
HAL Id: hal-01417668
https://hal.science/hal-01417668v4

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Covariance Functions on Spheres cross Time: Beyond
Spatial Isotropy and Temporal Stationarity

Anne Estrade, Alessandra Fariñas, Emilio Porcu

To cite this version:
Anne Estrade, Alessandra Fariñas, Emilio Porcu. Covariance Functions on Spheres cross Time: Be-
yond Spatial Isotropy and Temporal Stationarity. Statistics and Probability Letters, 2019, 151, pp.1-7.
�hal-01417668v4�

https://hal.science/hal-01417668v4
https://hal.archives-ouvertes.fr


COVARIANCE FUNCTIONS ON SPHERES CROSS TIME: BEYOND

SPATIAL ISOTROPY AND TEMPORAL STATIONARITY

ANNE ESTRADE *, ALESSANDRA FARIÑAS, AND EMILIO PORCU

Abstract. Spectral representations uniquely define the covariance functions associated to ran-

dom fields defined over spheres or spheres cross time. Covariance functions on spheres cross time

are usually modelled under the assumptions of either spatial isotropy or axial symmetry, and the

assumption of temporal stationarity. This paper goes beyond these assumptions. In particular,

we consider the problem of spatially anisotropic covariance functions on spheres. The crux of

our criterion is to escape from the addition theorem for spherical harmonics. We also challenge

the problem of temporal nonstationarity in nonseparable space-time covariance functions, where

space is the n-dimensional sphere.

Keywords: Gegenbauer Polynomial, Positive Definite, Space-time Random Field, Spectral Representa-

tion, Spherical Harmonic.

1. Introduction

The literature on positive definite kernels on spheres has become ubiquitous, and we refer the

reader to the essay by [6], with the list of references given there. Both mathematical and statis-

tical communities have been interested in the construction of positive definite functions defined

over product spaces where the sphere is involved. The recent tours de force in [2, 7, 9] in concert

with the works by [6, 3, 18] and the recent review in [12] are apparent indications that there are

some important branches of the mathematical and statistical communities devoted to studying

such constructions.

Recently, [17] have proposed an overview of statistical approaches for global data, showing that

positive definite functions have a crucial role for modeling temporally evolving phenomena de-

fined over the sphere representing planet Earth. Recent statistical works are concerned with the

(*) Corresponding author.
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construction of space-time covariances where the space is the spherical shell (see [12, 18, 4] for

instance). Characterization theorems for positive definite kernels on n-dimensional spheres have

been provided in seminal papers by [19] and [16]. Then, [3] and [18] extended Schoenberg’s repre-

sentation theorem to space-time. In particular, [18] focus on construction principles that allow for

algebraically tractable closed forms, and then analyze the discrepancy between using the correct

metric on the sphere and other metrics. The literature on spatial anisotropy on spheres has in-

stead been sparse, with the work of [11] being a notable exception. Specifically, the authors show

spectral representations for anisotropic processes defined over R3 and then restricted to the sphere.

Under such a scheme, the covariance function depends on the chordal distance, being the segment

below the arc joining any pair of points located over the spherical shell. The natural metric on

the sphere is the great circle or geodesic distance, and for constructive criticism about the use of

chordal distance the reader is referred to [6] as well as to [17].

This paper goes beyond spatial isotropy and temporal stationarity by avoiding the traditionally

used addition theorem for spherical harmonics (see [19] as a seminal reference and [14, 3] for in-

stance as more recent works). A similar strategy is adopted by [13] and by [20] to obtain spectral

representations for axially symmetric processes.

In particular, we provide spectral representations for positive definite kernels on (Sn×T )2, with Sn

being the n-dimensional sphere of Rn+1 with unit radius, and where T denotes time, which might

be the whole real line or a compact set. On the basis of such spectral representations, we illustrate

how to obtain anisotropy with respect to space, and nonstationarity with respect to time. The

paper is organized as follows. In Section 2, we give necessary notation and background. The main

results of the paper are provided in Section 3.

2. Background

This section is largely expository and contains basic material that will be useful for the exposition

of our results. Although most of our work is related to the product space Sn×T , it will be convenient

to present some basic facts by making reference to a metric space, denoted M throughout. We
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call kernel on M any mapping k : M ×M → C, such that k(q, p) = k(p, q) for p, q ∈ M , where a

denotes the complex conjugate of the complex number a. The kernel k is positive definite if, for

every positive integer m and every set of points p1, . . . , pm ∈ M , the m ×m matrix with entries

[k(pi, pi′)]1≤i,i′≤m satisfies, for any c1, . . . , cm ∈ C,

m∑
i,i′=1

ci ci′ k(pi, pi′) ≥ 0.

Kolmogorov’s existence theorem implies that a real-k is positive definite if and only if there

exists a zero mean real-valued Gaussian random field X defined on M such that k is the covariance

function of X. Namely, we have

k(p1, p2) := cov(X(p1), X(p2)) = E[X(p1)X(p2)], p1, p2 ∈M.

The class of positive definite kernels on M is a convex cone being stable by multiplication and

closed under the topology of pointwise convergence. Furthermore, if k1 and k2 are positive definite

kernels on M1 and M2 respectively, then their tensor product k1 ⊗ k2 is a positive definite kernel

on M1 ×M2.

Next lemma provides an integral characterization of continuous positive definite kernels on

M = Sn × R. It extends the special case given by Lemma 4.3 in [3]. We do not give a proof

because it is obtained by following similar arguments.

Lemma 2.1. Let k be a continuous kernel on Sn × R.

Then, k is positive definite if and only if, for any continuous function c : Sn×R→ C with compact

support,

(2.1)

∫
Sn×R

∫
Sn×R

k((p1, t1), (p2, t2)) c(p1, t1) c(p2, t2) dσn(p1)dt1dσn(p2)dt2 ≥ 0,

where σn is the surface measure on Sn.

Through the manuscript we consider the geodesic (or great circle) distance as the mapping

θ : Sn × Sn → [0, π] defined by θ(p1, p2) = arccos(〈p1, p2〉), p1, p2 ∈ Sn, where 〈·, ·〉 denotes the
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classical inner product. A kernel k : Sn × Sn → R is called isotropic if there exists a function

ψ : [0, π]→ R such that

(2.2) k(p1, p2) = ψ(θ(p1, p2)), p1, p2 ∈ Sn.

Isotropic covariance functions have a well established literature: [19] has shown that all continuous

covariance functions on n-dimensional spheres, being additionally isotropic, admit series expansions

depending on spherical harmonics. We now recall some basic facts on these topics. We refer to

the recent monographs [21] and [5] for more details.

Let dn,0 = 1 and for ` ∈ N,

(2.3) dn,` =
(2`+ n− 1)(`+ n− 2)!

`!(n− 1)!
,

and let us consider {Y`,j : ` ∈ N0, j = 1, . . . , dn,`}, the family of spherical harmonics on the sphere

Sn as defined in [16] (see also [13] for instance in the case n = 2). These are complex-valued

functions and they provide a complete orthonormal system in the space of the Lebesgue square

integrable functions L2(Sn,dσn). They moreover satisfy the next relation

Y`,j = Y`,1−j+dn,`
` ∈ N0, j = 1, . . . , dn,`.

A classical result provides an explicit relation between Gaussian random fields with a continuous

covariance and its related expansion in terms of spherical harmonics. Formally, it states that any

zero mean, real-valued and squared integrable Gaussian random field X on Sn with covariance

function k admits the expansion

(2.4) X(p) =

∞∑
`=0

dn,`∑
j=1

b`,jY`,j(p), p ∈ Sn,

with the coefficients {b`,j}`,j being complex-valued random variables with zero mean and satisfying

b`,j = b`,1−j+dn,`
for any (`, j). Specifically, we have

b`,j =

∫
Sn
X(p)Y`,j(p)dσn(p), ` ∈ N0, j = 1, . . . , dn,`.
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When the field is isotropic, the variance only depends on ` through

(2.5) E[b`,jb`′,j′ ] = a` δ`,`′δj,j′ ,

where δ is the Kronecker delta function. Then, the associated covariance kernel admits the expres-

sion

(2.6) E[X(p1)X(p2)] =

∞∑
`=0

a`

dn,`∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn,

where the sequence {a`}`∈N0
, identified through the relation (2.5), is called angular power spectrum.

Representation (2.6) naturally yields the family of Gegenbauer polynomials {Cν` : ` ∈ N0} for

ν ≥ 0, which constitutes an orthogonal basis for the space L2([−1, 1], (1 − z2)ν−1/2dz). Actually,

when n = 2, 3, . . ., the (n− 1)/2-Gegenbauer polynomial of degree ` can be expressed in terms of

the spherical harmonics through the addition Theorem (see [16] Equation 4.5 or [21] Lemma 17.3):

(2.7) C
(n−1)/2
` (〈p1, p2〉) = ωn

(n− 1)

(2`+ n− 1)

dn,`∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn,

where ωn = 2π(n+1)/2/Γ ((n+ 1)/2) is the total mass of the surface measure σn on Sn, being Γ(·)

the Gamma function. Note that the Gegenbauer polynomials are real-valued. Besides, for all

` ∈ N0,

(2.8) |C(n−1)/2
` (z)| ≤ C(n−1)/2

` (1) =

(
`+ n− 2

`

)
, ∀ z ∈ [−1, 1],

and

∥∥∥C(n−1)/2
`

∥∥∥2
L2([−1,1],(1−z2)(n−2)/2dz)

=

∫ π

0

(
C

(n−1)/2
` (cos θ)

)2
sin θn−1dθ

=
ωn
ωn−1

(
`+n−2

`

)
(1 + 2`

n−1 )
.(2.9)

In the case n = 2, the Gegenbauer polynomials coincide with the Legendre polynomials [5]. When

n = 1, the addition Theorem simplifies to

C0
` (〈p1, p2〉) = π

2∑
j=1

Y`,j(p1)Y`,j(p2), p1, p2 ∈ S1,

and according to Equation 22.3.14 in [1], C0
` (cos θ) = 2 `−1 cos(` θ) for ` ∈ N, and C0

0 (cos θ) = 1.
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The ingredients in (2.6) and (2.5) sum up nicely to provide the following statement, known as

Schoenberg’s Theorem [19]. Let n be a positive integer. Then, any kernel k : Sn × Sn → R is

positive definite and isotropic if and only if

(2.10) k(p1, p2) = ψ(θ(p1, p2)) =

∞∑
`=0

αn`C
(n−1)/2
` (cos θ), p1, p2 ∈ Sn,

with all αn` ≥ 0 and
∑∞
`=0 α

n
`

(
`+n−2

`

)
< ∞ when n = 2, 3, . . . or

∑∞
`=1 α

1
` `
−1 < ∞ when n = 1.

Note that we use the upper index n in αn` to emphasize the dependence of the Schoenberg’s

coefficients with respect to the dimension of the sphere Sn.

When n = 2 and T = R, a direct way to extend representation (2.4) to processes defined over

S2 × R is proposed by [13]:

(2.11) X(p, t) =

∞∑
`=0

d2,`∑
j=1

b`,j(t)Y`,j(p), p ∈ S2, t ∈ R,

where {b`,j(·)} is a uniquely determined sequence of stochastic processes defined on R. Again, the

hypothesis on such sequence are crucial to determine the properties of the associated covariance.

If E[b`,j(·)] = 0 and E[b`,j(t1)b`′,j′(t2)] = a`(t1 − t2)δ`,`′δj,j′ , then the associated covariance is

isotropic in space and stationary in time. In the same vein, it is shown in [3] that all covariance

functions on Sn × R being isotropic in space and stationary in time are uniquely defined as

k(p1, t1, p2, t2) =

∞∑
`=0

a`(t1 − t2)C
(n−1)/2
` (cos θ), (pi, ti) ∈ Sn × R, i = 1, 2,

for a uniquely determined sequence {a`(·)} of positive definite functions with the requirement that∑
` a`(0) <∞ (otherwise X in (2.11) would have infinite variance).

In view of [13]’s result, it becomes apparent that the spectral representation (2.11) is the build-

ing block for considering alternatives to isotropy. The following results show that this spectral

representation actually permits spatial anisotropy and temporal nonstationarity.
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3. Beyond Spatial Isotropy and Temporal Stationarity

Recall that T denotes either a compact interval in R or R itself. We are concerned with the

representation of real-valued positive definite kernels on Sn×T . It should be remarked that isotropy

and stationarity occur in a separate way in each respective space.

Definition 1. Let k be a continuous positive definite kernel on Sn × T .

i) k is called isotropic with respect to space when there exists a function k̃S : [0, π]×T×T → R

such that k(p1, t1, p2, t2) = k̃S(θ(p1, p2), t1, t2), for p1, p2 ∈ Sn, t1, t2 ∈ T.

ii) k is called stationary with respect to time when there exists a function k̃T : Sn×Sn×R→ R

such that k(p1, t1, p2, t2) = k̃T (p1, p2, t2 − t1), for p1, p2 ∈ Sn, t1, t2 ∈ T.

We first focus on a class of kernels defined on the product space Sn × T . We call E(Sn, T ) the set

of continuous symmetric maps k : (Sn × T )2 → R that satisfy the following:

for any t1, t2 ∈ T fixed, there exists a sequence {ϕn`,j(t1, t2)}`,j of complex numbers such that

(3.1) k(p1, t1, p2, t2) =

∞∑
`=0

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2), p1, p2 ∈ Sn,

where the convergence holds uniformly with respect to (p1, p2) in Sn × Sn and the sequence

{ϕn`,j(t1, t2)}`,j satisfies

ϕn`,j(t1, t2) = ϕn`,1−j+dn,`
(t1, t2), ` ∈ N0, j = 1, . . . , dn,`.

An example of a kernel k belonging to E(Sn, T ) is given by the covariance function of a real-valued

random field X on Sn × T with a spectral representation similar to (2.11),

(3.2) X(p, t) =

∞∑
`=0

dn,`∑
j=1

b`,j(t)Y`,j(p), p ∈ Sn, t ∈ R,

where {b`,j(t) : ` ∈ N0, j = 1, . . . , dn,`} is a family of complex-valued centered random pro-

cesses on T such that, for all t, t′ ∈ T , b`,j(t) = b`,1−j+dn,`
(t), E

[∑∞
`=0

∑dn,`

j=1 |b`,j(t)|2
]
< ∞ and
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E[b`,j(t)b`′,j′(t
′)] = 0 for (`, j) 6= (`′, j′). In that case, the covariance function associated with X

satisfies Equation (3.1) with

ϕn`,j(t1, t2) = E[b`,j(t1)b`,j(t2)], t1, t2 ∈ T.

Theorem 3.1. Let k belong to E(Sn, T ). Then, the following holds.

a) For every t1, t2 ∈ T , the series
∑∞
`=0

∑dn,`

j=1 |ϕn`,j(t1, t2)|2 converges and for any ` ∈ N0 and

any j ∈ {1, . . . , dn,`},

(3.3) ϕn`,j(t1, t2) =

∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2)dσn(p1)dσn(p2).

Additionally, ϕn`,j is continuous on T × T for every ` ∈ N0 and j ∈ {1, . . . , dn,`}.

b) The kernel k is a positive definite kernel on Sn × T if and only if, for any ` ∈ N0 and any

j ∈ {1, . . . , dn,`}, ϕn`,j is a positive definite kernel on T .

Proof of Theorem 3.1.

a) For any positive integer N , let us define

(3.4) kN (p1, t1, p2, t2) :=

N∑
`=0

dn,`∑
j=1

ϕn`,j(t1, t2)Y`,j(p1)Y`,j(p2).

For every t1 and t2 in T , kN (·, t1, ·, t2) converges to k(·, t1, ·, t2) as N →∞ uniformly on Sn × Sn,

and hence in L2(Sn × Sn,dσn ⊗ dσn), i.e.

(3.5) ‖k(·, t1, ·, t2)− kN (·, t1, ·, t2)‖2L2(Sn×Sn) −→N→∞
0.

The left-hand side in (3.5) is equal to

∫
Sn

∫
Sn

∣∣∣∣∣∣
∞∑

`=N+1

dn,`∑
j=1

ϕn
`,j(t1, t2)Y`,j(p1)Y`,j(p2)

∣∣∣∣∣∣
2

dσn(p1)dσn(p2)

=

∞∑
`=N+1

dn,`∑
j=1

∞∑
`′=N+1

dn,`∑
j′=1

ϕn
`,j(t1, t2)ϕn

`′,j′(t1, t2)

∫
Sn

∫
Sn
Y`,j(p1)Y`′,j′(p1)Y`,j(p2)Y`′,j′(p2)dσn(p1)dσn(p2)

=
∞∑

`=N+1

dn,`∑
j=1

|ϕn
`,j(t1, t2)|2 .
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Hence,
∑∞
`=0

∑dn,`

j=1 |ϕn`,j(t1, t2)|2 <∞. By the orthonormality of the spherical harmonics, we can

thus prove (3.3). For any ` and j, application of Lebesgue’s Theorem to the integral in (3.3) shows

continuity of ϕn`,j on T × T .

b) Suppose that k is a positive definite kernel on Sn×T . For any fixed ` and j, and any compactly

supported function q on T , we apply Lemma 2.1 with c(p, t) = Y`,j(p) q(t) for (p, t) ∈ Sn × T , and

a Direct application of Fubini’s Theorem yields

∫
T

∫
T

q(t1) q(t2)

(∫
Sn

∫
Sn
k(p1, t1, p2, t2)Y`,j(p1)Y`,j(p2) dσn(p1)dσn(p2)

)
dt1dt2 ≥ 0.

The inner integral being equal to ϕn`,j(t1, t2), it proves that ϕn`,j is a positive definite kernel on T .

Conversely, suppose that ϕn`,j is a positive definite kernel on T for all ` and j. Then, for a1, . . . , am

in C and (p1, t1), . . . , (pm, tm) in Sn × T , we have

m∑
i,i′=1

aiai′k(pi, ti, pi′ , ti′) =

m∑
i,i′=1

aiai′ lim
N→∞

N∑
`=0

dn,`∑
j=1

ϕn`,j(ti, ti′)Y`,j(pi)Y`,j(pi′)

= lim
N→∞

N∑
`=0

dn,`∑
j=1

m∑
i,i′=1

aiai′ϕ
n
`,j(ti, ti′)Y`,j(pi)Y`,j(pi′) ≥ 0,

since ϕn`,j(ti, ti′)Y`,j(pi)Y`,j(pi′) is a positive definite kernel on Sn× T , being the tensor product of

positive definite kernels on T and Sn respectively, for every ` and j. �

Next result provides a spectral representation for the positive definite kernels that are isotropic

with respect to the space Sn and not necessarily stationary with respect to time. On the one

hand, it is a generalization of the main result given in [3], which provides a characterization for

the stationary case. On the other hand, it is a corollary of Theorem 3.1.

Theorem 3.2. Let k be a continuous kernel on Sn × T .

Then, k is positive definite and isotropic with respect to space if and only if we have,

(3.6) k(p1, t1, p2, t2) =

∞∑
`=0

αn` (t1, t2)C
(n−1)/2
` (cos θ), (pi, ti) ∈ Sn × T, i = 1, 2,
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where,

i) for every ` ∈ N0, αn` is a real-valued continuous positive definite kernel on T ;

ii) for every t in T ,
∑∞
`=1 α

n
` (t, t)`n−2 <∞;

iii) let k̃S(θ, t1, t2) = k(p1, t1, p2, t2). Then, for every t1, t2 ∈ T , the convergence in (3.6) is

uniform with respect to θ ∈ [0, π].

Moreover, for every t1, t2 ∈ T and ` ∈ N0,

(3.7) αn` (t1, t2) =
ωn−1
ωn

(1 + 2`
n−1 )(

`+n−2
`

) ∫ π

0

k̃S(θ, t1, t2)C
(n−1)/2
` (cos θ) sinn−1 θ dθ, for n = 2, 3, . . . ,

and

(3.8) α1
` (t1, t2) =


`
π

∫ π
0
k̃S(θ, t1, t2) cos(`θ) dθ, for ` = 1, 2, . . .

1
π

∫ π
0
k̃S(θ, t1, t2) dθ, for ` = 0.

Proof of Theorem 3.2.

Suppose that k is a positive definite kernel on Sn × T and additionnaly spatially isotropic.

First, by Definition 1, there exists a function k̃S : [0, π]× T × T → R such that for every t1, t2 ∈ T

and p1, p2 ∈ Sn, k(p1, t1, p2, t2) = k̃S(θ(p1, p2), t1, t2).

Let us fix t1 and t2 in T . Since the map k̃S(arccos(·), t1, t2) belongs to L2([−1, 1], (1−z2)(n−2)/2dz),

it admits an expansion in terms of the Gegenbauer polynomials, i.e. there exists a sequence of real

numbers {αn` (t1, t2)}`∈N0 such that

(3.9) k̃S(arccos(·), t1, t2) =

∞∑
`=0

αn` (t1, t2)C
(n−1)/2
` (·),

where the convergence holds in L2([−1, 1], (1 − z2)(n−2)/2dz). Using (2.7), we see that k satisfies

Equation (3.1) with, for n = 2, 3, . . .,

ϕn`,j(t1, t2) =
ωn (n− 1)

2`+ n− 1
αn` (t1, t2), ` ∈ N0, j = 1, . . . , dn,`,

and ϕ1
`,j(t1, t2) = π α1

` (t1, t2) for ` ∈ N0, j = 1, 2. Hence, k belongs to E(Sn, T ). Then, Theorem

3.1 applies and shows that {αn` }`∈N0
is a sequence of continuous positive definite kernels on T .

Point i) is thus established.
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We now focus on point ii). Let t ∈ T be fixed and let us recall that Expansion (3.9) holds

in L2([−1, 1], (1 − z2)(n−2)/2dz) for t1 = t2 = t. Moreover, since k̃S(arccos(·), t, t) is continuous

on [−1, 1], we have that the series in (3.9) is Abel summable on [0, 1) for any z ∈ [−1, 1] (see

Theorem 9 in [15]), i.e. the limit limr→1−
∑∞
`=0(αn` (t, t)C

(n−1)/2
` (z) r`) exists. For z = 1, since

αn` (t, t)C
(n−1)/2
` (1) ≥ 0 for all ` ∈ N0, it implies that the series

∑∞
`=0(αn` (t, t)C

(n−1)/2
` (1)) is finite.

Noting that, for n = 2, 3, . . ., C
(n−1)/2
` (1) =

(
`+n−2

`

)
∼ `n−2

(n−2)! and C0
` (1) ∼ 2`−1 when `→∞, the

convergence of the series is equivalent to
∑∞
`=1 α

n
` (t, t)`n−2 <∞. Hence, we get ii).

Finally, it remains to establish assertion iii). We consider Expansion (3.9) for fixed t1, t2 ∈ T .

By Cauchy-Schwarz inequality and by (2.8), we can see that for z ∈ [−1, 1] and for all ` ∈ N0,

|αn` (t1, t2)C
(n−1)/2
` (z)| ≤ 1

2
(αn` (t1, t1) + αn` (t2, t2))

(
`+ n− 2

`

)
,

with
∑∞
`=1 α

n
` (ti, ti)`

n−2 < ∞ for i = 1, 2. Then, by the M-test of Weierstrass, the series in (3.9)

uniformly converges to a continuous function, being precisely the function k̃S(arccos(·), t1, t2). This

proves the uniform convergence of the series in (3.6) for fixed (t1, t2) ∈ T × T .

At last, Equation (3.7) follows directly from the orthogonality of the Gegenbauer polynomials

and (2.9).

Let us prove now the converse part of Theorem 3.2. If k is a kernel that satisfies Expansion (3.9)

with i), ii), iii) then, using the addition formula (2.7), it is easy to see that k belongs to E(Sn, T ).

The converse part of Theorem 3.1 allows us to state that k is a positive definite kernel on Sn × T .

The isotropy property is clear from (3.9). �

Next result comes from Theorems 3.1 and 3.2.

Corollary 3.3. Let k : (Sn × T )2 → R be a kernel in E(Sn, T ) that is positive definite.

Then, k is isotropic with respect to space if and only if the functions {ϕn`,j}`,j appearing in

Expansion (3.1) do not depend on the j index, i.e. they are such that

ϕn`,j ≡ ϕn`,j′ , for all j, j′ ∈ {1, . . . , dn,`} , ` ∈ N0.
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Furthermore, the functions {ϕn`,j}`,j are linked with the functions {αn` }` in Expansion (3.6) by the

following. For n ≥ 2,

(3.10) ϕn`,j(t1, t2) =
ωn (n− 1)

2`+ n− 1
αn` (t1, t2) , t1, t2 ∈ T,

and ϕ1
`,j(t1, t2) = π α1

` (t1, t2) for n = 1.
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