J. Yunis and W. Yasmineh, Heterochromatin, Satellite DNA, and Cell Function, Science, vol.174, issue.4015, pp.1200-1209, 1971.
DOI : 10.1126/science.174.4015.1200

P. Warburton and H. Willard, Genomic analysis of sequence variation in tandemly repeated DNA, Journal of Molecular Biology, vol.216, issue.1, pp.3-16, 1990.
DOI : 10.1016/S0022-2836(05)80056-7

M. Schueler, A. Higgins, M. Rudd, K. Gustashaw, and H. Willard, Genomic and Genetic Definition of a Functional Human Centromere, Science, vol.294, issue.5540, pp.109-124, 2001.
DOI : 10.1126/science.1065042

M. Plohl, A. Luchetti, N. Me?trovi?, and B. Mantovani, Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin, Gene, vol.409, issue.1-2, pp.72-82, 2008.
DOI : 10.1016/j.gene.2007.11.013

I. Feliciello, I. Akrap, and D. Ugarkovi?, Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress, ): e1005466. Available from, 2015.

X. She, J. Horvath, Z. Jiang, G. Liu, T. Furey et al., The structure and evolution of centromeric transition regions within the human genome, Nature, vol.31, issue.7002, pp.857-64, 2004.
DOI : 10.1101/gr.1929904

J. Maio, DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops, Journal of Molecular Biology, vol.56, issue.3, pp.579-95, 1971.
DOI : 10.1016/0022-2836(71)90403-7

P. Musich, F. Brown, and J. Maio, Highly repetitive component ? and related alphoid DNAs in man and monkeys, Chromosoma, vol.74, issue.3, pp.331-379, 1980.
DOI : 10.1007/BF00292688

J. Maio, F. Brown, W. Mckenna, and P. Musich, Toward a molecular paleontology of primate genomes, Chromosoma, vol.117, issue.1, pp.127-171, 1981.
DOI : 10.1007/BF00286020

G. Alves, H. Seuanez, and T. Fanning, Alpha satellite DNA in neotropical primates (Platyrrhini), Chromosoma, vol.3, issue.4, pp.262-269, 1994.
DOI : 10.1007/BF00352250

H. Willard, Evolution of alpha satellite, Current Opinion in Genetics & Development, vol.1, issue.4, pp.509-523, 1991.
DOI : 10.1016/S0959-437X(05)80200-X

M. Rudd, G. Wray, and H. Willard, The evolutionary dynamics of alpha-satellite

M. Rudd and H. Willard, Analysis of the centromeric regions of the human genome assembly, Trends in Genetics, vol.20, issue.11, pp.529-562, 2004.
DOI : 10.1016/j.tig.2004.08.008

K. Miga, Completing the human genome: the progress and challenge of satellite DNA assembly, Chromosome Research, vol.7, issue.3, pp.421-447, 2015.
DOI : 10.1007/s10577-015-9488-2

M. Schueler and B. Sullivan, Structural and Functional Dynamics of Human Centromeric Chromatin, Annual Review of Genomics and Human Genetics, vol.7, issue.1, pp.301-314, 2006.
DOI : 10.1146/annurev.genom.7.080505.115613

K. Miga, Y. Newton, M. Jain, N. Altemose, H. Willard et al., Centromere reference models for human chromosomes X and Y satellite arrays, Genome Research, vol.24, issue.4, pp.697-707, 2014.
DOI : 10.1101/gr.159624.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975068

I. Alexandrov, A. Kazakov, I. Tumeneva, V. Shepelev, and Y. Yurov, Alpha-satellite DNA of primates: old and new families, Chromosoma, vol.110, issue.4, pp.253-66, 2001.
DOI : 10.1007/s004120100146

C. Alkan, M. Ventura, N. Archidiacono, M. Rocchi, S. Sahinalp et al., Organization and evolution of primate centromeric DNA from wholegenome shotgun sequence data, PLoS Comput Biol, vol.3, issue.9, pp.1807-1825, 2007.

V. Shepelev, A. Alexandrov, Y. Yurov, and I. A. Alexandrov, The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes Available from, PLoS Genet, vol.5, issue.9, 2009.

C. Catacchio, R. Ragone, G. Chiatante, and M. Ventura, Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches, Scientific Reports, vol.4, issue.1, p.14189, 2015.
DOI : 10.1093/molbev/mst197

H. Willard and J. Waye, Hierarchical order in chromosome-specific human alpha satellite DNA, Trends in Genetics, vol.3, issue.7, pp.192-211, 1987.
DOI : 10.1016/0168-9525(87)90232-0

I. Alexandrov, L. Medvedev, T. Mashkova, L. Kisselev, L. Romanova et al., Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization, Nucleic Acids Research, vol.21, issue.9, pp.2209-2224, 1993.
DOI : 10.1093/nar/21.9.2209

K. Hayden, Human centromere genomics: now it's personal, Chromosome Research, vol.3, issue.Pt 1, pp.621-654, 2012.
DOI : 10.1007/s10577-012-9295-y

I. Alexandrov, S. Mitkevich, and Y. Yurov, The phylogeny of human chromosome specific alpha satellites, Chromosoma, vol.20, issue.6, pp.443-53, 1988.
DOI : 10.1007/BF00303039

C. Lee, R. Wevrick, R. Fisher, M. Ferguson-smith, and C. Lin, Human centromeric DNAs, Human Genetics, vol.100, issue.3-4, pp.291-304, 1997.
DOI : 10.1007/s004390050508

A. Jorgensen, C. Jones, C. Bostock, and A. Bak, Different subfamilies of alphoid repetitive DNA are present on the human and chimpanzee homologous chromosomes 21 and 22, EMBO J, vol.6, issue.6, pp.1691-1697, 1987.

N. Archidiacono, R. Antonacci, P. Finelli, A. Lonoce, and M. Rocchi, Comparative Mapping of Human Alphoid Sequences in Great Apes Using Fluorescence, Genomics, vol.484, pp.477-84, 1995.

P. Warburton, T. Haaf, J. Gosden, D. Lawson, and H. Willard, Characterization of a Chromosome-Specific Chimpanzee Alpha Satellite Subset: Evolutionary Relationship to Subsets on Human Chromosomes, Genomics, vol.33, issue.2, pp.220-228, 1996.
DOI : 10.1006/geno.1996.0187

H. Malik and S. Henikoff, Conflict begets complexity: the evolution of centromeres, Current Opinion in Genetics & Development, vol.12, issue.6, pp.711-719, 2002.
DOI : 10.1016/S0959-437X(02)00351-9

P. Warburton and H. Willard, Interhomologue sequence variation of alpha satellite DNA from human chromosome 17: Evidence for concerted evolution along haplotypic lineages, Journal of Molecular Evolution, vol.41, issue.6, pp.1006-1021, 1995.
DOI : 10.1007/BF00173182

D. Schindelhauer and T. Schwarz, Evidence for a Fast, Intrachromosomal Conversion Mechanism From Mapping of Nucleotide Variants Within a Homogeneous alpha -Satellite DNA Array, Genome Research, vol.12, issue.12, pp.1815-1841, 2002.
DOI : 10.1101/gr.451502

G. Roizès, Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning, Nucleic Acids Research, vol.34, issue.6, pp.1912-1936, 2006.
DOI : 10.1093/nar/gkl137

M. Schueler, J. Dunn, C. Bird, M. Ross, L. Viggiano et al., Progressive proximal expansion of the primate X chromosome centromere, Proceedings of the National Academy of Sciences, vol.102, issue.30, pp.10563-10571, 2005.
DOI : 10.1073/pnas.0503346102

K. Guschanski, J. Krause, S. Sawyer, L. Valente, S. Bailey et al., Next-Generation Museomics Disentangles One of the Largest Primate Radiations, Systematic Biology, vol.62, issue.4, pp.539-54, 2013.
DOI : 10.1093/sysbio/syt018

H. Madhani, S. Leadon, C. Smith, and P. Hanawalt, ? DNA in African green monkey cells is organized into extremely long tandem arrays, J Biol Chem, vol.261, pp.2314-2322, 1986.

F. Fittler, Analysis of the alpha-Satellite DNA from African Green Monkey Cells by Restriction Nucleases, European Journal of Biochemistry, vol.81, issue.2, pp.343-52, 1977.
DOI : 10.1007/BF00285787

J. Harrison, C. International, and D. Medicales, A new species of guenon (genus Cercopithecus) from Gabon, J Zool, pp.561-75, 1984.

T. Lee and M. Singer, Structural organization of ??-satellite DNA in a single monkey chromosome, Journal of Molecular Biology, vol.161, issue.2, pp.323-365, 1982.
DOI : 10.1016/0022-2836(82)90156-5

M. Rosandi?, V. Paar, I. Basar, M. Glun?i?, N. Pavin et al., CENP-B box and pJ?? sequence distribution in human alpha satellite higher-order repeats (HOR), Chromosome Research, vol.16, issue.7
DOI : 10.1007/s10577-006-1078-x

L. Bragg, G. Stone, M. Butler, P. Hugenholtz, and G. Tyson, Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data, PLoS Computational Biology, vol.6, issue.4, 2013.
DOI : 10.1371/journal.pcbi.1003031.s014

O. Keefe, C. Matera, and A. , Alpha satellite DNA variant-specific oligoprobes differing by a single base can distinguish chromosome 15 homologs

A. Silahtaroglu, H. Pfundheller, A. Koshkin, and N. Tommerup, LNA-modified oligonucleotides are highly efficient as FISH probes, Cytogenetic and Genome Research, vol.107, issue.1-2, pp.32-39, 2004.
DOI : 10.1159/000079569

J. Ollion, F. Loll, J. Cochennec, T. Boudier, and C. Escudé, Proliferation-dependent positioning of individual centromeres in the interphase nucleus of human lymphoblastoid cell lines, Molecular Biology of the Cell, vol.26, issue.13, pp.2550-60, 2015.
DOI : 10.1091/mbc.E14-05-1002

H. Rosenberg, M. Singer, and M. Rosenberg, Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN, Science, vol.200, issue.4340, pp.394-402, 1978.
DOI : 10.1126/science.205944

V. Rojo, A. Martínez-lage, M. Giovannotti, A. González-tizón, P. Cerioni et al., Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits, Chromosome Research, vol.111, issue.3, pp.441-61, 2015.
DOI : 10.1007/s10577-015-9489-1

F. Ruiz-ruano, M. López-león, J. Cabrero, and J. Camacho, High-throughput analysis of the satellitome illuminates satellite DNA evolution Available from, Sci Rep, vol.6, 2016.

P. Sujiwattanarat, W. Thapana, K. Srikulnath, Y. Hirai, H. Hirai et al., Higher-order repeat structure in alpha satellite DNA occurs in New World monkeys and is not confined to hominoids, Scientific Reports, vol.30, issue.1, p.10315, 2015.
DOI : 10.1093/molbev/mst197

I. Goldberg, H. Sawhney, A. Pluta, P. Warburton, and W. Earnshaw, Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres., Molecular and Cellular Biology, vol.16, issue.9, pp.5156-68, 1996.
DOI : 10.1128/MCB.16.9.5156

K. Yoda, T. Nakamura, H. Masumoto, N. Suzuki, K. Kitagawa et al., Centromere protein B of African green monkey cells: gene structure, cellular expression, and centromeric localization., Molecular and Cellular Biology, vol.16, issue.9, pp.5169-77, 1996.
DOI : 10.1128/MCB.16.9.5169

G. Smith, Evolution of repeated DNA sequences by unequal crossover, Science, vol.191, issue.4227, pp.528-563, 1976.
DOI : 10.1126/science.1251186

S. Henikoff, Near the edge of a chromosome's ???black hole???, Trends in Genetics, vol.18, issue.4, pp.165-172, 2002.
DOI : 10.1016/S0168-9525(01)02622-1

J. Henikoff, J. Thakur, S. Kasinathan, and S. Henikoff, A unique chromatin complex occupies young ??-satellite arrays of human centromeres, Science Advances, vol.1, issue.1, p.1400234, 2015.
DOI : 10.1126/sciadv.1400234

M. Guenatri, D. Bailly, C. Maison, and G. Almouzni, Mouse centric and pericentric satellite repeats form distinct functional heterochromatin, The Journal of Cell Biology, vol.102, issue.4, pp.493-505, 2004.
DOI : 10.1159/000133676

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172221

K. Choo, E. Earle, and C. Mcquillan, A homologous subfamily of satellite III DNA on human chromosomes 14 and 22, Nucleic Acids Research, vol.18, issue.19, pp.5641-5649, 1990.
DOI : 10.1093/nar/18.19.5641

P. Warburton, D. Hasson, F. Guillem, C. Lescale, J. X. Abrusan et al., Analysis of the largest tandemly repeated DNA families in the human genome, BMC Genomics, vol.9, issue.1, p.533, 2008.
DOI : 10.1186/1471-2164-9-533

M. Pertile, A. Graham, K. Choo, and P. Kalitsis, Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability, Genome Research, vol.19, issue.12, pp.2202-2215, 2009.
DOI : 10.1101/gr.092080.109

B. Mravinac and M. Plohl, Parallelism in Evolution of Highly Repetitive DNAs in Sibling Species, Molecular Biology and Evolution, vol.27, issue.8, pp.1857-67, 2010.
DOI : 10.1093/molbev/msq068

S. Moulin, M. Gerbault-seureau, B. Dutrillaux, and F. Richard, Phylogenomics of African guenons, Chromosome Research, vol.14, issue.12, pp.783-99, 2008.
DOI : 10.1007/s10577-008-1226-6

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-413, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

S. Needleman and C. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, Journal of Molecular Biology, vol.48, issue.3, pp.443-53, 1970.
DOI : 10.1016/0022-2836(70)90057-4

J. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-280, 1963.
DOI : 10.1007/BF02289263

R. Edgar, MUSCLE : a multiple sequence alignment method with reduced time and space complexity, BMC Bioinform, vol.19, pp.1-19, 2004.

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, Molecular Biology and Evolution, vol.27, issue.2, pp.221-225, 2010.
DOI : 10.1093/molbev/msp259

URL : https://hal.archives-ouvertes.fr/lirmm-00705187

P. Rice, EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics, vol.16, issue.6, pp.2-3, 2000.
DOI : 10.1016/S0168-9525(00)02024-2

R. Team, R a Language and Environment for Statistical Computing

M. Abràmoff, I. Hospitals, P. Magalhães, and M. Abràmoff, Image Processing with ImageJ, J Biophotonics, vol.11, issue.7, pp.36-42, 2004.