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A Delayed Consensus Algorithm in Networks of Anticipatory Agents

Fatihcan M. Atay1 and Dina Irofti2

Abstract— We introduce and analyze a delayed consensus
algorithm as a model for interacting agents using anticipation
of their neighbors’ states to improve convergence to consensus.
We derive a necessary and sufficient condition for the system
to reach consensus. Furthermore, we explicitly calculate the
dominant characteristic root of the consensus problem as a
measure of the speed of convergence. The results show that the
anticipatory algorithm can improve the speed of consensus, es-
pecially in networks with poor connectivity. Hence, anticipation
can improve performance in networks if the delay parameter
is chosen judiciously, otherwise the system might diverge as
agents try to anticipate too aggressively into the future.

I. INTRODUCTION

Consensus problems arise in a wide range of applications
in distributed computing [9], management science [5], flock-
ing and swarming theory [16], distributed control [6], and
sensor networks [12], among others. In these applications,
multi-agent systems interact to agree on a common value
for a certain quantity of interest. The interaction rule that
specifies the information exchange between the agents is
called the consensus protocol or consensus algorithm. The
consensus problem on networks in continuous time can be
formulated as

ẋi = ui(t), i = 1, . . . , n, (1)

where n is the number of agents in the network, xi ∈ R is
the state of the agent i at time t, which changes under the
interaction with other agents as described by the consensus
protocol ui(t). The system (1) is said to reach consensus if
for any set of initial conditions {xi(0)} there exists c ∈ R
such that limt→∞ xi(t) = c for all i, in which case the
number c is called the consensus value.

In the classical linear case, the consensus protocol typi-
cally has the form

ui(t) ∼
n∑
j=1

aij(xj(t)− xi(t)). (2)

where aij are nonnegative numbers describing the pairwise
interaction strength between agents. Under mild conditions
related to the connectivity of the network, it can be shown
that the system (1) under (2) reaches consensus from ar-
bitrary initial conditions. A more interesting case is when
the consensus protocol involves a time delay, which can
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come in various forms. A well-known example is the delayed
consensus protocol

ui(t) ∼
n∑
j=1

aij (xj(t− τ)− xi(t− τ)) (3)

which has been studied in [13]. One can view (3) as modeling
delayed information processing, since the protocol feeds
back the same information

∑
(xj − xi) to the system, as

in (2), but only after a delay τ ≥ 0. In this case, it
is known that there exists an upper limit τmax such that
the system (1) under the protocol (3) reaches consensus
from arbitrary initial conditions if and only if τ < τmax

[13]. Another type of interaction, which models delayed
information transmission, is given by the consensus protocol
[1], [2], [10], [14]

ui(t) ∼
n∑
j=1

aij (xj(t− τ)− xi(t)) , (4)

Here the interpretation is that the information coming from
a neighbouring node j takes some time τ to reach site i.
It was shown that the system (1) under the protocol (4)
reaches consensus from arbitrary initial conditions regardless
of the value of the delay τ as long as the network contains
a spanning tree [1], [2].

In this paper we study another delayed consensus protocol
where the delay comes from a quite different source, namely
from the anticipatory nature of the agents. More precisely,
we consider a network of intelligent agents who try to antic-
ipate the future states of their neighbors in their interaction,
which is a common situation in, e.g., economic systems. We
therefore consider an anticipatory algorithm of the form

ui(t) ∼
n∑
j=1

aij(x̂j(t+ τ)− xi(t)), (5)

where x̂j(t+τ) is the anticipated state of the neighbor xj at
some time (t+τ) in the future. In order to estimate the future
state, the agents use a first order estimation derived from past
observations, namely they employ memory. It is reasonable
to expect that the memory window is about the same order
of magnitude as the view into future, which will be assumed
in this paper. Therefore, agent i, knowing the current state
of xj(t) of a generic neighbor j and remembering its past
state xj(t − τ) as well, uses a first-order estimation to get
the future state x̂j(t+ τ) by linear extrapolation:

x̂j(t+ τ) = xj(t) +
xj(t)− xj(t− τ)

τ
τ,

= 2xj(t)− xj(t− τ). (6)
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Fig. 1. Estimating the future state xj(t+τ) of an agent j from its present
and past states.

The idea is graphically summarized in Figure 1. By compar-
ison, the classical consensus algorithm (2) can be viewed as
a zero-order estimation where an agent’s expectation of the
short-term future of its neighbors is represented simply by
the present states, x̂j(t+ τ) = xj(t).

Substituting (6) into (5), we thus obtain the consensus
algorithm

ui(t) ∼
n∑
j=1

aij(2xj(t)− xj(t− τ)− xi(t)), (7)

which will be the focus of our study in this paper. In
precise terms, we will study the convergence of the following
consensus problem

ẋi(t) =
1

di

n∑
j=1

aij(2xj(t)− xj(t− τ)− xi(t)), (8)

where aij = aji ∀i, j and di =
∑n
j=1 aij is the (gener-

alized) degree of node i. Dividing the summation by the
degrees di gives rise to a normalized Laplace operator,
which is a natural choice in several applications and has
some advantageous properties, as will be briefly reviewed
in Section II. In particular, the normalization bounds the
spectrum of Laplacian regardless of the network size, thus
allowing comparison of networks of very different sizes.

We note that τ in (8) is to be seen as a design parameter,
rather than a delay imposed by system constraints as in (3)
or (4). Nevertheless, (8) is still a delay-differential equation
and its analysis is subject to the same difficulties one faces
in studying infinite-dimensional systems on Banach spaces.
The purpose of this paper is to investigate if and under what
conditions the system (8) can reach consensus from arbitrary
initial states, and furthermore, whether the introduction of a
positive τ , namely anticipation, really brings any advantages
into the consensus dynamics.

The paper is organized as follows. In Section II we
introduce the basic notation and review relevant background
information from graph theory. Section III presents the main
results by giving necessary and sufficient conditions: we
show that (8) reaches consensus from arbitrary initial states

if and only if τ < 1. In Section IV we present a graphical
depiction of the dominant roots for arbitrary eigenmodes
of the system as a function of the delay value τ , thereby
deriving a universal picture applicable for any undirected
graph. In Section V we give simulation results from various
networks and show that a positive τ can indeed improve
speed of consensus, in some cases dramatically, especially
in networks with poor connectivity. Hence, anticipation can
improve performance in networks of interacting agents if the
parameter τ is chosen judiciously, otherwise the system can
diverge as agents try to anticipate too aggressively into the
future.

II. PRELIMINARIES
We briefly review some relevant notions and notations

from graph theory. For details, the reader is referred to
standard texts such as [3] or [7].

A graph G = (V,E) consists of a finite set V of vertices
and a set of edges E ⊂ V × V consisting of unordered
pairs of vertices. Two vertices i and j are called neighbors
if (i, j) ∈ E. We consider simple, non-trivial, and undirected
graphs without self-loops or multiple edges. We denote by
A = [aij ] the (weighted) adjacency matrix of the graph,
where aij = aji > 0 if i and j are neighbors, and aij =
0 otherwise. The degree di of node i is defined as di =∑n
j=1 aij , i.e., the sum of the elements of the ith row of

A, and D = diag(d1, . . . , dn) denotes the diagonal degree
matrix.

The normalized Laplacian matrix is defined as

L = In −D−1A, (9)

where n is the number of nodes in the network, In is the
identity matrix of size n. The normalized Laplacian naturally
arises in a class of important problems, in particular in
random walks on networks, as D−1A is the transition matrix
for probability distributions arising from such walks [3]. The
eigenvectors of L form a complete set that span Rn, and the
eigenvalues λi are real numbers and can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

In particular, the upper and lower bounds imply that

|1− λk| ≤ 1, k = 1, 2, . . . , n. (10)

The first eigenvalue λ1 is always zero and corresponds to
the eigenvector (1, 1, . . . , 1)>. The second eigenvalue λ2,
which is also called the spectral gap, is positive if and only
if the graph is connected. In fact, the multiplicity the zero
eigenvalue equals the number of connected components of
the graph. In a connected graph, λ2 gives an indication of
how difficult it is to disconnect the graph into two large
pieces by removing a small number of edges, and is thus
directly related to graph connectivity.

In matrix form, (8) becomes

ẋ(t) = D−1A(2x(t)− x(t− τ))− x(t), (11)

with x = (x1, x2, . . . , xn)
>. Since L has a complete set of

eigenvectors {vk}, one can write x(t) =
∑n
k=1 uk(t)vk for



some scalar coefficients uk, which transforms (11) into a
system of n decoupled scalar equations

u̇k(t) = (1− 2λk)uk(t)− (1−λk)uk(t− τ), k = 1, . . . , n.
(12)

The characteristic equation corresponding to the eigenmode
(12) is

ψk(s) := s− 2(1− λk) + 1 + (1− λk)e−sτ = 0. (13)

Consequently, the characteristic equation for the whole sys-
tem (11) can be written as

Ψ(s) :=

n∏
k=1

ψk(s) = 0. (14)

Note that s = 0 is always a characteristic root for the first
factor ψ1(s) = s−1+e−sτ corresponding to the first eigen-
mode, λ1 = 0. Thus, points on the synchronization subspace
spanned by v1 = (1, 1, . . . , 1)> can be at best neutrally
stable. If that is the case, and in addition limt→∞ uk(t) = 0
for all k ≥ 2, then the system converges to a point on v1, i.e.
it reaches consensus, from arbitrary initial conditions. This
clearly happens if and only if zero is a simple root of Ψ and
all other roots of Ψ have negative real parts. Moreover, in this
case the speed of convergence from general initial conditions
depends on the slowest of these modes uk, k ≥ 2. Hence,
we factor (14) into directions along and transverse to the
synchronization subspace span(v1) as Ψ(s) = ψ1(s)Ψ̃(s),
where

Ψ̃(s) :=

n∏
k=2

ψk(s), (15)

and use the transverse part to quantify the speed of conver-
gence, which motivates the following definition.

Definition 1: The number s∗ ∈ C is called the dominant
transverse root of the consensus algorithm (or dominant root,
for short) if Ψ̃(s∗) = 0 and all roots s of Ψ̃ satisfy Re(s) ≤
Re(s∗).

When τ = 0, system (8) reduces to the classical consensus
problem (1)–(2), and the characteristic equation (14) reduces
to

Ψ(s) =

n∏
k=1

(s+ λk); (16)

so, the dominant root is given by the second smallest
eigenvalue λ2 of the Laplacian. Therefore, λ2 and the
algebraic connectivity of the graph play an important role for
convergence speed (how fast the network reaches consensus),
small values of λ2 implying a slow convergence. Note that
λ2 can be arbitrarily small in connected networks, depending
on the connection structure.

III. CONVERGENCE OF THE CONSENSUS
ALGORITHM

We begin by some observations on the roots of a certain
complex function.

Lemma 2: The function

ψ(s) = s− β
(
1− e−s

)
, β ∈ R, (17)

has a simple root at zero and all its other roots have negative
real parts if and only if

β < 1. (18)
Proof: Clearly ψ(0) = 0; so zero is always a root of

ψ. Moreover, ψ′(0) = 1−β is nonzero if and only if β 6= 1,
in which case zero is a simple root. We note that ψ(s) is a
special case of the function

ψ̃(s) := s− a1 − a2e−s, a1, a2 ∈ R. (19)

which has been studied in the classical paper of Hayes [8].
The properties for (19) is therefore well-known; here we
recall the stability region depicted in Figure 2. In particular,
for the parameter values on the semi-infinite line L =
{a1, a2 : −a2 = a1 < 1} in the figure, ψ̃ has a simple root at
zero and all its remaining roots have negative real parts. Since
ψ is a special case of (19) with a1 = −a2 = β, condition
(18) follows from considering the line L in Figure 2.

We can now state the main convergence result for the
consensus problem (8) of anticipating agents.

Theorem 3: The system (8) defined on a connected undi-
rected graph reaches consensus from arbitrary initial condi-
tions if and only if

τ < 1. (20)
Proof: We will show that the characteristic equation

(14) has a simple root at zero and all the remaining roots
have negative real parts if and only if condition (20) holds.
Consider first the roots of the first factor ψ1(s) = s−1+e−sτ

in (14). By a change of variable s′ = sτ , we can equivalently
consider the roots of

ψ̂1(s′) = s′ − τ + τe−s
′
.

Lemma 2 gives that ψ̂1, and therefore ψ1, has a simple root
at zero and all the other roots have negative real parts if and
only if (20) holds. It then suffices to show that all roots of
the remaining factors ψk, k = 2, . . . , n, in (14) have negative
real parts under condition (20). Now, the roots s of ψk satisfy

s = ak + bke
−sτ , (21)

with

ak = 2(1− λk)− 1 (22)
bk = −(1− λk). (23)

For τ = 0, (21) reduces to

s = ak + bk = −λk < 0 for k ≥ 2, (24)

and the roots are on the open left complex plane. We next
look for roots that may cross the imaginary axis as τ is
increased from zero. Letting s = iω, ω ∈ R, the imaginary
part of (21) gives

ω = −bk sin(ωτ).

Therefore,
|ω| = |bk sin(ωτ)| ≤ |bk ωτ |. (25)
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Fig. 2. Stability region of equation (19) in a1–a2 parameter space.

Notice from (21) and (24) that ω 6= 0. Hence, dividing (25)
by |ω|,

1 ≤ |bkτ | = |τ(1− λk)| ≤ τ,

where we have substituted for b from (23) and used (10). This
shows that, as long as condition (20) holds, no roots can cross
the imaginary axis, and so all roots of ψk for k = 2, . . . , n
have negative real parts. This completes the proof of the
theorem.

IV. COMPUTATION OF DOMINANT ROOTS

The performance of the consensus algorithm depends on
the transverse dominant root of the problem, as defined in
Definition 1. We use Lambert W function to solve for the
characteristic roots.

Recall that the Lambert W function is defined as the
inverse function of the mapping f(z) = zez for z ∈ C [4];
in other words, W (z) satisfies

W (z)eW (z) = z. (26)

Since f is not one-to-one, W (z) is multi-valued. We let W0

denote the principal branch of the Lambert function.
Proposition 4: The root of the characteristic equation (13)

having the largest real part is given by

s =
1

τ
W0(τbke

−akτ ) + ak, (27)

where W0 is the principal branch of the Lambert W function
and ak and bk are defined in (22)–(23). Consequently, the
dominant transverse root of the consensus problem equals

max
2≤k≤n

{
1

τ
W0(τbke

−akτ ) + ak

}
. (28)

Proof: As seen in the proof of Theorem 3, the roots of
ψk satisfy equation (21), which can be re-written as

s− ak = bke
−(s−ak)τe−akτ .

A change of variables s′ → (s− ak)τ gives

s′ = τbke
−akτe−s

′
,

Fig. 3. Map of the dominant characteristic root of eigenmodes corre-
sponding to a generic Laplacian eigenvalue λ and delay value τ . The
colour represents the real part of the dominant root of a factor (13) of
the characteristic equation. The region above the black line is when there is
a root with positive real part. Note that, since zero is always an eigenvalue
of the Laplacian in every network, the condition τ < 1 actually defines the
region for reaching consensus, in accordance with Theorem 3.

from which, by the definition (26) of Lambert function, one
immediately has s′ = W (τbke

−akτ ). Going back to the
original variable s shows that the roots of ψk are given by

s =
1

τ
W (τbke

−akτ ) + ak,

It follows by a recent result from [15] that the root with
largest real part is given by the principal branch of the
Lambert function, which establishes (27). Definition 1 then
implies (28).

Using Proposition 4 and equation (27), we calculate the
dominant root for any eigenmode (12) of system (8) corre-
sponding to a generic Laplacian eigenvalue λ. This gives
a universal map of the dominant roots of the consensus
problem (8) for any graph topology and delay value, which
is depicted in Figure 3.

In the color map of Figure 3, lighter colors correspond to
more negative real parts for the roots. Hence one notes, from
the change in color as one moves vertically upwards from
the horizontal axis, that a positive value of τ can indeed
improve convergence speed for a given eigenmode. In the
next section we will confirm this observation through actual
simulation of several networks.

V. SIMULATION RESULTS

We illustrate and elaborate on the analytical results us-
ing numerical simulations in three example networks with
various connection topologies. We compare the performance
of the delayed anticipatory algorithm with the classical
consensus algorithm. In all pairwise comparisons simulations
are started from random initial conditions but identical ones
for both algorithms.
Network 1: Circular network made up of 20 vertices, where
each vertex has two neighbours, one on each side (see



Fig. 4. Network 1 (left) and Network 2 (right) used in the simulations.
Each one is a regular network of 20 vertices arranged on a circle, where
each vertex has 2 or 4 neighbors, respectively.
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Fig. 5. Time evolution of agents’ states in (8) in the configuration of
Network 1 starting from arbitrary initial conditions. In the top figure τ = 0.9
and the system converges towards consensus, whereas in the bottom figure
τ = 1.1 and the system diverges.

Figure 4).
We first check the converge condition (20) of Theorem 3.

Figure 5 shows the comparison between results obtained
with τ = 0.7 and τ = 2, respectively, for which the
system converges or diverges, affirming condition (20). The
convergence criterion depends only on τ and is independent
of the network structure, as long as the latter is connected.

We next take τ = 0.7 for Network 1 and compare it with
the classical undelayed algorithm τ = 0. Figure 6 shows that
the speed of convergence to consensus is much faster under
the anticipatory algorithm. This is confirmed from another
point of view in Figure 7, which plots the standard deviation
of the agents’ states over time. The comparison makes it clear
that the anticipatory algorithm performs much better. We
note that the circular graph configuration has a small spectral
gap λ2, and therefore converges poorly under the classical
undelayed consensus protocol. However, the same network
exhibits a dramatic improvement in convergence under the
anticipatory protocol with τ = 0.7.
Network 2: Circular network made up of 20 vertices, where
each vertex has four neighbours, two on each side (see
Figure 4). This network is similar to the initial setup of
used in [11], where the author demonstrated that convergence
to consensus can be improved by random rewirings of the
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Fig. 6. Time evolution of agents’ states in Network 1 under the classical
consensus protocol obtained with τ = 0 (top figure) and the anticipatory
protocol obtained with τ = 0.7 (bottom figure), showing that the system
reaches consensus much faster under the anticipatory algorithm.
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Fig. 7. Time evolution of the standard deviation of agents’ sates in
Network 1, plotted for τ = 0 (dashed line) and τ = 0.7 (solid line),
showing the superior performance of the anticipatory algorithm.

links en route to a small-world network configuration. Here,
we will accomplish a similar improvement by using the
anticipatory consensus algorithm instead of rewiring the
network. Figure 8 shows the time evolution of the agents’
states in Network 3 under the anticipatory algorithm with
τ = 0.5, and compares it with the classical consensus
algorithm with τ = 0. It is seen that the convergence speed
is increased without the need to rewire the network.
Network 3: An Erdős-Rényi random undirected graph with
20 nodes. If the edges of Network 2 are randomly rewired,
the consensus performance increases monotonically at each
step of rewiring, as shown in [11]. After repeated random
rewirings, the network approaches a random network, which
should then have very good convergence properties. We
therefore generate a random network with (approximately)
the same number of edges as in Network 2, which is accom-
plished by taking p = 0.21 as the probability of having an
edge between a pair of vertices. Figures 9 and 10 show, once
again, that consensus is reached faster under the anticipatory
algorithm. We conclude that using an anticipatory algorithm
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Fig. 8. Time evolution of agents’ states in Network 2 under the classical
consensus protocol (top figure) and the anticipatory protocol with τ =
0.5 (bottom figure), demonstrating the superior performance of the latter
algorithm.
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Fig. 9. Time evolution of agents’ states in Network 3 under the classical
consensus protocol (top figure) and the anticipatory protocol with τ = 0.5
(bottom figure).
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Fig. 10. Standard deviation of agents’ states in Network 3 obtained under
the classical consensus protocol (dashed line) and under the anticipatory
protocol with τ = 0.5 (solid line).

can lead to a better consensus performance than rewiring
the network, which is useful because altering the network
structure is not always possible in real networks. For reasons
of clarity we have illustrated the results on networks with 20
agents, but the results are similar for larger networks.
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