E. Noor, E. Eden, R. Milo, and U. Alon, Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy, Molecular Cell, vol.39, issue.5, pp.809-820, 2010.
DOI : 10.1016/j.molcel.2010.08.031

J. Da-veiga-moreira, S. Peres, J. Steyaert, E. Bigan, L. Paulevé et al., Cell cycle progression is regulated by intertwined redox oscillators, Theoretical Biology and Medical Modelling, vol.26, issue.Figure 1, p.10, 2015.
DOI : 10.1186/s12976-015-0005-2

F. X. Yu, R. P. Dai, S. R. Goh, L. Zheng, and Y. Luo, Logic of a mammalian metabolic cycle: An oscillated NAD+/NADH redox signaling regulates coordinated histone expression and S-phase progression, Cell Cycle, vol.8, issue.5, pp.773-779, 2009.
DOI : 10.4161/cc.8.5.7880

S. Diaz-moralli, M. Tarrado-castellarnau, A. Miranda, and M. Cascante, Targeting cell cycle regulation in cancer therapy, Pharmacology & Therapeutics, vol.138, issue.2, pp.255-271, 2013.
DOI : 10.1016/j.pharmthera.2013.01.011

C. Norbury and P. Nurse, Animal cell cycles and their control [CrossRef] [PubMed] 7. Nurse, P. A long twentieth century of the cell cycle and beyond, The cell cycle is a redox cycle: Linking phase-specific targets to cell fate, pp.441-468, 1992.
DOI : 10.1146/annurev.bi.61.070192.002301

J. Chiu and W. Dawes, Redox control of cell proliferation, Trends in Cell Biology, vol.22, issue.11, pp.592-601
DOI : 10.1016/j.tcb.2012.08.002

S. G. Menon and P. C. Goswami, A redox cycle within the cell cycle: ring in the old with the new, Oncogene, vol.279, issue.8, pp.1101-1109, 2007.
DOI : 10.1038/sj.onc.1209895

E. H. Sarsour, M. G. Kumar, L. Chaudhuri, A. L. Kalen, and P. C. Goswami, Redox Control of the Cell Cycle in Health and Disease, Antioxidants & Redox Signaling, vol.11, issue.12, pp.2985-3011, 2009.
DOI : 10.1089/ars.2009.2513

R. J. Deberardinis, J. J. Lum, G. Hatzivassiliou, and C. Thompson, The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation, Cell Metabolism, vol.7, issue.1, pp.11-20, 2008.
DOI : 10.1016/j.cmet.2007.10.002

O. Warburg, The Metabolism of Carcinoma Cells, The Journal of Cancer Research, vol.9, issue.1, pp.148-163, 1925.
DOI : 10.1158/jcr.1925.148

O. Warburg, On the Origin of Cancer Cells, Science, vol.123, issue.3191, pp.309-314, 1956.
DOI : 10.1126/science.123.3191.309

I. Fabregat, J. Vitorica, J. Satrustegui, and A. Machado, The pentose phosphate cycle is regulated by NADPHNADP ratio in rat liver, Archives of Biochemistry and Biophysics, vol.236, issue.1, pp.110-118, 1985.
DOI : 10.1016/0003-9861(85)90610-1

I. Fabregat, E. Revilla, and A. Machado, Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPHNADP ratio in rat adipocytes and hepatocytes, Biochemical and Biophysical Research Communications, vol.146, issue.2, pp.920-925, 1987.
DOI : 10.1016/0006-291X(87)90618-8

E. Revilla, I. Fabregat, C. Santa-maría, and A. Machado, The NADPH-producing pathways (pentose phosphate and malic enzyme) are regulated by the NADPH consumption in rat mammary gland, Biochem. Int, vol.14, pp.957-962, 1987.

H. M. Mcbride, M. Neuspiel, and S. Wasiak, Mitochondria: More Than Just a Powerhouse, Current Biology, vol.16, issue.14, pp.551-560, 2006.
DOI : 10.1016/j.cub.2006.06.054

B. A. Scalettar, J. R. Abney, and C. R. Hackenbrock, Dynamics, structure, and function are coupled in the mitochondrial matrix., Proc. Natl. Acad. Sci, pp.8057-8061, 1991.
DOI : 10.1073/pnas.88.18.8057

C. R. Hackenbrock, ULTRASTRUCTURAL BASES FOR METABOLICALLY LINKED MECHANICAL ACTIVITY IN MITOCHONDRIA: II. Electron Transport-Linked Ultrastructural Transformations in Mitochondria, The Journal of Cell Biology, vol.37, issue.2, pp.345-369, 1968.
DOI : 10.1083/jcb.37.2.345

K. Mitra, C. Wunder, B. Roysam, G. Lin, and J. Lippincott-schwartz, A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase, Proc. Natl. Acad. Sci, pp.11960-11965, 2009.
DOI : 10.1073/pnas.0904875106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710990

R. Christen, R. W. Schackmann, and B. M. Shapiro, Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration, J. Biol. Chem, vol.258, pp.5392-5399, 1983.

R. G. Jones, D. R. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint, Molecular Cell, vol.18, issue.3, pp.283-293, 2005.
DOI : 10.1016/j.molcel.2005.03.027

URL : http://doi.org/10.1016/j.molcel.2005.03.027

L. Schwartz, L. Buhler, P. Icard, H. Lincet, and J. M. Steyaert, Metabolic treatment of cancer: Intermediate results of a prospective case series, Anticancer Res, vol.34, pp.973-980, 2014.

J. Pouyssegur, A. Franchi, G. L-'allemain, and S. Paris, Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, FEBS Letters, vol.76, issue.1, pp.115-119, 1985.
DOI : 10.1016/0014-5793(85)80439-7

R. J. Aerts, A. J. Durston, and W. H. Moolenaar, Cytoplasmic pH and the regulation of the dictyostelium cell cycle, Cell, vol.43, issue.3, pp.653-657, 1985.
DOI : 10.1016/0092-8674(85)90237-5

T. Finkel and P. M. Hwang, The Krebs cycle meets the cell cycle: Mitochondria and the G1-S transition, Proc. Natl. Acad. Sci. USA 2009, pp.11825-11826
DOI : 10.1073/pnas.0906430106

L. M. Westrate, A. D. Sayfie, D. M. Burgenske, and J. P. Mackeigan, Persistent Mitochondrial Hyperfusion Promotes G2/M Accumulation and Caspase-Dependent Cell Death, PLoS ONE, vol.26, issue.3
DOI : 10.1371/journal.pone.0091911.g005

E. Q. Toyama, S. Herzig, J. Courchet, T. L. Lewis, . Jr et al., AMP-activated protein kinase mediates mitochondrial fission in response to energy stress, Science, vol.351, issue.6270, pp.275-281, 2016.
DOI : 10.1126/science.aab4138

S. Zhang, C. Yang, Z. Yang, D. Zhang, X. Ma et al., Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect, Am. J. Cancer Res, vol.5, pp.928-944, 2015.

M. Israël and L. Schwartz, The metabolic advantage of tumor cells, Molecular Cancer, vol.10, issue.1, pp.1-12, 2011.
DOI : 10.1016/j.bbrc.2004.09.047

M. A. Mcbrian, I. S. Behbahan, R. Ferrari, T. Su, T. W. Huang et al., Histone Acetylation Regulates Intracellular pH, Molecular Cell, vol.49, issue.2, pp.310-321, 2013.
DOI : 10.1016/j.molcel.2012.10.025

S. K. Kurdistani, Chromatin: a capacitor of acetate for integrated regulation of gene expression and cell physiology, Current Opinion in Genetics & Development, vol.26, pp.53-58
DOI : 10.1016/j.gde.2014.06.002

S. K. Kurdistani and M. Grunstein, Histone acetylation and deacetylation in yeast, Nature Reviews Molecular Cell Biology, vol.4, issue.4, pp.276-284, 2003.
DOI : 10.1038/nrm1075

S. I. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature, vol.403, pp.795-800, 2000.

W. B. Busa and R. Nuccitelli, Metabolic regulation via intracellular pH, Am. J. Physiol, vol.246, pp.409-438, 1984.

M. Abolhassani, N. Aloulou, M. T. Chaumette, T. Aparicio, N. Martin-garcia et al., Leptin Receptor-Related Immune Response in Colorectal Tumors: The Role of Colonocytes and Interleukin-8, Cancer Research, vol.68, issue.22, pp.9423-9432, 2008.
DOI : 10.1158/0008-5472.CAN-08-1017

E. D. Michelakis and B. Abdulkarim, Metabolic Modulation of Glioblastoma with Dichloroacetate, Science Translational Medicine, vol.2, issue.31, 2010.
DOI : 10.1126/scitranslmed.3000677

A. Kinnaird, Michelakis, E. 297 Dichloroacetate is a novel therapy for renal cell carcinoma, J. Urol, vol.2012, issue.187, pp.120-121

P. Kafara, P. Icard, M. Guillamin, L. Schwartz, and H. Lincet, Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells leading to cell death, Journal of Ovarian Research, vol.34, issue.1, p.36, 2015.
DOI : 10.1186/s13048-015-0165-z

URL : https://hal.archives-ouvertes.fr/inserm-01187953