acquired model. Finally, we conclude in section 7 and
outline possible future work.

2 Extracting Surface Information From MRI
As a first step, we want to extract a point cloud Q := {(qi,ni)} from an
MRI scan that contains the surface points qi and the associated normals ni
of the major articulators and related tissue. We are using a pure geometric
representation of this surface information because it is easy to combine two
point clouds into a single one. This is helpful in situations where we want
to restore missing information in a point cloud Q that is present in another
cloud Q∗.

As we are using image processing methods, we briefly describe how we
are treating a volumetric MRI scan as a 3D image. We may represent an MRI
scan as a function

s : Ω→ [smin,smax] (1)

where smin and smax are real values. Here, Ω ⊂ R3 is a discrete rectan-
gular domain consisting of the sample positions where the scanner took the
measurements. These coordinates are arranged on a regular grid where we
have the grid spacings hx,hy, and hz. We say that s(q) represents the mea-
sured hydrogen molecule density at sample position q ∈Ω.

This scan can be interpreted as a gray-scale 3D image

f : Ω→ [0,255] (2)

by applying a quantization operator to the hydrogen density values that scales
them to a standard gray-scale. Here, we decided to use a standard visualiza-
tion where bright values indicate a high density and dark values a low density.

Figure 1 shows two typical visualizations of such a representation: A
sagittal slice and a coronal one showing an (x,y)-plane and a (y,z)-plane of
the scan image respectively. As in general the original scan data contains
much more information than the vocal tract itself, we usually crop it to a
selected region of interest. This reduces the memory requirements and the
processing time of our framework. By inspecting the scan, we observe that
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Figure 1: Raw MRI scan (left) and smoothed version (right). The left image of
each pair shows a sagittal slice, the other one a coronal slice.

Figure 2: Extracting surface information from an MRI scan: Scan (left), segmen-
tation (center), and resulting point cloud (right).

the data is degraded due to measurement noise. As a remedy, we apply a 3D
variant of the edge-enhancing diffusion (Weickert, 1998) to the image. An
example result of the approach can be inspected in Figure 1. We see that the
noise was removed and structural information like edges were preserved and
enhanced.

We now want to extract a point cloud Q of the wanted surface information
from the denoised MRI scan. First, we detect the spatial support of the region
whose surface information we want to derive. That is, we want to find a
partition

Ω = ΩO∪ΩB (3)

such that ΩO contains the region of the major articulators and related tissue
and ΩB =Ω\ΩO everything else. By inspecting the denoised data, we notice
that tissue can be distinguished from non-tissue, such as air and bone for
example, by using color information. This observation motivates the use of
image segmentation methods that make use of such a feature. In our case, we
decided to use the method by Otsu (1979) to perform this task as it is fully
automatic. An example segmentation can be seen in Figure 2.

As we are interested in the shape information of the surface, we proceed
by extracting the surface points of the tissue from the obtained partition. We
call qi ∈ΩO a surface point if at least one of its neighbors is part of ΩB. Addi-
tionally, we use the partition to estimate normal information at the extracted
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surface points.
The obtained surface points and associated normals are then assembled in

a point cloud. An example of such a point cloud can be inspected in Figure 2.

3 Template Matching
Now, we want to estimate the surface of the desired articulator from such a
point cloud Q. Here, we use a polygon mesh M := (V,F) as surface repre-
sentation. The set V := {vi} with vi ∈R3 is called the vertex set of the mesh.
The other set, F , is the face set of our mesh.

We observe that a point cloud Q is a loose collection of points. In gen-
eral, this collection contains more information than the desired articulator
and there might be holes in the cloud with missing data. However, a subset
of Q implicitly represents the surface of the desired articulator.

In order to identify this subset and estimate the articulator shape from it,
we can apply a template fitting technique.

Given a template mesh M = (V,F) that resembles the wanted articulator
and a point cloud Q, it finds a set A := {Ai} where Ai : R3 → R3 is a rigid
body motion for the vertex vi ∈V , such that the deformed mesh M∗= (V ∗,F)
with V ∗ := {Ai(vi)} is near the point cloud data Q.

The template matching finds this set A of deformations by minimizing
the energy

EDef(A) = α Edata(A)+β Esmooth(A)+ γ Elandmark(A) (4)

The data term Edata is minimized if applying A to the mesh moves it towards
some points in the point cloud. The smoothness term Esmooth penalizes de-
formations that alter the original shape of the template. Finally, the landmark
term Elandmark produces energy if correspondences between landmarks on the
mesh and user-provided points are violated by the deformation.

As Equation 4 is not differentiable, it is usually optimized by minimizing
a series of energies Et

Def(A
t) where t ∈ [1, tmax]. We note that each energy

uses adapted weights β t and γ t :

β
t =β − (t−1)

β −βmin

tmax−1
(5)

γ
t =γ− (t−1)

γ− γmin

tmax−1
(6)

where βmin and γmin are set by the user.
Originally, we used a standard heuristic (Allen et al., 2003; Li et al., 2009)

to distinguish valid data observations from invalid ones in the optimization
of Edata. In particular, we say that q is a valid data point candidate for a
deformed vertex Ai(vi) if the Euclidean distance between both is not too
large and if their normals do not differ too much from each other.

We have modified this nearest neighbor heuristic somewhat: We collect
all valid data point candidates within a fixed radius and then select the best
candidate that lies below the current mesh surface. If no such candidate exists
below the surface, we will select the best one above it. This modification is
intended to prevent the template mesh from getting stuck at unrelated points
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Figure 3: Comparison between nearest neighbor heuristics in the case of palate
matching: Left: Standard heuristic causes template to get stuck at unrelated tissue.
Right: Adapted heuristic moves template to the right position.

Figure 4: Used templates with landmarks of the tongue (left) and hard palate
(right).

in the volumetric cloud during the optimization. An example showing the
benefits of this modified heuristic can be inspected in Figure 3. Here, we
note that we are showing the projection of the matched template on the scan
data for the sake of visibility and interpretability.

In our framework, we use two templates: One for the tongue and one for
the hard palate. Both templates were extracted from MRI data by means of a
medical imaging software. Afterwards, we made the templates symmetric to
remove this particular bias towards the original speaker.

The palate template consists of 994 vertices and 1828 faces with an aver-
age edge length of 1.4 mm. The tongue template contains 3100 vertices and
6102 faces with an average edge length of 1.8 mm. We note that the tongue
template is missing the sublingual part of the tongue that is negligible for
speech production.

Both templates can be inspected in Figure 4 together with the landmarks
used.

4 Tongue and Palate Shape Estimation
We first estimate the palate shape for each MRI scan. This shape information
is needed in some cases to restore tongue surface information that is missing
due to contacts between tongue and palate.

First, we select a scan for each speaker where the hard palate is clearly
visible and perform template matching. We note that, in general, using a
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Figure 5: Palatal contact during the pronunciation of [i] (left) and result of restoring
hard palate surface information (right).

single template might produce suboptimal results in some matching cases. In
order to improve the results, we set up an iterative bootstrapping approach.
In each iteration, we first compute a PCA model of the palate (Hewer et al.,
2015) by using the results of the previous iteration. This model is then fitted
to each point cloud and the results are afterwards used as the initialization
for the template matching.

After we acquired the hard palate mesh for each considered speaker, we
want to align this mesh to each scan of the corresponding speaker. This
procedure serves the purpose of restoring tongue surface information that is
missing due to contacts between tongue and palate as shown in Figure 5.

Here, we have to address the issue that the corresponding speaker might
have moved between the scans. Fortunately, as the hard palate can only
undergo rigid body transformations, we only have to estimate this type of
motion. However, as the palate surface information might be partly miss-
ing, we fall back to color information for this task. To this end, we de-
fine the color profile set E(M, f ) ⊂ R` of a mesh M in a scan f . A profile
ei(M, f ) ∈ E(M, f ) is a vector such that its entries are given by

ei
j(M, f ) = f (vi + j d ni) (7)

where vi is a mesh vertex, ni its corresponding normal, and d the chosen
sampling distance. We see that we start above the palate surface in order to
avoid taking samples in the possible contact area between tongue and palate.

Then, we can estimate the rigid body motion A for aligning a palate mesh
M obtained from a scan f to a scan g by maximizing the energy:

Epalate(A) = ∑
i∈J(V )

NCC
(
ei(M, f ),ei(A(M),g)

)
(8)

where J(V ) is the index set of the vertex set V , NCC the normalized cross-
correlation between its operands, and A(M) the transformed mesh. We de-
cided to use the NCC as similarity measure because it is known to be robust
against noise and brightness differences. Furthermore, the NCC between
color profiles was already successfully used in a nearest neighbor heuristic
for template matching (Harandi et al., 2014). A result of this alignment ap-
proach can be seen in Figure 5.
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Figure 6: Effect of the bootstrapping strategy. Left: Initial template matching has
trouble correctly registering the tongue shape. Right: Bootstrapping improves the
result.

We now inject this aligned palate mesh information into the point cloud of
the corresponding scan in order to restore missing tongue surface information
by using the palate surface as a replacement. Additionally, we use the aligned
mesh as a boundary to remove points in the point cloud above the palate that
are unrelated to the tongue. Finally, we use a template matching to extract the
tongue shape from the corresponding modified point cloud. As in the palate
case, we use a bootstrapping strategy to refine the results. This time, we use a
multilinear model in each iteration as a statistical prior that is described in the
next section. Effects of this bootstrapping operation can be seen in Figure 6.

5 Multilinear Tongue Model
Having obtained a collection of tongue meshes, we then want to derive a
function

M : S×P→M (9)

where M is a set of meshes.
The set S⊆Rm̃ consists of coordinates s that describe a speaker’s anatom-

ical shape of the tongue. The set P ⊆ Rñ contains coordinates p that deter-
mine the shape for a specific speech related tongue pose. Here, we call S
the speaker subspace and P the pose subspace of the model. Meshes M ∈M
should have the same face set as our tongue template mesh. Their vertex sets
V (s,p), however, may differ from the original template with respect to their
vertex positions.

5.1 Preparing the Training Mesh Collection
Deriving the function in Equation 9 implies we want to analyze only the
anatomical and speech related variations in our mesh collection, which means
we have to remove all other variations present. The Procrustes alignment
technique (Dryden and Mardia, 1998) is a method suitable for this task as
it may be used to remove any translational and rotational differences among
the meshes in the collection. However, applying this technique directly to

9



the acquired tongue meshes might destroy critical information, e.g., related
to the speech related tongue pose. This is, for example, due to the fact that
the tongue also undergoes translational and rotational motions because it is
connected to the lower jaw.

As a remedy, we apply the Procrustes alignment to the hard palate meshes
we obtained earlier to remove translational and rotational differences be-
tween the speakers that are unrelated to the tongue motion. The results are
afterwards used as a reference to align the tongue meshes. To this end, we
use a speaker’s palate mesh that was earlier aligned to the corresponding
scan. Here, we then estimate the rigid transformation that maps this aligned
palate mesh to its Procrustes variant and apply the same motion to the cor-
responding tongue mesh. By doing so, we remove any translational and ro-
tational differences related to head motions or position differences without
destroying any speech or anatomy specific information.

Finally, we have to ensure that for each speaker the meshes for all se-
lected poses are available. Here, we reconstruct a missing pose shape of a
speaker by averaging available data: First, we compute the average shape of
all meshes that are present for the speaker. Afterwards, we compute the mean
shape of all meshes that are available for this specific pose from the other
speakers. Finally, both meshes are averaged again. We note that there exist
more sophisticated methods to restore missing information, like for example
HALRTC (Liu et al., 2013). In our case, however, this averaging approach
was sufficient.

5.2 Deriving the Model
In order to derive our desired function in Equation 9, we need to analyze the
anatomical and speech related variations separately. In several works (Harsh-
man et al., 1977; Hoole et al., 2000, 2003; Ananthakrishnan et al., 2010; Var-
gas et al., 2012b,a; Zheng et al., 2003), the PARAFAC method (Harshman,
1970) was used to perform this analysis. This method, also known as CAN-
DECOMP, decomposes a tensor into a sum of r rank-1 tensors where r is pro-
vided by the user. Therefore, this technique can be regarded as an extension
of the singular value decomposition to tensors. However, literature reports
issues with this method: Hoole et al. (2000) found that it might be difficult to
find reliable solutions. Vargas et al. (2012a) pointed out that the PARAFAC
decomposition requires a lot of components to describe the observed data in
a satisfactory way, which limits its usefulness as a dimensionality reduction
method. Moreover, De Silva and Lim (2008) discovered that the associated
standard approximation problem is mathematically ill-posed, which can lead
to the problem of diverging components in a numerical setting.

Another suitable method is the Tucker decomposition (Tucker, 1966) that
is sometimes also called higher-order singular value decomposition (HOSVD).
This method computes the orthonormal spaces of a tensor associated with
its modes. It may be regarded as a more flexible variant of the PARAFAC
method (Kiers and Krijnen, 1991) and has previously been used to analyze
2D tongue shape data (Vargas et al., 2012b).

Considering the issues of PARAFAC, we decided to use the Tucker de-
composition to analyze our data. Here, we follow the approach of Bolkart
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and Wuhrer (2015) who used it to analyze the variations of human faces in
different expressions. To this end, we first turn our tongue meshes into fea-
ture vectors by serializing the vertex sets V into vectors fi. Then, we compute
the mean µ , and center the vectors. Afterwards, we organize those centered
vectors in a tensor A ∈Rm×n×k. Here, we refer to the first mode of the tensor
as the speaker mode where m represents the number of speakers, to the sec-
ond mode as pose mode with n being the amount of different tongue poses,
and to the third mode as the vertex mode with k representing the dimension
of the vectors fi.

The HOSVD makes use of the fact that A can be decomposed as follows:

A =C×1 U1×2 U2 (10)

In our case, the row vectors of U1 ∈ Rm×m are coordinates in our speaker
space S that determine the anatomical shape for each of the original speak-
ers. A similar observation applies to U2 ∈ Rn×n where the row vectors are
coordinates in the pose space P. The tensor C ∈Rm×n×k is the core tensor of
the decomposition that acts as a link between S and P. The operation C×n U
is called the n-th mode multiplication of the tensor C with the matrix U .

The core tensor is the multilinear model we can use to create our function
in Equation 9: Essentially, given s ∈ S and p ∈ P, we can use C to generate
serialized vertex sets that represent the generated shape as follows:

v(s,p) = µ +C×1 s×2 p (11)

By letting V (s,p) be the vertex set reconstructed from v(s,p), we finally can
define our function as:

M(s,p) := (V (s,p),F) (12)

where F is the face set of our original template. We remark that the dimen-
sionality of the speaker and pose subspace can be truncated to remove shape
variations that may be considered negligible or related to noise. This means
that our subspaces have dimensionalities m̃≤ m and ñ≤ n.

5.3 Model Fitting
We can use this derived model to register data, for example a point cloud Q.
This time, we want to optimize for the parameters s ∈ S and p ∈ P that best
describe the speaker anatomy and tongue pose that is represented in the data.
To this end, we minimize the following energy:

EFit(s,p) = α Edata(s,p)+ γ Elandmark(s,p) (13)

where the data and landmark terms are equivalent in their modeling idea to
their counterparts in the template matching case. Furthermore, we use the
same nearest neighbor heuristic and optimization approach as in the tem-
plate matching. This time, the weights for both terms remain constant during
the optimization of the energy series. However, we note that if the correct
neighbors are known, they can be set directly and only one energy has to
minimized in that case.
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It is common to limit the admissible values for s and p to avoid highly
unlikely shapes. In particular, we limit each entry of s and p individually to
an interval

[mi−h σi,mi +h σi] (14)

where σi is the standard deviation of the corresponding variation in the used
mesh collection and mi the corresponding entry of the mean coordinate in the
respective subspace. Finally, h ∈ R+ is a scale factor.

We note that the above energy can also be used to fit a PCA model: In
this case, the energy depends only on one parameter.

6 Evaluation
Our next goal is to apply the described framework to MRI data and evaluate
the quality of the obtained tongue model.

6.1 Used Data
We use two datasets to derive our model: The dataset of Adam Baker (Baker,
2011) and the full dataset of the Ultrax project (Ult, 2014), which provides
us with data of 12 speakers in total.

The Ultrax project consists of static MRI scans of 11 adult speakers
where 7 are female and 4 are male. All speakers are phonetically trained
and were recorded while sustaining the vocal tract configuration for different
phones. For each speaker, 13 speech related scans are available that corre-
spond to the phone set [i, e, E, a, A, 2, O, o, u, 0, @, s, S].

The Baker dataset was recorded as part of the Ultrax project, but released
separately. It contains 25 scans of one male speaker that are speech related
and depict different articulatory configurations.

The data was recorded at the Clinical Research Imaging Centre in Edin-
burgh using a Siemens Verio 3T scanner where they were acquired with an
echo time of 0.93 ms and a repetition time of 2.36 ms. The individual scans
consist of 44 sagittal slices with a thickness of 1.2 mm and a slice size of
320×320 pixels. Here, we have as grid spacings hx = hy = 1.1875mm and
hz = 1.2mm.

For our analysis, we decided to exclude one speaker of the Ultrax dataset
that showed a high activity of the soft palate, which caused problems in our
framework. Furthermore, we use the whole phone set that was recorded for
the Ultrax data. However, we note that the Baker dataset is lacking scans
for the phones [a, O, 0, @, s, S] where the shape information has to be recon-
structed.

In total, we are using the shape information of 11 speakers with 13 dif-
ferent tongue shape configurations. This means that we arrive at a tensor
A ∈ R11×13×9300 where the dimension of the vertex mode is related to the
vertex count of the tongue template we are using.

6.2 Applied Settings
For this data, the following settings were applied in our framework to extract
the mesh collection:
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Figure 7: Speech related regions of the tongue surface: Tongue tip (red), tongue
blade (brown), tongue back (violet), tongue dorsum (blue), and the lateral regions
(green).

In the case of template matching, we used α = 1, β = 10, βmin = 6, and
γ = 10. Thus, we start with a high weight for the smoothness and landmark
terms to drive the template to the correct neighborhood at the beginning of
the optimization. The template matching for the tongue used γmin = 0 to
damp the effects of falsely placed landmarks. We used γmin = 10 for the
palate matching to ensure that its extremities were correctly aligned. For the
model fitting that is applied during the bootstrapping, we used α = γ = 1. In
the nearest neighbor heuristic, we set the search radius to 4 mm and limited
the maximally allowed angle difference between the normals to 60 degrees.
The optimization for the template matching used a series of 40 energies, the
one for the model fitting applied a series of 10 energies to find the minimizer.
For the palate alignment, we decided to use sufficiently long profiles with a
length of `= 15 and a sampling distance of d = 1mm.

In the bootstrapping strategy, we applied iterations until a satisfactory
visual result was obtained: We used 1 iteration for the hard palate and 5
iterations for the tongue. For the scale factor h in the model fitting, we used
0.5 for the tongue and 1 for the palate in order to prevent overfitting.

The landmarks needed for the hard palate and the tongue were placed on
the MRI scans by a user that is not an anatomical expert.

6.3 Model Analysis
It is common to evaluate such statistical models by analyzing their compact-
ness, generalization, and specificity (Styner et al., 2003) in order to find the
optimal subspace dimensionality.

Compactness investigates how much the individual components of s and
p contribute to the description of the used training data. In Figure 8, we
see that using m̃ = 5 is sufficient to represent 91 percent of data variability.
Approximately the same holds for ñ = 4.

Generalization measures how well the model can represent data that was
not part of the training. To evaluate the speaker generalization, we designed
the following experiment: The data of each speaker was once excluded from
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Figure 8: Compactness (left), generalization (center), and specificity (right) of the
model for the speaker (top) and pose subspace (bottom). For the generalization
and specificity, we visualize the mean (line) and the standard deviation (ribbon) of
the experiments.
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the training set. The derived model was then used to register this excluded
data where we measured the average Euclidean distance between the regis-
tered mesh and the original one. Additionally, we analyzed the fitting results
for different values of m̃. The dimensionality of the pose subspace was fixed
to ñ = 4 during these experiments to prevent overfitting caused by this sub-
space. In the analysis of the pose generalization, we used the same approach.
In this case, the dimensionality of the speaker subspace was fixed to m̃ = 5.
The results of these experiments are depicted in Figure 8. During this evalu-
ation, we used the scale factor h = 2 in the model fitting optimization.

The specificity tries to assess how much the generated tongue shapes of
the model differ from the original training data. In particular, we wanted
to investigate how large these differences were for the regions of the tongue
mesh that are speech related. Figure 7 shows an overview of those regions.
To this end, we designed a few experiments where samples from the two sub-
spaces were drawn randomly in order to generate a tongue shape. The first
experiment investigated the specificity of the speaker subspace. Here, the
pose subspace is again fixed to ñ = 4 and the speaker subspace size was var-
ied. For each value of m̃, we generated random tongue shapes and evaluated
the average Euclidean distance between the created mesh and the closest one
in the mesh collection. In this comparison and distance evaluation, a region
consisting of all speech related parts was considered. The same experiment
was conducted for analyzing the specificity of the pose subspace where the
speaker subspace size was set to m̃ = 5. The results of both experiments can
be inspected in Figure 8.

Finally, we wanted to find out how much the tongue shapes belonging to
specific phones differ from the corresponding ones generated by the model.
Here, we performed for each phone the following experiment: We froze the
coordinates in the pose subspace to the ones belonging to the given phone.
Moreover, we only allowed the generated meshes to be compared to meshes
belonging to that phone. Then, for each dimensionality of the speaker sub-
space, we generated samples and computed the average Euclidean distance
to the closest mesh. This time, we used in the distance evaluation and com-
parison parts of the tongue that are considered critical for this specific phone,
cf. Jackson and Singampalli (2009). For the vowels [i, e, E, a, A, 2, O, o, u, 0,
@], we selected a region consisting of the tongue blade, tongue back, and the
tongue dorsum. The area for the sibilants [s, S] contains the tongue tip and
the tongue blade. The results of these experiments are shown in Figure 9.

In all specificity experiments, we generated 106 samples.
The performed experiments provide an interesting insight into the model

properties. The results of the generalization experiments show that only a
few components of p and s are needed to reliably register unseen data. In
particular, for p, 3 components are enough to reach an average error that
is slightly above the measurement precision of the MRI scan data. For s,
7 components are needed to reach this kind of precision. Furthermore, we
observe that a high number of components leads to errors below the mea-
surement precision of the scan data, which can be considered as overfitting.
Here, we observe that the pose subspace has better generalization abilities
than the speaker subspace. We suspect this might be related to redundancies
in our training data: For example, the phones [2, O], [e, i], or [e, E] are similar
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Figure 9: Specificity results for the individual fixed phone experiments. Plots show
mean (line) and standard deviation (ribbon).
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to each other with respect to shape (Ladefoged, 1982). This means that ex-
cluding one still provides the model with enough information to capture the
related variation.

Moreover, we notice that the phone [0] shows a significantly bad result
in the fixed phone specificity evaluation, which might be related to its un-
usual role in the phonology of British English. We suspect that some speak-
ers might have pronounced it inconsistently and applied different strategies,
which led to a high variation in the data that is then integrated into the model.
From this observation, we draw the conclusion that the multilinear model
might be used to detect such inconsistencies by performing the fixed phone
experiments.

Overall, we decided that setting m̃ = 5 and ñ = 4 provides a good com-
promise between specificity, generalization, and compactness. We note that
this choice also limits the effects of overfitting.

7 Conclusion
In this work, we presented a multilinear tongue model that was derived from
volumetric MRI scans in a minimally supervised way. In particular, we saw
during the experiments that a model with a low dimensionality can reliably
register unknown data with an acceptable precision.

In the future, we plan to investigate whether more shape variations can be
obtained using more data. To this end, we want to use additional datasets in
our framework. This implies that we also have to extract the shapes of phones
like [g, k] that are known for having a contact with the soft palate. Here, we
have to address the issue of recovering the surface of the soft palate in the
corresponding scans that can also deform in a non-rigid way. Additionally,
the datasets we use might differ with respect to the recorded phones, which
leads to missing data in our training set. In this case, the simple averaging
method for reconstructing missing shapes is no longer sufficient. Further-
more, using more data also increases the risk of encountering falsely labeled
or corrupt scans.

Our hypothesis that the multilinear model could be used to find incon-
sistencies in phone production could be tested in the future by choosing the
phones in the training data as follows: One set should consist of phones that
show little variance among speakers. The other set should contain phones
that show a high variance among speakers because different strategies are
available to produce them, for example [l, T] (Keating, 2014). If the hy-
pothesis were true, the fixed phone specificity experiments would show good
results for the first set and bad results for the second one. In this case, this
experiment could also be used as a heuristic to cluster speakers according
to the articulation strategy they use. However, we note that the described
experiment would require a dataset with recordings of the phones needed.

Moreover, we want to explore whether the derived model can be used
to extract realistic 3D tongue motions from real-time 2D MRI data that was
recorded in the mid-sagittal plane. We think that the acquired results can
help to understand how the typical transitions between phones appear in the
pose subspace and how they are affected by the anatomy of the speaker. Ul-
timately, this could lead to another multilinear model that could be used to
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generate these transitions.
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