A Variational Bayesian Approach for Restoring Data Corrupted with Non-Gaussian Noise

Yosra Marnissi, Yuling Zheng, Emilie Chouzenoux, Jean-Christophe Pesquet

To cite this version:

Yosra Marnissi, Yuling Zheng, Emilie Chouzenoux, Jean-Christophe Pesquet. A Variational Bayesian Approach for Restoring Data Corrupted with Non-Gaussian Noise. [Research Report] Laboratoire Informatique Gaspard Monge. 2016. <hal-01418399>

HAL Id: hal-01418399
https://hal.archives-ouvertes.fr/hal-01418399
Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Variational Bayesian Approach for Restoring Data Corrupted with Non-Gaussian Noise

Yosra Marnissi, Yuling Zheng, Emilie Chouzenoux and Jean-Christophe Pesquet *

October 24, 2016

Abstract

In this paper, a methodology is investigated for signal recovery in the presence of non-Gaussian noise. In contrast with regularized minimization approaches often adopted in the literature, in our algorithm the regularization parameter is reliably estimated from the observations. As the posterior density of the unknown parameters is analytically intractable, the estimation problem is derived in a variational Bayesian framework where the goal is to provide a good approximation to the posterior distribution in order to compute posterior mean estimates. Moreover, a majorization technique is employed to circumvent the difficulties raised by the intricate forms of the non-Gaussian likelihood and of the prior density. We demonstrate the potential of the proposed approach through comparisons with state-of-the-art techniques that are specifically tailored to signal recovery in the presence of mixed Poisson-Gaussian noise. Results show that the proposed approach is efficient and achieves performance comparable with other methods where the regularization parameter is manually tuned from an available ground truth.

Keywords: inverse problems, restoration, Variational Bayesian methods, parameter estimation, non-Gaussian noise, majorization, minimization.

1 Introduction

One of the most challenging tasks in signal processing is restoration, where one aims at providing an accurate estimate of the original signal from degraded observations. These degradations may arise due to various phenomena which are often unavoidable in practical situations. Undesirable blurring may be introduced by the atmosphere or may also stem from the intrinsic limitations of the acquisition system characterized by its point spread function. Furthermore, data can be perturbed by noise which can be viewed as parasite signal added to the information of interest, hence altering the extraction of this information. Noise may originate from various sources. On the one hand, sensors generally suffer from internal fluctuations referred to electrical or thermal noise. This type of noise is additive, independent of the signal of interest, and it can be modeled by a Gaussian distribution. On the other hand, it has been experimentally proven that in many situations, the signal of interest may suffer from noise with more complex

*Y. Marnissi and E. Chouzenoux are with University Paris-Est, LIGM, UMR CNRS 8049, 77454 Marne-la-Vallée, France (e-mail: first.last@u-pem.fr). Y. Zheng is with IBM Research China, Building 19, Zhongguancun Software Park, 8 Dongbeiwang Western Road, Haidian District, Beijing, 1100193, CN, China (e-mail: ylzh@cn.ibm.com). J.-C. Pesquet is with Center for Visual Computing, CentraleSupelec, University Paris-Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France (e-mail: jean-christophe@pesquet.eu). This work was supported by the CNRS Imag’in project under grant 2015OPTIMISME, by the CNRS MASTODONS project under grant 2016TABASCO, and by the Agence Nationale de la Recherche under grant ANR-14-CE27-0001 GRAPHSIP.
characteristics. In fact, many devices lead to measurements distorted by heteroscedastic noise i.e. the characteristics of the noise depend on the characteristics of the unknown signal [1–7]. For example, to better reflect the physical properties of optical communication, the noise remains additive Gaussian but its variance is assumed to be dependent on the unknown signal [8]. Signals can also be corrupted with multiplicative noise [9–12] such as the speckle noise which commonly affects synthetic aperture radar (SAR), medical ultrasound and optical coherence tomography images [13], as well as with impulsive noise [14]. A mixture of Gaussian and impulsive noise has also been studied in [15,16]. Furthermore, in applications such as astronomy, medicine, and fluorescence microscopy where signals are acquired via photon counting devices, like CMOS and CCD cameras, the number of collected photons is related to some non-additive counting errors resulting in a shot noise [1–3,17,18]. The latter is non-additive, signal-dependent and it can be modeled by a Poisson distribution [19–28]. In this case, when the noise is assumed to be Poisson distributed, the implicit assumption is that Poisson noise dominates over all other noise kinds. Otherwise, the involved noise is a combination of Poisson and Gaussian (PG) components [29–41]. Most of the existing denoising methods only consider the noise as independent Gaussian, mainly because of the difficulties raised in handling other noise sources than the Gaussian one. In this paper, we focus on signal recovery beyond the standard additive independent Gaussian noise assumption.

1.1 State-of-the-art

Most of the existing strategies for such problems define the estimate as a minimizer of an appropriate cost function. The latter is composed of two terms: the so-called data fidelity term whose role is to make the solution consistent with the observation and the regularization term that incorporates prior information about the target signal so as to ensure the stability of the solution [42]. Several algorithms have been proposed to tackle the problem of restoration for signals corrupted with non-Gaussian noise by using minimization approaches. For example, in [43], a method is proposed to restore signals degraded by a linear operator and corrupted with an additive Gaussian noise having a signal-dependent variance. An early work in [44] and more recent developments in [29,34–36,39,45,46] have proposed to restore signals corrupted with mixed PG noise using different approximations of the PG data fidelity term. In all these approaches, the regularization parameter allows a tradeoff to be performed between fidelity to the observations and the prior information. Too small values of this parameter may lead to noisy estimates while too large values yield oversmoothed solutions. Consequently, the problem of setting a proper value of the regularization parameter should be addressed carefully and may depend on both the properties of the observations and the statistics of the target signal. When ground truth is available, one can choose the value of the regularization parameter that gives the minimal residual error evaluated through some suitable metric. However, in real applications where no ground truth is available, the problem of selecting the regularization parameter remains an open issue especially in situations where the images are acquired under poor conditions i.e. when the noise level is very high. Among existing approaches dealing with regularization parameter estimation, the works in [47–53] have to be mentioned. However, most of the mentioned methods were developed under the assumption of a Gaussian noise and their extension to the context of non-Gaussian noise is not easy. One can however mention the works in [31,33] proposing efficient estimators in the context of denoising i.e. problems that do not involve linear degradation. Other approaches can be found in [54,55] proposing efficient estimates in the specific case of a Poisson likelihood.

To address the shortcomings of these methods, one can adopt the Bayesian framework. In particular, Bayesian estimation methods based on Markov Chain Monte Carlo (MCMC)
sampling algorithms have been recently extended to inverse problems involving non-Gaussian noise [56–59]. However, despite good estimation performance that has been obtained, such methods remain computationally expensive for large scale problems. Another alternative approach is to rely on variational Bayesian approximation (VBA) [60–64]. Instead of simulating from the true posterior distribution, VBA approaches aim at approximating the intractable true posterior distribution with a tractable one from which the posterior mean can be easily computed. These methods can lead generally to a relatively low computational complexity when compared with sampling based algorithms.

1.2 Contributions

In this paper, we propose a VBA estimation approach for signals degraded by an arbitrary linear operator and corrupted with non-Gaussian noise. One of the main advantages of the proposed method is that it allows us to jointly estimate the original signal and the required regularization parameter from the observed data by providing good approximations of the Minimum Mean Square Estimator (MMSE) for the problem of interest. While using VBA, the main difficulty arising in the non-Gaussian case is that the involved likelihood and the prior density may have a complicated form and are not necessarily conjugate. To address this problem, a majorization technique is adopted providing a tractable VBA solution for non-conjugate distributions. Our approach allows us to employ a wide class of a priori distributions accounting for the possible sparsity of the target signal after some appropriate linear transformation. Moreover, it can be easily applied to several non Gaussian likelihoods that have been widely used [29, 39, 65, 66]. In particular, experiments in the case of images corrupted by PG noise showcase the good performance of our approach compared with methods using the discrepancy principle for estimating the regularization parameter [67]. Moreover, we propose variants of our method leading to a significant reduction of the computational cost while maintaining a satisfactory restoration quality.

1.3 Outline

This paper is organized as follows. In Section 2, we formulate the considered signal recovery problem in the Bayesian framework and we present a short overview on the variational Bayesian principle. In Section 3, we present our proposed estimation method based on VBA. In Section 5, we provide simulation results together with comparisons with state-of-the-art methods in terms of image restoration performance and computation time. Finally, some conclusions are drawn in Section 6.

2 Problem statement

2.1 Bayesian formulation

In this paper, we consider a wide range of applications where the degradation model can be formulated as an inverse possibly ill-posed problem as follows:

\[(\forall i \in \{1, \ldots, M\}), \quad y_i = D([Hx]_i),\] \hspace{1cm} (1)

where \(x \in \mathbb{R}^N\) is the signal of interest, \(H \in \mathbb{R}^{M \times N}\) is the linear operator typically modeling a blur, a projection, or a combination of both degradations, \([Hx]_i\) denotes the \(i\)-th component of \(Hx\), \(y = (y_i)_{1 \leq i \leq M} \in \mathbb{R}^M\) is the measured data and \(D\) is the noise model that may depend
on the target data. The objective is to find an estimator \hat{x} of x from H and y. The neg-log-likelihood ϕ of the observations reads

$$\forall x \in \mathbb{R}^N \quad \phi(x; y) = -\ln p(y|x) = \sum_{i=1}^{M} \phi_i([Hx_i; y_i]). \quad (2)$$

Depending on the noise statistical model D, ϕ_i may take various forms [3,14,16,31]. In particular, it reduces to a least squares function for additive Gaussian noise. In the Bayesian framework, we apply regularization by assigning a prior distribution to the data x to be recovered. In this paper, we adopt the following flexible expression of the prior density of x:

$$p(x | \gamma) = \tau \gamma^{N^2} \exp \left(-\gamma \sum_{j=1}^{J} \|D_j x\|_2^{2\kappa}\right), \quad (3)$$

where κ is a constant in $(0, 1]$, $\| \cdot \|$ denotes the ℓ_2-norm and $(D_j)_{1 \leq j \leq J} \in (\mathbb{R}^{S \times N})^J$ is an operator that may be a matrix computing the discrete difference between neighboring pixels or a frame-analysis operator [68]. The constant $\gamma \in (0, +\infty)$ can be viewed as a regularization parameter that plays a prominent role in the restoration process and $\tau \in (0, +\infty)$ is a normalization constant independent of γ. Note that the form of the partition function for such a prior distribution follows from the fact that the associated potential is 2κ-homogeneous [69].

In this paper, the noise shape parameter κ is chosen to be fixed through empirical methods and we aim at estimating parameter γ together with x. To this end, we choose a Gamma prior for γ, i.e. $p(\gamma) \propto \gamma^{\alpha-1} \exp(-\beta \gamma)$ where α and β are positive constants (set in practice to small values to ensure a weakly informative prior).

Using the Bayes’ rule, we can obtain the posterior distribution of the set of unknown variables $\Theta = (x, \gamma)$ given the vector of observations y:

$$p(\Theta | y) \propto p(y | x)p(x | \gamma)p(\gamma). \quad (4)$$

However, this distribution has an intricate form. In particular, its normalization constant does not have a closed form expression. To cope with this problem, we resort to the variational Bayesian framework. The rationale of this work is to find a simple approximation to the true posterior distortion, leading to a tractable computation of the posterior mean estimate.

2.2 Variational Bayes principle

The variational Bayes approach has been first introduced in physics [70]. The idea behind it is to approximate the posterior distribution $p(\Theta | y)$ with another distribution denoted by $q(\Theta)$ which is as close as possible to $p(\Theta | y)$, by minimizing the Kullback-Leibler divergence between them [60,68,71]:

$$q^{\text{opt}} = \arg\min_{q} KL(q(\Theta)||p(\Theta | y)), \quad (5)$$

where

$$KL(q(\Theta)||p(\Theta | y)) = \int q(\Theta) \ln \frac{q(\Theta)}{p(\Theta | y)} \, d\Theta. \quad (6)$$

This minimization becomes tractable if a suitable factorization structure of $q(\Theta)$ is assumed. In particular, we assume that $q(\Theta) = \prod_{r=1}^{R} q(\Theta_r)$. Hence, the optimal density approximation $q^{\text{opt}}(\Theta_r)$ for each variable Θ_r, is obtained by minimizing the KL divergence while holding the remaining densities for the rest of variables fixed. In this case, there exists an optimal solution
to the optimization problem (5) for each density \(q(\Theta_r)\), given by the exponential of the expectation of the joint density with respect to the distribution of all the unknown parameters except the one of interest i.e.

\[
(\forall r \in \{1, \ldots, R\}) \quad q^{\text{opt}}(\Theta_r) \propto \exp \left(\langle \ln p(y, \Theta) \rangle \Pi_{\theta \neq r} q^{\text{opt}}(\Theta_{\theta}) \right) \tag{7}
\]

where \(\langle \cdot \rangle_{\theta \neq r} q(\Theta_{\theta}) = \int \prod_{\theta \neq r} q(\Theta_{\theta}) \, d\Theta_{\theta}\). Due to the implicit relations existing between \((q^{\text{opt}}(\Theta_r))_{1 \leq r \leq R}\), an analytical expression of \(q^{\text{opt}}(\Theta)\) generally does not exist. Usually, these distributions are determined in an iterative way, by updating one of the separable components \((q(\Theta_r))_{1 \leq r \leq R}\) while fixing the others [60]. Applications of classical VBA approaches can be found in [62–64, 72, 73] while improved VBA algorithms have been proposed in [61,74]. Once the approximate distributions are computed, the unknown parameters are then estimated by the means of the obtained distributions.

3 Proposed approach

<table>
<thead>
<tr>
<th>Name</th>
<th>(q(v, y_i))</th>
<th>(\phi'(v, y_i))</th>
<th>(\beta(y))</th>
<th>Domain of validity</th>
<th>Noise model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>(\frac{1}{\sqrt{2\pi}}(v-y)^2)</td>
<td>(\frac{1}{\sqrt{2\pi}}(v-y))</td>
<td>(\frac{1}{\sqrt{2\pi}})</td>
<td>(v \in \mathbb{R})</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Cauchy</td>
<td>(\frac{\pi}{\pi - 2} \ln \left(1 + (y - y_i)^2 / \pi \right))</td>
<td>(\frac{2 - (y - y_i)}{\pi y})</td>
<td>(\frac{2}{\pi\gamma})</td>
<td>(y \in \mathbb{R})</td>
<td>Cauchy</td>
</tr>
<tr>
<td>Anscombe Transform</td>
<td>(\frac{1}{\gamma} \left(\sqrt{\gamma + z - \sqrt{\gamma^2 + z^2}} \right)^2)</td>
<td>(\frac{2}{\gamma} \left(\sqrt{\gamma + z - \sqrt{\gamma^2 + z^2}} \right)^2)</td>
<td>(\frac{2}{\gamma} \left(\sqrt{\gamma + z - \sqrt{\gamma^2 + z^2}} \right)^2)</td>
<td>(y \geq -\frac{1}{\gamma})</td>
<td>Poisson</td>
</tr>
<tr>
<td>Generalized Anscombe Transform</td>
<td>(\frac{1}{\gamma} \left(\sqrt{\gamma + z + \sqrt{\gamma^2 + z^2}} \right)^2)</td>
<td>(\frac{2}{\gamma} \left(\sqrt{\gamma + z + \sqrt{\gamma^2 + z^2}} \right)^2)</td>
<td>(\frac{2}{\gamma} \left(\sqrt{\gamma + z + \sqrt{\gamma^2 + z^2}} \right)^2)</td>
<td>(y \geq -\frac{1}{\gamma} - \frac{1}{\gamma^2})</td>
<td>Poisson-Gaussian</td>
</tr>
<tr>
<td>Shifted Poisson</td>
<td>(v - (v^2 + \gamma \ln(v + \gamma)))</td>
<td>(\frac{\gamma + \gamma^2}{\gamma^2 + \gamma^2})</td>
<td>(\gamma^2 + \gamma^2)</td>
<td>(y \geq -\gamma^2)</td>
<td>Poisson-Gaussian</td>
</tr>
<tr>
<td>Weighted least squares</td>
<td>(\left(\frac{v - y_i}{\sigma^2} \right)^2 + \frac{1}{2} \ln(v + \gamma))</td>
<td>(\left(\frac{v - y_i}{\sigma^2} \right)^2 + \frac{1}{2} \ln(v + \gamma))</td>
<td>(\max \left(\frac{v + \gamma^2}{\sigma^2} - \frac{1}{2} \left(\frac{v + \gamma^2}{\sigma^2} \right)^2 \right))</td>
<td>(y \in \mathbb{R}, (\gamma - \sigma^2))</td>
<td>Poisson-Gaussian</td>
</tr>
</tbody>
</table>

Table 1: Examples of differentiable likelihoods satisfying Assumption 3.1. \(\phi_i\) denotes the first derivative of function \(\phi_i\) and \(\beta_i(y_i)\) is the Lipschitz constant of \(\phi_i\) (for functions in lines 3-6, we assume that \(\phi_i\) is replaced on \(\mathbb{R}^+\) by its quadratic extension (9).) The expression for the Lipschitz constant of the gradient of the weighted least squares likelihood was established in [75, Chap. IV].

In this work, we assume the following separable form for \(q\):

\[
q(\Theta) = q(x)q(\gamma). \tag{8}
\]

Unfortunately, by using directly (7), we cannot obtain an explicit expression of \(q(x)\) due to the intricate form of both the prior distribution and the likelihood when the statistics of the noise are no longer Gaussian. In this paper, we propose to use deterministic methods to construct quadratic upper bounds for the negative logarithms of both the likelihood and the prior density [76]. This allows us to derive an upper bound of the desired cost function in (5) as will be described in the following.

3.1 Construction of the majorizing approximation

3.1.1 Likelihood

One popular approach in signal recovery is the half-quadratic formulation [77]. Under some mild assumptions and by introducing some auxiliary variables, a complicated criterion can be written
as the infimum of a surrogate half-quadratic function i.e. the latter is quadratic with respect to the original variables and the auxiliary variables appear decoupled. This half-quadratic criterion can be then efficiently minimized using classical optimization algorithms. This formulation has been widely used in energy-minimization approaches [78–80] where the initial optimization problem is replaced by the minimization of the constructed surrogate function. Furthermore, this technique has been recently extended to sampling algorithms [81]. The initial intractable posterior distribution to sample from is replaced by the conditional distribution of the target signal given the auxiliary variables. The obtained distribution has been shown to be much simpler to explore by using standard sampling algorithms. In this paper, we propose to use half-quadratic approaches to construct an upper bound for the objective function in (5).

We assume that the likelihood satisfies the following property:

Assumption 3.1. For every \(i \in \{1, \ldots, M\} \), \(\phi_i \) is differentiable on \(\mathbb{R} \) and there exists \(\mu_i(y_i) > 0 \) such that the function defined by \(v \mapsto v^2 - \frac{\phi_i(v; y_i)}{\mu_i(y_i)} \) is convex on \(\mathbb{R} \).

In particular, this assumption is satisfied when, for every \(i \in \{1, \ldots, M\} \), \(\phi_i \) is \(\beta_i(y_i) \)-Lipschitz differentiable on \(\mathbb{R} \) for every \(\mu_i(y_i) \geq \beta_i(y_i) \). Table 1 shows some examples of useful functions satisfying the desired property (up to an additive constant). Note that, since the functions in lines 3-6 of Table 1 are \(\beta_i(y_i) \)-Lipschitz differentiable only on \(\mathbb{R}_+ \), we propose to use on \(\mathbb{R}_- \) a quadratic extension of them defined as follows:

\[
(\forall v \in \mathbb{R}_-) \quad \phi_i(v; y_i) = \phi_i(0; y_i) + \phi_i'(0; y_i)v + \frac{1}{2} \phi_i''(0; y_i)v^2,
\]

so that the extended version of \(\phi_i(\cdot; y_i) \) is now differentiable on \(\mathbb{R} \) with \(\beta_i(y_i) \)-Lipschitzian gradient.

For every \(i \in \{1, \ldots, M\} \) and \(v \in \mathbb{R} \), let us define the following function:

\[
(\forall v \in \mathbb{R}) \quad \varsigma_i(v; y_i) = \sup_{t \in \mathbb{R}} \left(-\frac{1}{2} (v - t)^2 + \frac{\phi_i(t; y_i)}{\mu_i(y_i)} \right).
\]

Then, the following property holds:

Proposition 3.1. For every \(i \in \{1, \ldots, M\} \),

\[
(\forall v \in \mathbb{R}) \quad \phi_i(v; y_i) = \inf_{w_i \in \mathbb{R}} T_i(v, w_i; y_i).
\]

where, for every \(v \in \mathbb{R} \),

\[
T_i(v, w_i; y_i) = \mu_i(y_i) \left(\frac{1}{2} (v - w_i)^2 + \varsigma_i(w_i; y_i) \right).
\]

Moreover, the unique minimizer of \(w_i \mapsto T_i(v, w_i; y_i) \) reads

\[
\hat{w}_i(v) = v - \frac{1}{\mu_i(y_i)} \phi_i'(v; y_i).
\]

Proof. See Appendix 6.

It follows from this result that

\[
(\forall x \in \mathbb{R}^N) \quad \phi(x; y) = \inf_{w \in \mathbb{R}^M} T(x, w; y),
\]

6
where \(T(x, w; y) = \sum_{i=1}^{M} T_i([Hx]_i, w_i; y_i) \).

Note that (11) shows that, for every \(i \in \{1, \ldots, M\} \), \(\phi_i(\cdot; y_i) \) is a so-called Moreau envelope of the function \(s_i(\cdot; y_i) \). A more direct proof of Proposition 3.1 can thus be derived from the properties of the proximity operator [82] when the functions \((\phi_i)_{1 \leq i \leq M} \) are convex. The proof we provide in the appendix however does not make such a restrictive assumption.

3.1.2 Prior

Similarly, we construct a surrogate function for the prior distribution. More precisely, we follow the same idea as in [63] and we use the following convexity inequality to derive a majorant for the \(\ell_\kappa \)-norm :

\[
(\forall u \geq 0)(\forall v > 0) \quad u^\kappa \leq (1 - \kappa)u^\kappa + \kappa v^{\kappa-1}.
\]

Hence, we obtain the following majorant function for the negative logarithm of the prior distribution:

\[
\gamma \sum_{j=1}^{J} ||D_j x||^{2\kappa} \leq \gamma \sum_{j=1}^{J} \frac{\kappa||D_j x||^2 + (1 - \kappa)\lambda_j}{\lambda_j^{1-\kappa}}.
\]

where \((\lambda_j)_{1 \leq j \leq J}\) are positive variables. In the following, we will denote by \(Q(x, \lambda; \gamma) = \sum_{j=1}^{J} Q_j(D_j x, \lambda_j; \gamma) \), the function in the right-hand side of the above inequality where, for every \(j \in \{1, \ldots, J\} \),

\[
Q_j(D_j x, \lambda_j; \gamma) = \gamma \frac{\kappa||D_j x||^2 + (1 - \kappa)\lambda_j}{\lambda_j^{1-\kappa}}.
\]

3.1.3 Proposed majorant

Thus, we can derive the following lower bound for the posterior distribution:

\[
p(\Theta \mid y) \geq L(\Theta | y; w, \lambda),
\]

where function \(L \) is defined as

\[
L(\Theta | y; w, \lambda) = C(y) \exp \left[-T(x, w; y) - Q(x, \lambda; \gamma)\right] p(\gamma)
\]

with \(C(y) = p(y)^{-1}(2\pi)^{-M/2} \gamma^{-\frac{N}{2}} \). The minorization of the distribution leads to an upper bound for the K\(\ell \) divergence:

\[
K\ell(q(\Theta) \| p(\Theta \mid y)) \leq K\ell(q(\Theta) \| L(\Theta | y; w, \lambda)).
\]

Note that, although the constructed lower bound in (17) is tangent to the posterior distribution i.e.

\[
p(\Theta \mid y) = \sup_{w \in \mathbb{R}^M, \lambda \in \mathbb{R}^J} L(\Theta | y; w, \lambda),
\]

the tangency property may not be generally satisfied in (18). Thus, the tightness of the constructed majorant of the K\(\ell \) divergence may have a significant impact on the accuracy of the method. By minimizing the constructed bound (18) with respect to \(w \) and \(\lambda \), we make this bound as tight as possible. Note that, for every \(i \in \{1, \ldots, M\} \) and \(j \in \{1, \ldots, J\} \), \(\lambda_j \mapsto K\ell(q(\Theta) \| L(\Theta | y; w, \lambda)) \) and \(w_i \mapsto K\ell(q(\Theta) \| L(\Theta | y; w, \lambda)) \) can be minimized separately. Hence, Problem (5) can be solved by the following four-step alternating optimization scheme:
• Minimizing the upper bound in (18) w.r.t. \(q(x) \);

• Updating the auxiliary variables \(w_i \) in order to minimize \(KL(q(\Theta) \| L(\Theta|y; w, \lambda)) \), for every \(i \in \{1, \ldots, M\} \);

• Updating the auxiliary variable \(\lambda_j \) in order to minimize \(KL(q(\Theta) \| L(\Theta|y; w, \lambda)) \), for every \(j \in \{1, \ldots, J\} \);

• Minimizing the upper bound in (18) w.r.t. \(q(\gamma) \).

The main benefit of this majorization strategy is to guarantee that the optimal approximate posterior distribution for \(x \) belongs to the Gaussian family and the optimal approximate posterior distribution for \(\gamma \) belongs to the Gamma one, i.e.

\[
q(x) \equiv N(\mathbf{m}, \Sigma), \quad q(\gamma) \equiv \mathcal{G}(a, b).
\]

Therefore, the distribution updates can be performed by updating their parameters, namely \(\mathbf{m}, \Sigma, a, \) and \(b \).

4 Iterative algorithm

Subsequently, at a given iteration \(k \) of the proposed algorithm, the corresponding estimated variables will be indexed by \(k \).

4.1 Updating \(q(x) \)

Because of the majorization step, we need to minimize the upper bound on the \(KL \) divergence. The standard solution (7) can still be used by replacing the joint distribution by a lower bound \(L(\Theta, y; w, \lambda) \) chosen proportional to \(L(\Theta|y; w, \lambda) \):

\[
q^{k+1}(x) \propto \exp\left(\frac{\ln L(x, \gamma, y; w^k, \lambda^k)}{q^k(\gamma)} \right) \\
\propto \exp\left(\int \ln L(x, \gamma, y; w^k, \lambda^k)q^k(\gamma)d\gamma \right) \\
\propto \exp\left(-\sum_{i=1}^{M} \frac{1}{2} \mu_i(y_i) \left(Hx_i - w^k_i \right)^2 - \frac{a_k}{b_k} \sum_{j=1}^{J} \kappa \|D_jx\|^2 + (1 - \kappa)\lambda^k_j \right). \tag{19}
\]

The above distribution can be identified as a multivariate Gaussian distribution whose covariance matrix and mean parameter are given by

\[
\Sigma^{-1}_{k+1} = H^\top \text{Diag}(\mu(y))H + 2\frac{a_k}{b_k} D^\top \Lambda^k D, \tag{20}
\]

\[
\mathbf{m}_{k+1} = \Sigma_{k+1} H^\top \mathbf{u}, \tag{21}
\]

where \(\mu(y) = [\mu_1(y_1), \ldots, \mu_M(y_M)]^\top \), \(\mathbf{u} \) is a \(M \times 1 \) vector whose \(i \)-th component is given by \(u_i = \mu_i(y_i)w^k_i \) and \(\Lambda \) is the diagonal matrix whose diagonal elements are \(\left(\kappa(\lambda^k_j)^{n-1}I_S \right)_{1 \leq j \leq J} \).
4.2 Updating \(w \)

The auxiliary variable \(w \) is determined by minimizing the upper bound of \(\mathcal{KL} \) divergence with respect to this variable:

\[
w^{k+1} = \arg\min_w \int q^{k+1}(x) q^k(\gamma) \ln \frac{q^{k+1}(x) q^k(\gamma)}{L(\Theta | y; w, \lambda^k)} \, dx \, d\gamma
\]

\[
= \arg\min_w \int q^{k+1}(x) q^k(\gamma) \left(- \ln L(\Theta | y; w, \lambda^k) \right) \, dx \, d\gamma
\]

\[
= \arg\min_w \int q^{k+1}(x) \sum_{i=1}^M T_i([Hx]_i, w_i; y_i) \, dx
\]

\[
= \arg\min_w \sum_{i=1}^M T_i([Hm_{k+1}]_i, w_i; y_i), \tag{22}
\]

where the equality in (22) follows from the expression in (12). Interestingly, it follows from Property 3.1 that

\[
w^{k+1}_i = \arg\min_{w_i} T_i([Hm_{k+1}]_i, w_i; y_i)
\]

\[
= [Hm_{k+1}]_i - \frac{1}{\mu_i(y_i)} \phi'_i([Hm_{k+1}]_i; y_i). \tag{23}
\]

4.3 Updating \(\lambda \)

The variable \(\lambda \) is determined in a similar way: for every \(j \in \{1, \ldots, J\} \),

\[
\lambda^{k+1}_j = \arg\min_{\lambda_j \in [0, +\infty)} \mathcal{KL}(q^{k+1}(x) q^k(\gamma) || L(\Theta | y; w^{k+1}, \lambda))
\]

\[
= \arg\min_{\lambda_j \in [0, +\infty)} \sum_{i=1}^Q \int q^{k+1}(x) q^k(\gamma) Q_i(D_j x, \lambda_i; \gamma) \, dx \, d\gamma
\]

\[
= \arg\min_{\lambda_j \in [0, +\infty)} \int q^{k+1}(x) q^k(\gamma) Q_j(D_j x, \lambda_j; \gamma) \, dx \, d\gamma
\]

\[
= \arg\min_{\lambda_j \in [0, +\infty)} \int q^{k+1}(x) q^k(\gamma) \left(\frac{\kappa \|D_j x\|^2 + (1 - \kappa) \lambda_j}{\lambda_j^{1-\kappa}} \right) \, dx \, d\gamma
\]

\[
= \arg\min_{\lambda_j \in [0, +\infty)} \frac{\kappa E_{q^{k+1}(x)} [\|D_j x\|^2] + (1 - \kappa) \lambda_j}{\lambda_j^{1-\kappa}}. \tag{25}
\]

The minimum is attained at

\[
\lambda^{k+1}_j = E_{q^{k+1}(x)} [\|D_j x\|^2]
\]

\[
= \|D_j m_{k+1}\|^2 + \text{trace} \left[D_j^T D_j \Sigma_{k+1} \right]. \tag{26}
\]
4.4 Updating $q(\gamma)$

Using (7) where the joint distribution is replaced by its lower bound function, we obtain

\[
q^{k+1}(\gamma) \propto \exp \left(\ln L(x, \gamma, y; w^{k+1}, \lambda^{k+1})_q \right)
\]

\[
\propto \exp \left(\int \ln L(x, \gamma, y; w^{k+1}, \lambda^{k+1})q^{k+1}(x)dx \right)
\]

\[
\propto \gamma^{\frac{N}{2\kappa}+\alpha-1} \exp(-\beta\gamma) \exp \left(-\gamma \sum_{j=1}^{J} \frac{\kappa \mathbb{E}_{q^{k+1}(x)}[\|D_j x\|^2] + (1-\kappa)\lambda_j^{k+1}}{\left(\lambda_j^{k+1}\right)^{1-\kappa}} \right)
\]

\[
\equiv G(a_{k+1}, b_{k+1}).
\]

(27)

Using (26), one can recognize that the above distribution is a Gamma one with parameters

\[
a_{k+1} = \frac{N}{2\kappa} + \alpha = a, \quad b_{k+1} = \sum_{j=1}^{J} (\lambda_j^{k+1})^{\kappa} + \beta.
\]

(28)

4.5 Resulting algorithm

The proposed method is outlined in Algorithm 2. It alternates between the update of the auxiliary variables and the distribution of the unknown parameters.

Algorithm 1 VBA approach for recovery of signals corrupted with non-Gaussian noise.

1. Set initial values: w^0, λ^0, b_0. Compute a with (28).
2. For $k = 0, 1, \ldots$
 a. Update parameters Σ_{k+1} and m_{k+1} of $q^{k+1}(x)$ using (20) and (21).
 b. Update w^{k+1} using (24).
 c. Update λ^{k+1} using (26).
 d. Update parameter b_{k+1} of $q^{k+1}(\gamma)$ using (28).

4.6 Implementation issues

An additional difficulty arising in the implementation of Algorithm 2 is that the determination of Σ_{k+1} requires inverting the matrix given by (20), which is computationally expensive in high dimension. To bypass this operation, we propose to compare two approaches. The first one follows the idea in [62]: we make use of the linear conjugate gradient method to approximate m_{k+1} iteratively and in (26), where an explicit form of Σ_{k+1} cannot be sidestepped, this matrix is approximated by a diagonal one whose diagonal entries are equal to the inverse of the diagonal elements of Σ_{k+1}. The second technique uses Monte-Carlo sample averaging to approximate m_{k+1} and λ_j^{k+1}. Specifically, we generate samples $(n_s)_{1 \leq s \leq N_s}$ from Gaussian distribution with mean m_{k+1} and covariance matrix Σ_{k+1} using [83], as summarized in Algorithm 2. This estimator has two desirable properties. First, its accuracy is independent of the problem size, its relative error only depends on the number of samples and it decays as $\sqrt{2/N_s}$ (only $N_s = 2/\rho^2$ samples are required to reach a desired relative error ρ) [84]. Second, for the simulation of N_s independent Gaussian samples, one can take advantage of a multiprocessor architecture by resorting to parallel implementation allowing us to reduce the computation time.
Algorithm 2 Stochastic approach for computing the parameters of $q(x)$.

1. For $s = 1, 2, \ldots, N_s$

 (a) **Perturbation**: Generate

 \[
 \nu_s \sim N\left(u, \text{Diag}(\mu(y))^{1/2}\right)
 \]
 \[
 \eta_s \sim N\left(0, \sqrt{2\gamma_k\Lambda_k^{1/2}}\right)
 \]
 with $\gamma_k = a_k/b_k$.

 (b) **Optimization**: Compute n_s as the minimizer of

 \[
 J(v) = \|\nu_s - \text{Diag}(\mu(y))Hv\|_2^2 + \frac{1}{2\gamma_k}\|\eta_s - 2\gamma_k\Lambda_kDv\|_A^{1/2},
 \]
 which is equivalent to

 \[
 \tilde{J}(v) = v^T\sum_{k+1}^N v - 2v^T z_s \quad \text{where} \quad z_s = H^T\nu_s + D^T\eta_s.
 \]
 The minimizer is computed using the conjugate gradient algorithm.

2. Update

 \[
 m_{k+1} = \frac{1}{N_s} \sum_{s=1}^{N_s} n_s
 \]
 \[
 (\forall j \in \{1, \ldots, J\}) \quad \lambda_{j+1}^k = \frac{1}{N_s} \sum_{s=1}^{N_s} \|D_jn_s\|^2.
 \]

5 Application to Poisson-Gaussian image restoration

5.1 Problem formulation

In this section, we propose to illustrate the usefulness of our algorithm via experiments on PG noise models in the context of image restoration. More specifically, the vector of observations $y = (y_i)_{1 \leq i \leq M} \in \mathbb{R}^M$ is related to the original image x through

\[
y = z + b,
\]

where z and b are assumed to be mutually independent random vectors and

\[
z \mid \bar{x} \sim \mathcal{P}(H\bar{x}), \quad b \sim \mathcal{N}(0, \sigma^2 I_M),
\]

\mathcal{P} denoting the independent Poisson distribution. Hence, we can deduce the following expression of the likelihood function [39]:

\[
p(y \mid x) = \prod_{i=1}^{M} \left(\sum_{n=1}^{+\infty} \frac{e^{-|Hx|_i} ((|Hx|_i)^n \cdot \frac{1}{n!} \cdot e^{-\frac{1}{2\sigma^2}(y_i - n)^2}}{\sqrt{2\pi\sigma^2}} \right).
\]

The exact expression of the PG likelihood (30) involves an infinite sum which makes its exact computation impossible in practice. In [39], the infinite sum was replaced by a finite summation with bounds depending on the current estimate of \bar{x}. However, this method implies a higher computational burden in the reconstruction process when compared with other likelihoods proposed in the literature as accurate approximations of (30). In [72], VBA inference techniques have been successfully applied to the restoration of data corrupted with PG noise using the generalized Anscombe transform (GAST) likelihood [31, 32, 65, 66]. In this paper, we will employ
the GAST likelihood, as well as the shifted Poisson likelihood (SPoiss) [6] and the weighted least squares approximation (WL2) [34, 43, 45] (see Table 1).

5.2 Numerical results

We evaluate the performance of the proposed approach for the restoration of images degraded by both blur and PG noise. We consider six test images, displayed in Figure 1, whose intensities have been rescaled so that pixel values belong to a chosen interval [0, x^+]. Images x_1 and x_6 are HST astronomical images while images x_2, x_3, x_4 and x_5 correspond to the set of confocal microscopy images considered in [39]. These images are then artificially degraded by an operator H modeling spatially invariant blur with point spread function h and by PG noise with variance σ^2. In our experiments, we choose a total variation prior, i.e. $\kappa = 1/2$ and for every pixel $j \in \{1, \ldots, N\}$, $D_j x = [\nabla h x_j, \nabla v x_j]^T \in \mathbb{R}^2$ where ∇h and ∇v are the discrete gradients computed in the horizontal and vertical directions. As a result, $J = N$. It can be noted that we can apply the proposed algorithm to all approximations of the PG fidelity term presented in Table 1. For the GAST and the SPoiss approximations, we use

$$\mu_i(y_i) \equiv \max\{\beta_i(y_i), \varepsilon\}$$

where $\varepsilon > 0$. For the WL2 approximation, we use

$$\mu_i(y_i) = \max\{(y_i + \sigma^2)^2 / \sigma^6, \varepsilon\},$$

so as to satisfy Assumption 3.1. Note that a data truncation is performed as a pre-processing step on the observed image y in order to satisfy the domain condition given in the fifth column of Table 1.

The goal of our experiments is twofold. First, for each likelihood, we compare the accuracy of the two proposed approximations of the covariance matrix described in Section 4.6 namely the diagonal approximation (denoted as approximation 1) and the Monte Carlo averaging strategy (denoted as approximation 2) with different number of samples N_s, namely $N_s = 160$ or 640. Second, the proposed method is compared with state-of-the-art algorithms that compute the MAP estimate. More specifically, as GAST and SPoiss likelihoods are convex and Lipschitz differentiable, we use the method presented in [39] where a primal-dual splitting algorithm is adopted to minimize the associated penalized criterion. For the WL2 approximation, we consider the variable metric forward-backward algorithm presented in [43]. For all these approaches, we test two variants. First, we propose to estimate the regularization parameter using the discrepancy principle [54,55,67]. In the second variant, the regularization parameter γ is adjusted empirically to achieve the maximum Signal-to-Noise Ratio (SNR) value defined as

$$\text{SNR} = 20 \log_{10} \left(\frac{\|x\|}{\|x - \hat{x}\|} \right),$$

which requires the availability of the true image. Tables 2-7 report the results obtained with the different images in terms of SNR, SSIM [85], and approximate computation time needed for convergence. For each likelihood, we emphasize in bold the approximation of the covariance matrix that achieves the best quantitative result in the shortest computational time. Simulations are performed on an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz, using a Matlab7 implementation. All tested methods are initialized with the degraded image. The Monte Carlo averaging approximation is computed using parallel implementation with 16 cores by means of the command `PARFOR` of the Matlab® Parallel Computing Toolbox™.

One can observe that in most studied situations (see Tables 4-7), the diagonal approximation of the covariance matrix appears to give satisfactory qualitative results in a small computation time. However, in few other situations (see Tables 2 and 3), it fails to capture the real qualitative structures of the covariance matrix leading to a poorer performance. The latter issue is well alleviated by using the Monte Carlo approximation where good results, in terms of image quality, are achieved within $N_s = 160$ samples which is equivalent to a relative approximation error equal to 11%. A few improvements are observed by decreasing the approximation error to 5% using $N_s = 640$ samples.

We also notice that the GAST approximation does not seem to be suitable for very low
count images (see Tables 2 and 3), whereas, the other likelihoods lead to competitive results in all the experiments. The best tradeoff between restoration quality and small computational time seems to be achieved by the WL2 approximation.

Finally, it can be observed that, in Tables 2 and 4, our VBA method yields comparable performance in terms of SNR to the MAP estimate when the latter is computed with the optimal regularization parameter, while our approach requires less time to converge. In the other experiments, our approach leads to the best qualitative results. For instance, in Table 3, the gain in terms of SNR reaches up to 0.20 dB compared with the MAP estimator using the best regularization parameter, but our approach needs more time to converge. In Tables 5, 6 and 7, we achieve both the best quantitative results and the smallest computational time. It should be noted that for most tested scenarios, discrepancy based approaches perform relatively poorly compared with the other methods, especially in the case of low count images (see Table 2).

In Figures 2 - 7, we show some examples of visual results obtained with the different approaches, when the best approximation strategy for the covariance matrix is retained in the VBA method. It can be noticed that, unlike the other methods, the reconstructed images with the proposed VBA algorithm exhibit very few artifacts, without over-smoothed regions.

It should be emphasized that the problem of setting the regularization parameter for these algorithms must be carefully addressed as it highly impacts the quality of the restored image. The main advantage of our approach is that this parameter is tuned automatically without the need of the ground truth, while also often being the most competitive in terms of computation time. Furthermore, the performance of the proposed method could be further improved by using parallel implementation with more than 16 cores for the Monte Carlo approximation of the covariance matrix allowing either generating a higher number of samples (i.e. an improved estimation error) or a reduction of the computation time.

6 Conclusion

In this paper, we have proposed a variational Bayesian approach for solving signal recovery problems in the presence of non-Gaussian noise. Our approach has two main advantages. First, the regularization parameter is tuned automatically during the recovery process. Second, the designed method is applicable to a wide range of prior distributions and data fidelity terms. Simulations carried out on various images corrupted with mixed Poisson-Gaussian noise have shown that the proposed strategy constitutes a competitive solution for low computational and high-quality restoration of images compared with state-of-the-art methods.

[Proof of Proposition 3.1]

Let $i \in \{1, \ldots, M\}$. Let us define $g_i : \mathbb{R} \to \mathbb{R}$ such that

$$\forall v \in \mathbb{R} \quad g_i(v) = \frac{v^2}{2} - \frac{\phi_i(v; y_i)}{\mu_i(y_i)}. \quad (31)$$

According to Assumption 3.1, g_i is convex. Its conjugate function [86, Chapter 13] reads:

$$\forall w \in \mathbb{R} \quad g^*_i(w) = \sup_{v \in \mathbb{R}} (vw - g_i(v)) \quad (32)$$

$$= \sup_{v \in \mathbb{R}} \left(vw + \frac{\phi_i(v; y_i)}{\mu_i(y_i)} - \frac{v^2}{2} \right) \quad (33)$$

$$= \sup_{v \in \mathbb{R}} \left(-\frac{1}{2}(v - w)^2 + \frac{\phi_i(v; y_i)}{\mu_i(y_i)} \right) + \frac{w^2}{2}. \quad (34)$$
According to Definition (10),

\[
(\forall w \in \mathbb{R}) \quad g^*_i(w) = \varsigma_i(w; y_i) + \frac{w^2}{2}. \tag{35}
\]

The conjugate of \(g^*_i \) is

\[
(\forall v \in \mathbb{R}) \quad g^{**}_i(v) = \sup_{w \in \mathbb{R}} \left(vw - g^*_i(w) \right)
\]

\[
= \sup_{w \in \mathbb{R}} \left(vw - \frac{w^2}{2} - \varsigma_i(w; y_i) \right)
\]

\[
= \sup_{w \in \mathbb{R}} \left(-\frac{1}{2}(v - w)^2 - \varsigma_i(w; y_i) \right) + \frac{v^2}{2}
\]

\[
= -\inf_{w \in \mathbb{R}} \left(\frac{1}{2}(v - w)^2 + \varsigma_i(w; y_i) \right) + \frac{v^2}{2}. \tag{37}
\]

Since \(g_i \) is convex, \(g_i = g^{**}_i \) so that

\[
(\forall v \in \mathbb{R}) \quad -\frac{\phi_i(v; y_i)}{\mu_i(y_i)} = -\inf_{w \in \mathbb{R}} \left(\frac{1}{2}(v - w)^2 + \varsigma_i(w; y_i) \right) \tag{38}
\]

which is equivalent to

\[
(\forall v \in \mathbb{R}) \quad \phi_i(v; y_i) = \mu_i(y_i) \inf_{w \in \mathbb{R}} \left(\frac{1}{2}(v - w)^2 + \varsigma_i(w; y_i) \right), \tag{39}
\]

so that (11) holds.

For every \(v \in \mathbb{R} \), let

\[
\hat{w}_i(v) = g'_i(v). \tag{40}
\]

By using standard properties of the subdifferential of convex functions [86, Corollary 16.24], the latter equality is equivalent to

\[
v \in \partial g^*_i(\hat{w}_i(v)), \tag{41}
\]

which is a necessary and sufficient condition for \(\hat{w}_i(v) \) to be a minimizer of the convex function \(w \mapsto g^*_i(w) - vw \). This minimizer is unique since \(\hat{w}_i(v) \) is uniquely defined by (40). We have therefore established that

\[
\hat{w}_i(v) = \arg\max_{w \in \mathbb{R}} \left(vw - g^*_i(w) \right). \tag{42}
\]

The definition of \(g_i \) in (31) shows that (40) also reads

\[
\hat{w}_i(v) = v - \frac{1}{\mu_i(y_i)} \phi'_i(v; y_i). \tag{43}
\]

According to (36), it is straightforward that \(\hat{w}_i(v) \) also reaches the infimum in (39). Hence the result by using (43) and (12).
References

Figure 1: Original images.
VBA	Approx. 1	SNR	8.13	9.36	9.90
		SSIM	0.3987	0.4790	0.5140
		Time (s.)	55	62	67
Approx. 2	SNR	9.57	10.17	10.22	
Ns = 160	SSIM	0.5260	0.6017	0.6058	
	Time (s.)	688	601	1011	
Approx. 2	SNR	9.61	10.20	10.27	
Ns = 640	SSIM	0.5308	0.6088	0.6112	
	Time (s.)	3606	3507	3510	
Discrepancy principle	SNR	-1.13	5.24	10.17	
	SSIM	0.0980	0.2961	0.6131	
	Time (s.)	3326	2215	3053	
Best parameter	SNR	9.46	10.40	10.39	
	SSIM	0.5078	0.6029	0.5920	
	Time (s.)	4380	2560	13740	

MAP	Approx. 1	SNR	13.97	15.19	16.41
		SSIM	0.3544	0.4167	0.4959
		Time (s.)	58	64	70
Approx. 2	SNR	18.05	19.07	19.11	
Ns = 160	SSIM	0.6664	0.6930	0.7066	
	Time (s.)	524	498	491	
Approx. 2	SNR	18.11	19.12	19.13	
Ns = 640	SSIM	0.6778	0.7034	0.7152	
	Time (s.)	2048	1828	1735	
Discrepancy principle	SNR	16.52	17.41	18.09	
	SSIM	0.5484	0.7570	0.6732	
	Time (s.)	594	583	2286	
Best parameter	SNR	17.83	18.73	19.09	
	SSIM	0.6519	0.6646	0.6702	
	Time (s.)	674	705	4164	

Table 2: Restoration results for image x_1 with $x^+ = 10$ and $\sigma^2 = 4$. Uniform kernel with size 5×5. Initial SNR= -2.55 dB.

VBA	Approx. 1	SNR	18.05	19.07	19.11
		SSIM	0.6664	0.6930	0.7066
		Time (s.)	524	498	491
Approx. 2	SNR	18.11	19.12	19.13	
Ns = 160	SSIM	0.6778	0.7034	0.7152	
	Time (s.)	2048	1828	1735	
Approx. 2	SNR	18.11	19.12	19.13	
Ns = 640	SSIM	0.6778	0.7034	0.7152	
	Time (s.)	2048	1828	1735	

Table 3: Restoration results for the image x_2, $x^+ = 12$ and $\sigma^2 = 9$. Gaussian kernel with size 25×25, std 1.6. Initial SNR= 2.21 dB.
Table 4: Restoration results for the image x_3 with $x^+ = 15$ and $\sigma^2 = 9$. Uniform kernel with size 5×5. Initial SNR = 3.14 dB.

<table>
<thead>
<tr>
<th></th>
<th>VBA</th>
<th>MAP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approx. 1</td>
<td>Discrepancy principle</td>
<td>Best parameter</td>
</tr>
<tr>
<td>SNR</td>
<td>GAST</td>
<td>11.42</td>
<td>SPoiss</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.4184</td>
<td>0.4403</td>
<td>0.4588</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>45</td>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>SNR</td>
<td>Approx. 2</td>
<td>$N_s = 160$</td>
<td>12.04</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.4555</td>
<td>0.4624</td>
<td>0.4627</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>328</td>
<td>332</td>
<td>396</td>
</tr>
<tr>
<td>SNR</td>
<td>Approx. 2</td>
<td>$N_s = 640$</td>
<td>12.09</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.4617</td>
<td>0.4684</td>
<td>0.4683</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>1965</td>
<td>2051</td>
<td>2019</td>
</tr>
<tr>
<td>SNR</td>
<td>MAP Discrepancy principle</td>
<td>12.08</td>
<td>12.38</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.4523</td>
<td>0.4582</td>
<td>0.4314</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>6252</td>
<td>3865</td>
<td>1929</td>
</tr>
<tr>
<td>SNR</td>
<td>Best parameter</td>
<td>12.17</td>
<td>12.45</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.4531</td>
<td>0.4576</td>
<td>0.4565</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>3348</td>
<td>2441</td>
<td>2525</td>
</tr>
</tbody>
</table>

Table 5: Restoration results for the image x_4 with $x^+ = 20$ and $\sigma^2 = 9$. Uniform kernel with size 5×5. Initial SNR = 7.64 dB.

<table>
<thead>
<tr>
<th></th>
<th>VBA</th>
<th>MAP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approx. 1</td>
<td>Discrepancy principle</td>
<td>Best parameter</td>
</tr>
<tr>
<td>SNR</td>
<td>GAST</td>
<td>13.80</td>
<td>SPoiss</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.5752</td>
<td>0.5769</td>
<td>0.5582</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>29</td>
<td>34</td>
<td>88</td>
</tr>
<tr>
<td>SNR</td>
<td>Approx. 2</td>
<td>$N_s = 160$</td>
<td>13.72</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.5667</td>
<td>0.5641</td>
<td>0.5491</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>555</td>
<td>580</td>
<td>757</td>
</tr>
<tr>
<td>SNR</td>
<td>Approx. 2</td>
<td>$N_s = 640$</td>
<td>13.78</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.5715</td>
<td>0.5687</td>
<td>0.5534</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>1897</td>
<td>2170</td>
<td>2719</td>
</tr>
<tr>
<td>SNR</td>
<td>MAP Discrepancy principle</td>
<td>13.48</td>
<td>13.60</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.5348</td>
<td>0.5393</td>
<td>0.5103</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>3049</td>
<td>769</td>
<td>2644</td>
</tr>
<tr>
<td>SNR</td>
<td>Best parameter</td>
<td>13.60</td>
<td>13.71</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.5568</td>
<td>0.5605</td>
<td>0.5602</td>
</tr>
<tr>
<td>Time (s.)</td>
<td>8390</td>
<td>8477</td>
<td>2397</td>
</tr>
<tr>
<td>VBA</td>
<td>Approx. 1</td>
<td>SNR</td>
<td>19.5</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Approx. 2</td>
<td>SNR</td>
<td>20.27</td>
</tr>
<tr>
<td></td>
<td>NS = 160</td>
<td>SNR</td>
<td>20.35</td>
</tr>
<tr>
<td></td>
<td>Approx. 2</td>
<td>SNR</td>
<td>20.15</td>
</tr>
<tr>
<td></td>
<td>NS = 640</td>
<td>SNR</td>
<td>14.17</td>
</tr>
<tr>
<td></td>
<td>Approx. 2</td>
<td>SNR</td>
<td>14.16</td>
</tr>
<tr>
<td></td>
<td>NS = 640</td>
<td>SNR</td>
<td>14.17</td>
</tr>
<tr>
<td></td>
<td>Approx. 2</td>
<td>SNR</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>NS = 160</td>
<td>SNR</td>
<td>14.16</td>
</tr>
<tr>
<td></td>
<td>Approx. 2</td>
<td>SNR</td>
<td>13.23</td>
</tr>
<tr>
<td></td>
<td>NS = 640</td>
<td>SNR</td>
<td>13.77</td>
</tr>
</tbody>
</table>

Table 6: Restoration results for image x_5 with $x^+ = 20$ and $\sigma^2 = 9$. Gaussian kernel with size 7×7, std 1. Initial SNR= 8.55 dB.
(a) Degraded image with SNR = -2.55 dB (Uniform kernel 5×5, $x^+ = 10$ and $\sigma^2 = 4$).

(b) Restored image with VBA approach using the Monte Carlo approximation with 640 samples: SNR = 10.27 dB

(c) Restored image with discrepancy principle: SNR = 10.17 dB

(d) Restored image with best parameter: SNR = 10.39 dB

Figure 2: Restoration results for image \bar{x}_1 using WL2 approximation.
Figure 3: Restoration results for image \bar{x}_2 using SPoiss approximation.
(a) Degraded image with SNR= 3.14 dB (Uniform kernel 5×5, $x^+ = 15$ and $\sigma^2 = 9$).

(b) Restored image with VBA approach using the Monte Carlo approximation with 640 samples: SNR= 12.36 dB

(c) Restored image with discrepancy principle: SNR= 12.38 dB

(d) Restored image with best parameter: SNR= 12.45 dB

Figure 4: Restoration results for image \bar{x}_3 using SPoiss approximation.
Figure 5: Restoration results for image \bar{x}_4 using GAST approximation.

(a) Degraded image with SNR=7.64 dB (Uniform kernel 5×5, $x^+ = 20$ and $\sigma^2 = 9$).

(b) Restored image with VBA approach using the diagonal approximation: SNR= 13.80 dB

(c) Restored image with discrepancy principle: SNR= 13.48 dB

(d) Restored image with best parameter: SNR= 13.60 dB
(a) Degraded image with SNR = 8.55 dB (Gaussian kernel 7×7, std 1. $x^+ = 20$ and $\sigma^2 = 9$).

(b) Restored image with VBA approach using the diagonal approximation: SNR $= 20.71$ dB

(c) Restored image with discrepancy principle: SNR $= 18.70$ dB

(d) Restored image with best parameter: SNR $= 20.44$ dB

Figure 6: Restoration results for image x_5 using WL2 approximation.
Figure 7: Restoration results for image \bar{x}_0 using WL2 approximation.