Supervised and unsupervised classification using mixture models

Stephane Girard 1 Jerome Saracco 2, 3
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 CQFD - Quality control and dynamic reliability
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : This chapter is dedicated to model-based supervised and unsupervised classification. Probability distributions are defined over possible labels as well as over the observations given the labels. To this end, the basic tools are the mixture models. This methodology yields a posterior distribution over the labels given the observations which allows to quantify the uncertainty of the classification. The role of Gaussian mixture models is emphasized leading to Linear Discriminant Analysis and Quadratic Discriminant Analysis methods. Some links with Fisher Discriminant Analysis and logistic regression are also established. The Expectation-Maximization algorithm is introduced and compared to the $K$-means clustering method. The methods are illustrated both on simulated datasets as well as on real datasets using the R software.
Type de document :
Chapitre d'ouvrage
Didier Fraix-Burnet; Stéphane Girard. Statistics for Astrophysics: Clustering and Classification, 77, EDP Sciences, pp.69-90, 2016, EAS Publications Series, 978-2-7598-9001-9
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01417514
Contributeur : Jerome Saracco <>
Soumis le : jeudi 15 décembre 2016 - 16:35:06
Dernière modification le : mercredi 11 avril 2018 - 01:59:05

Identifiants

  • HAL Id : hal-01417514, version 1

Collections

Citation

Stephane Girard, Jerome Saracco. Supervised and unsupervised classification using mixture models. Didier Fraix-Burnet; Stéphane Girard. Statistics for Astrophysics: Clustering and Classification, 77, EDP Sciences, pp.69-90, 2016, EAS Publications Series, 978-2-7598-9001-9. 〈hal-01417514〉

Partager

Métriques

Consultations de la notice

684