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Abstract: We consider a linear consensus problem involving a time delay that arises from
predicting the future states of agents based on their past history. In case the agents are coupled
in a connected and undirected network, the exact condition for consensus is that the delay be
less than a constant threshold that is independent of the network topology or size. In directed
networks, however, the situation is quite different. We show that the allowable maximum delay
for consensus depends on the network topology in a nontrivial way. We study this delay margin
in several network constellations, including various circulant networks with directed links. We
show that the delay margin depends not only on the number of neighbors, but also on the
directionality of connections with those neighbors. Furthermore, the delay margin improves as
the circulant networks are rewired en route to a small-world configuration.

Keywords: Consensus, prediction, anticipation, delay, network, graph theory, stability analysis.

1. INTRODUCTION

Consensus and coordination problems arise in a wide
range of applications where multi-agent systems interact
to agree on a common value of a certain quantity of
interest. We can cite here, among others, Lynch (1996)
in distributed computing, DeGroot (1974) in management
science, Vicsek et al. (1995) in flocking and swarming
theory, Fax and Murray (2004) in distributed control, and
Olfati-Saber and Shamma (2005) in sensor networks. The
classical linear consensus problem can be formulated in the
form

iizzaij(xj(t)_xi(t)% izl,...,ﬂ (1)
j=1

where n is the number of agents in the network, x; € R
is the state of the agent i at time ¢, which changes
under the interaction with other agents, and a;; are
nonnegative numbers describing the interaction strength
between agents ¢ and j. Consensus can then be formally
defined as follows.

Definition 1. The system (1) is said to reach consensus if
for any set of initial conditions {z;(0)} there exists ¢ € R
such that lim; o z;(t) = ¢ for all ¢, in which case the
number c is called the consensus value.

Under mild conditions related to the connectivity of the
network, it can be shown that the system (1) reaches
consensus from arbitrary initial conditions, and the con-
sensus value equals the average of initial conditions of the
agents. The problem becomes more interesting when the
system involves a time delay 7, for example an information
processing delay modeled by

b= ai; (@i(t —7) — @it — 7)) (2)
j=1

which has been studied in Olfati-Saber and Murray (2004).
In this case, it is known that there exists an upper limit
Tmax such that the system (2) reaches consensus from
arbitrary initial conditions if and only if 7 < Thax (see,
for instance, Olfati-Saber and Murray (2004)). Another
model, which involves an information transmission delay,
is given by (Moreau, 2004; Seuret et al., 2008; Atay, 2012,
2013)

B = aig (2t = ) = 2i(1)). (3)

It has been shown that such a system reaches consensus
from arbitrary initial conditions regardless of the value
of the delay 7 as long as the network contains a spanning
tree; however, the consensus value depends on the system’s
history in a nontrivial way (Atay, 2012, 2013).

In this paper we are concerned with a rather different
source of delay, arising from the anticipatory nature of
the agents. More precisely, we consider a network of
intelligent agents who try to predict the future states of
their neighbors in their interaction. Formulating in the
context of system (1), agent i uses, instead of the current
state ;(t) of its neighbor, a predicted value &;(t + 7) of
its future state, yielding

g =Y ay(@;t+71)—2i(t), i=1....n (4
j=1

Using a first order estimation (Atay and Irofti, 2015),
the prediction of the future can be done by a linear
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Fig. 1. Linear prediction of the future state «;(¢+7) of an
agent j using its present and past states.

extrapolation from past values, namely

&i(t+7) = 2;(t) + z(t) - fj(t — T)T,
= 2z;(t) — z;(t — 7). (5)

(See Figure 1 for a graphical depiction.)

Using (5) in (4), we arrive at the main model that we will
study in this paper:

Bi(0) = 7 s Q(0) 23t = )~ m(6), (6)
(2 ]:1

Note that we have additionally normalized the summation
term via dividing by the (generalized) degree d; of node 4,
d; = 2?21 ai;. This normalization gives rise to a normal-
1zed Laplace operator, which is a natural choice in several
applications and has some advantageous properties, as will
be briefly reviewed in Section 2. In particular, the normal-
ization bounds the spectrum of Laplacian regardless of the
network size, thus allowing comparison of networks of very
different sizes.

When the network is undirected (i.e. a;; = aj; Vi,j) and
connected, it has been shown (Atay and Irofti, 2015, 2016)
that system (6) reaches consensus from arbitrary initial
conditions if and only if

T<1. (7)

In other words, in the undirected case, the maximum
allowable delay for consensus in (6) (the delay margin)
equals 1 regardless of the network topology. The situation
for directed networks is different, however, as we show in
this paper. In particular, the network topology turns out
to play an important role in affecting the delay margin.

In the following, we first prove that (7) is a necessary
condition for consensus, but it is not sufficient. Moreover,
as already mentioned above, the undelayed network (7 =
0) always reaches consensus (as long as it contains a
directed spanning tree). It follows by continuity that,
sufficiently small delays will not destroy stability of the
consensus. Hence, the delay margin for (6) is some positive
number less than one. We calculate the locus of (complex)
Laplacian eigenvalues that are detrimental for consensus.
Just like undirected networks, many directed networks also
turn out to enjoy (7) as the exact condition for consensus.
However, we show that some specific networks that are

actually frequently used in the literature do have much
lower delay margins. We study these circulant networks
in detail with respect to their Laplacian eigenvalues and
determine their delay margins. We also consider random
rewiring of circulant networks en route to small-world
configuration and show that a few rewirings improve the
delay margin already, although the improvement is not
monotone with further rewirings.

2. DIRECTED NETWORKS AND CHARACTERISTIC
ROOTS

A directed graph (or digraph) G = (V,E) consists of a
finite set V of vertices and a set of directed edges £ C V x
V' consisting of ordered pairs of vertices. We consider only
simple, non-trivial graphs without self-loops or multiple
edges. We denote by A = [a;;] the (weighted) adjacency
matrix of the graph, where a;; > 0 if there is a directed link
from node j to node ¢, and a;; = 0 otherwise. The in-degree
d; of node ¢ is defined as d; = 2?21 aij, i.e., the sum of
the elements of the i'" row of A, and D = diag(ds,...,d,)
denotes the diagonal matrix of in-degrees.

Assuming that d; # 0 Vi, the normalized Laplacian matrix
is defined as

L=1,—-D'A, (8)
where n is the number of nodes in the network and I,, is
the identity matrix of size n. The normalized Laplacian
L naturally arises in a class of important problems, in
particular in random walks on networks, as D~ 'A is the
transition matrix for probability distributions arising from
such walks (Chung, 1997).

An application of Gershgorin’s theorem to the definition
of L shows that the Laplacian eigenvalues \; are complex
numbers satisfying

- <1, k=1,2,...,n. (9)
Furthermore, the first eigenvalue \; is always zero and
corresponds to the eigenvector (1,1,...,1)T. In the special

case of undirected networks the eigenvalues are all real,
because D' A is similar to a symmetric matrix, D"'A =
D=Y2(D=Y2AD~1/2)D'/2 as A is symmetric and D is
diagonal.

In matrix form, (6) becomes
#(t) = D"TAQx(t) — 2(t — 7)) — 2(2), (10)

with = (21, 22, . .. ,xn)T. Suppose that L has a complete
set of eigenvectors {vy} corresponding to the eigenvalues
{Ar}. Then one can write () = Y ,_, ug(t)vy for some
scalar coefficients uy, which transforms (10) into a system
of n decoupled scalar equations

uk(t) = (1 —2)\k)uk(t) - (1—)\k)uk(t—7'), (11)
for k =1,...,n. The characteristic equation correspond-
ing to the eigenmode (11) is

Yrp(s)i=s =21 =)+ 1+ (1 =Ap)e™*" =0, (12)
and the characteristic equation for the whole system (10)
can be written as

U(s) =[] vw(s) =0. (13)
k=1

Note that s = 0 is always a characteristic root for the first
factor



Pi(s) =s—1+e°7

corresponding to the first eigenmode, Ay = 0. Thus,
points on the synchronization subspace spanned by v; =
(1,1,...,1)T can be at best neutrally stable. If that is
the case, and in addition lims_, o ug(t) = 0 for all k > 2,
then the system converges to a point on vy, i.e. it reaches
consensus, from arbitrary initial conditions. This clearly
happens if and only if zero is a simple root of ¥ and all
other roots of ¥ have negative real parts.

3. UPPER BOUND FOR THE DELAY MARGIN

Based on the considerations of the previous section, we can
state a necessary condition for consensus, which serves as
an upper bound for the delay margin.

Theorem 1. The inequality
T<1 (14)

is a necessary condition for (6) to reach consensus from
arbitrary initial conditions. In other words, the delay
margin for the stability of consensus in (6) is at most 1.

Proof. Consider the first factor ¢1(s) = s — 1+ °" in
(13). Since t1(0) = 0 and ¢1(0) = 1 — 7, zero is always a
root of ¥, and is a simple root unless 7 = 1. For 7 > 1,
on the other hand, 1, is unstable; in fact, it has a real
and positive root, which can easily be seen by plotting the
real functions 1 —s and e™°" and observing that they must
intersect at a positive value of s if 7 > 1. Therefore, (14) is
a necessary condition that 1, and hence the characteristic
equation (13), has a simple zero root and all the remaining
roots have strictly negative real parts.

As remarked in the introduction, unlike the case of undi-
rected networks, the condition (14) is not sufficient for
consensus in directed networks. The distinction clearly
lies in the fact that the Laplacian eigenvalues are real for
undirected networks but not necessarily for directed ones.
It is therefore of interest to have some understanding of
the network structures and the corresponding Laplacian
eigenvalues that give rise to reduced delay margins. We
take up this task in the next section.

4. LAPLACIAN EIGENVALUES RESPONSIBLE FOR
INSTABILITY

To understand the role of Laplacian eigenvalues on the
stability of consensus, we consider a generic factor of the
characteristic equation (12)—(13), namely

P(s)=s—2(1=AN)+14+(1—-XNe " =0 (15)
for an arbitrary A € C that might have come from the
spectrum of the Laplacian of some network. The latter
condition requires

[1-X <1 (16)
in view of (9). The stability of (15) can be conveniently
established using the Lambert W function, as follows.

Recall that the Lambert W function is defined as the
inverse function of the mapping z — ze* for z € C (see
Corless et al. (1996)). In other words, the (multi-valued)
function W (z) satisfies

W(z)eV®) = 2. (17)
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Fig. 2. Fraction of complex numbers A that make the
characteristic equation (15) unstable, from among 10°
randomly selected complex numbers inside the shifted
unit circle (16).

Letting a = 2(1 — A) — 1 and b = —(1 — ), the roots of ¥
satisfy s = a + be™*", which can be re-written as

s—a=be (smW)T—aT

A change of variables ' — (s — a)7 gives

’ _ o
s’ =71be e,

from which, by the definition (17), one has s’ =
W (rbe 7). In the original variable s, the roots of ¢ satisfy

1
s=—W(rbe ") + a.
T

Furthermore, by a result of Shinozaki and Mori (2006),
the root having the largest real part is given by the
principal branch W, of the Lambert function. Hence, for
the stability of (15) it suffices to calculate

1
5= ;WO(Tbe*’”) +a, (18)

and check whether its real part is negative.

As a first step in numerical investigations, we randomly
generate complex numbers \ satisfying (16) and check the
stability of (15) using (18) for the range of delay values
7 € (0,1). The results of the experiment are shown in
Figure 2 for one million randomly generated A. It can
be seen that only a small fraction of A actually yield an
unstable .

To gain further insight into the nature of instability, we
plot in Figure 3 the location of the stable and unstable
Laplacian eigenvalues \ in the complex plane. As expected,
for sufficiently small delays consensus is stable, and as the
delay increases, two regions of unstable eigenvalues (shown
with red color) grow from the circle boundary, eventually
meeting at A = 0 as 7 T 1 (Figure 3 (a) through (d)).
The value 7 = 1 is the upper value of allowable delay for
any network, since at this value the characteristic equation
(15) has a double zero root (see Theorem 1 and its proof).

At first it might appear from Figures 2-3 that most
networks would have a delay margin equal to 1. While this
is true in a certain sense, a class of networks commonly
used in the literature does turn out to belong to the
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Fig. 3. Values of random complex numbers A inside the
shifted unit circle, colored according to the stability of
the characteristic equation (15). Red points represent
unstable values and blue points represent stable values
of A\, shown for four different values of the delay.

exceptional unstable category. In the next section we
investigate in detail these networks that have a poor delay
tolerance.

5. DIRECTED CIRCULANT NETWORKS AS
PROTOTYPES FOR WORST DELAY TOLERANCE

An important observation from Figure 3 is that the red
regions for unstable Laplacian eigenvalues border on the
shifted unit circle (16), and in fact disappear by merging
into the circle border near the origin as 7 is decreased.
Therefore, networks having the worst delay tolerance must
be those that have a Laplacian eigenvalue A on the
circle near the origin. Therefore, as the next step in our
investigation, we consider a network configuration that
has all its eigenvalues on the circle, namely the directed
cycle shown in Figure 4(a). We refer to this configuration
as Network A. Indeed, it is easy to calculate that the
characteristic polynomial for the Laplacian for Network
Ais
(I=A)"=1L
thus the eigenvalues Ay are roots of unity shifted by one:
A =1—expmi(k—1)/n), k=1,...,n;

see Figure 4(e). It follows that for very small network sizes
n, the eigenvalues are outside the red region of Figure 3
(although they are still all on the circle); so Network A
will have a delay margin equal to 1. As the network size n
becomes larger, the eigenvalues move into the red region
and the delay margin decreases, as shown in Figure 5.

We next consider circulant networks with in-degree equal
to two. Here we have two natural variations as extensions
of Network A: either all connections follow the same
direction, or connections of distance one and two have

opposite directions. We refer to these networks as Network
B and Network C, respectively; see Figure 4 (b)—(c).

For directed circulant networks with three connections
per node, there are more possibilities for the choice of
connection directions. We only show one possibility in
Figure 4(d), where all connections point in the same

direction. We refer to this connection topology as Network
D.

The Laplacian eigenvalues of network types B, C and D
no longer fall on the shifted unit circle (16), as those
of Network A did. Nevertheless, the locus of eigenvalues
still comes close to the circle near the origin, as shown in
Figure 4(f)—(h). Hence, we have a similar conclusion: up to
a certain network size, these networks have a delay margin
of 1, and for larger sizes the delay tolerance of the networks
decreases. This critical network size, for which the delay
margin equals 1, is smallest for Network A and largest for
Network C, as confirmed by the horizontal segments of the
curves in Figure 5. Interestingly, Network C has a much
higher delay tolerance than B, although all nodes in both
networks have the same in-degrees.

We also test the accuracy of the curves in Figure 5 by direct
simulation of the system (6). We pick 7 = 0.9 and choose
network sizes close to the curves in Figure 5. Starting
from random initial conditions, the time evolution of (6)
is depicted in Figure 6. The simulations confirm that there
exists a critical network size, whose value agrees with the
information in Figure 5, below which the systems reaches
consensus and above which it diverges.

As a final step in our investigation, we consider random
re-wiring of directed circulant networks, in a well-known
process that produces small-world networks starting from
regular ones (Watts and Strogatz, 1998). In a directed
version of this re-wiring algorithm, we start with a network
of type B or C, and at each step we randomly pick one node
and reconnect one of existing outgoing links to a different,
randomly-selected node. Figure 7 shows that the delay
margin improves with re-wiring (although the effect is not
always monotone, due to the randomness of the process
and the relative sparsity of the network). This shows from
yet another viewpoint that directed circulant networks,
especially at large sizes, have poor delay tolerance, which
can be improved significantly by a few re-wiring of links.
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(a) Circulant network A: ev-
ery node is connected to the
next one counterclockwise.
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(e) Laplacian eigenvalues of
circulant networks of type A.
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(b) Circulant network B: ev-
ery node is connected to the
next two nodes counterclock-
wise.
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(f) Laplacian eigenvalues of
circulant networks of type B.

(c¢) Circulant network C: simi-
lar to B, except the outer con-
nection direction is counter-
clockwise and the inner direc-
tion is clockwise.
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(g) Laplacian eigenvalues of

circulant networks of type C.

(d) Circular network D: every
node is connected to the next
three nodes counterclockwise.

(h) Laplacian eigenvalues of
circulant networks of type D.

Fig. 4. Example of directed circulant networks (upper row) and their Laplacian eigenvalue patterns (lower row). The

eigenvalues are plotted in the complex plane for the network sizes n = 20 (black dots), and n = 100 (blue crosses);
the red circle depicts the shifted unit circle (16) in the complex plane.
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Fig. 5. Delay margin as a function of the network size n
for various types of circulant networks: type A (blue
circles), type B (green points), type C (red crosses),
and type D (purple triangles).
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