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Abstract. This paper focuses on the inverse problem regarding force localization in the case of 

non punctual impacts occurring on elastic beams. Following the identification approach 

proposed to solve this problem and which is based on the reciprocity theorem, the impact 

location characteristics were determined by using Particle Swarm Optimization algorithm. To 

eliminate numerical trouble due to the trivial solutions appearing in this formulation, the 

fitness function was customized by introducing a set of weighting coefficients. Four different 

formulations of the fitness function were considered and their performances with regards to 

the number of sensors used and their positions were analyzed. This enabled to select the best 

combination of weighting coefficients to be used in the context of an impact force localization 

process based on Particle Swarm Optimization technique. Three sensors were found to be 

required and comparison with Genetic Algorithm has revealed effectiveness of the proposed 

method in terms of accuracy and computational time.    
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1. Introduction   

 

Structures endure the risk of various impact events. Severe degradation of structural 

strength or stiffness might result from impact-induced damages. In order to keep up the 

integrity and operation safety of vital structures, detecting internal damages after occurrence of 

an impact event is of great importance. Classic non-destructive inspection techniques such as 

ultrasound or X-ray based methods have been widely used. However, these conventional 

techniques do not permit on-line inspection which is quite essential in some applications. As a 

novel inspection approach, structural health monitoring has the capacity of dealing with such 

concerns. In this methodology sensors and damage check-up algorithms can be implemented 

on the target structures, enabling for structural integrity to be automatically supervised by 

using real-time information.  

Under impact circumstances, information about the impact force magnitude can enable 

assessing the damage pattern and extent affecting structures. To perform such advanced 

damage quantifying assignment, the external impact force should be first accurately identified. 

In many practical situations, direct measurement of impact forces is not easy to carry out. 

However, indirect methods that are based on the measured dynamic response at discrete points 

by some judiciously implemented sensors can provide complete information regarding the 

position and magnitude of these sources. This needs nevertheless performing solution of an 

inverse problem [1].    

In case of linear elastic structures such as beams or plates, identification of impact 

characteristics can be implemented through using a structural model [2,3]. This can be 

constructed analytically, by means of the finite element method or by experimental 

identification procedures. When the impact can be assumed to be punctual and the impact 

location is known such as in contact problems, the response functions between the impact 

point and the sensors placed at known positions allow, by regularized deconvolution, to 

reconstruct the force signal. When the point of impact is unknown, the force location can be 

found through an inverse formulation. This can be achieved through a minimization technique 

between the measured and calculated responses in order to reconstruct the impact 

characteristics: force point location and force temporal signal [4].  

Force location is extremely difficult to tackle by using the inverse methods. One cannot 

just consider adding the force point coordinates as extra unknown parameters to the problem, 

because these positions intervene as implicit parameters, in contrast with the force history 

values which are explicit. Iterations are required then for solution of positions unknowns 



which give rise to a numerical conflict situation. Treating all the force history values to be 

implicit parameters is not a good option as it would increase dramatically the number of 

unknowns and increase the computational cost. Therefore, a hybrid scheme decoupling the 

problem in two parts was introduced [5]. This scheme involves on one hand force 

reconstruction by regularized deconvolution and on the other hand implicit parameter 

identification through solution of a non linear mathematical program which provides force 

location.  

The problem is more complex when the impact force is distributed over an area of the 

structure surface that cannot be assumed to be punctual, because it involves identifying 

multiple forces and not only a single concentrated force. Even when these forces can be 

supposed to be uniform, unknown parameters that represent the extent of the impacted area 

come out as additional implicit unknowns. 

 To perform exploration of impact force location, various effective methods have been 

proposed in the literature. For one-dimensional beam-like structures force localization has 

been investigated in [6]. Martin and Doyle [7] have described how to find the location of an 

impact force using dynamic response measurements. They proposed a solution procedure 

using the spectral element method with a stochastic iterative search. Experimentally measured 

acceleration responses from two frame structures were used to achieve force localization by 

minimizing a fitness function. A Genetic Algorithm (GA) was used to guess iteratively the 

minimum through monitoring the actual error associated to a given sampling generation. The 

process enabled to discriminate between good and bad guesses and gave at convergence the 

correct impact location.  An alternative technique which employs the arrival time of each 

frequency component of a pulse was proposed by Tribikram et al. [8] and Liang et al. [9]. The 

main problem with this technique is that anisotropy of the structure should be taken into 

account and measurement of small arrival times could suffer uncertainties.  

In this work, we propose a technique based on separation between the localization and 

reconstruction problems in order to determine the impact characteristics in two steps. Elastic 

structures subjected to non punctual impacts for which the force can be assumed to be 

uniformally distributed over the impact zone are considered. The localization problem is 

solved as a minimization problem in the form of a non linear mathematical program providing 

the impact forces positions. Since these positions are implicit unknowns, the best suited 

minimization procedures are those of evolutionary type. Investigations clearly showed that the 

Particle Swarm Optimization (PSO) approach always provided a better solution than the GA 

based approaches [10]. Due to its high performance in terms of accuracy and robustness, PSO 



algorithm will be considered in the following. Focus will be done on the particular role of the 

fitness function. This last will be derived from the reciprocity Maxwell-Betti theorem which is 

valid for any elastic structure. Since the direct equation obtained by this theorem has trivial 

solutions that impede the optimization process to converge to the practical solution, the fitness 

function has to be customized [4]. Three novel formulations of the modified fitness function 

that enable removing the trivial solutions are introduced and investigated. The aim is to 

determine the best choice with regard to PSO convergence requirement, as well as the number 

of sensors used, positions of these sensors and computational cost.  

  

2. Materials and methods 

 

2.1 Formulation of the direct problem  

 

Although the problem can be stated for any elastic structural system, to fix ideas, we 

consider only a simplified model in the form of a beam having a rectangular section as shown 

in figure 1. The beam is assumed to be simply supported on both ends and having length L , 

width b  and height e . It is assumed to be made from a homogeneous and isotropic elastic 

material with Young’s modulus E  and density ρ . The applied force modelling impact is 

assumed to result from a uniformly distributed pressure, p , which is applied on a rectangular 

patch [ ]0 0 0 0s u ,s u− +  as shown  in figure 1. The pressure rectangle is assumed to be centered 

on 0s  and having the length 02u .  

 

 

 

 

 

 

Fig. 1. An elastic beam having a uniform rectangular cross section and loaded with a 

distributed uniform pressure; positions of four sensors are indicated 

The dynamic response is considered for a point having a given abscissa referenced with 

respect to the origin chosen to be the left extremity of the beam while the axis is oriented 
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towards the right. Four strain gauge sensors will be investigated, the sensors positions are 

shown on figure 1 with their labels and relative abscissas. 

Under the action of an impulse pressure, the transient dynamic response y  in terms of 

displacement, acceleration or strain can be measured by a proper sensor located at a given 

abscissa. Considering the time interval to be of length N , after operating sampling, the 

discrete representation of the linear system with multiple degrees of freedom that models the 

beam dynamic behavior writes as follows [4]  
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where y(k)  is the discrete output as observed by sensors and p(k)  the discrete pressure input,  

h  is a discrete response function approximating the considered linear system and H  is the 

Toeplitz like transfer matrix connecting the pressure p  to the measured signal y . 

The matrix H  can be constructed analytically, but can also be obtained by means of the finite 

element method or by using experimental identification procedures. So, the model defined by 

equation (1) is more general and should not be thought of to be restricted to the simplified case 

considered here for the purpose to abridge presentation. It is assumed on the other hand that 

the notation H  is reserved to the response in terms of displacement.  

 The dynamic Euler Bernoulli beam equation under simple bending can be solved by means 

of modal superposition method and Duhamel’s integral [11]. Considering the case of a pinned-

pinned beam, the mode number m  ( *m∈� ) is given by { }m m, (x)ω ϕ  with 
2 2

m 2

m EI

L S

πω =
ρ

 the 

circular eigenfrequency and m

m x
(x) sin

L

π ϕ =  
 

 the associated mode shape normalized 

according to { }m
x

max (x) 1ϕ = . Denoting t∆  the time step used in time discretisation, M  the 



number of truncated modes retained to synthesize the beam dynamical response from modal 

expansion, the impulse response function giving the transverse displacement of the beam 

section having abscissa ia  is shown to be given as 
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where mξ  is the damping ratio associated to mode number m . 

 

2.2 Fitness function associated to the localization problem 

 

 Direct inverse methods for solving the localization problem of impact are known to be 

computationally very intensive because an iterative approach is usually required [9]. In the 

following the Maxwell-Betti theorem based method is used [4]. Locating the impact zone for 

the beam problem considered in this study consists in finding the impact patch center position 

0s  and parameter 0u  which defines the extent of the impacted zone. The responses measured 

by strain sensors placed at points having respectively the abscissa ia  and ja  can be expressed 

under the following form 

 

    i i 0 0Y G (s ,u )P=  j j 0 0Y G (s ,u )P=          (6) 

 

where i 0 0 0 0 iG (s ,u ) G(s ,u ,a )=  and j 0 0 0 0 jG (s ,u ) G(s ,u ,a )=  are  respectively the transfer 

functions between the input pressure and the measured axial deformation at the upper fiber of 

the beam by the sensors placed at ia  and ja .  These sensors can be any given pair selected 

from the set { }#1, #2, #3, #4  as shown in figure 1. 

In the case of a beam having a uniform rectangular section of height e , the transfer function 

which is related to the normal longitudinal strain of the upper beam fiber and denoted G  is 

obtained from the displacement transfer function H , given by equation (4), as G (e / 2)H= − .  



The commutative property i 0 0 j 0 0 j 0 0 i 0 0G (s ,u )G (s ,u ) G (s ,u )G (s ,u )=  resulting from Maxwell-

Betti theorem which apply for any elastic system yields as shown in [4] to the following 

identity  

     j 0 0 i i 0 0 jG (s ,u )Y G (s ,u )Y=        (7) 

 

  The big merit of equation (7) is that it does not involve the force history vector P , so 

knowledge of the force signal is not needed to find the impact zone characteristics 0 0(s ,u )  as 

these are provided by solution of this implicit equation independently of vector P . The 

process of finding 0 0(s ,u )  works according to the statement that giving the recorded strain 

responses iY , jY  and the locations where these are sensed, denoted respectively by indices i  

and j , equation (7) will be satisfied if the intervening transfer functions i 0 0G (s ,u )  and 

j 0 0G (s ,u )  are those which are associated to the actual impact position [4]. One should 

however notice from equation (4), that both members of equation (7) will vanish automatically 

for s 0=  or s L=  or u 0= , yielding thus an infinity of trivial solutions.   

To avoid these parasitic solutions which impede obtaining the unique physical solution 

satisfying equation (7), some regularization of the problem is required. To perform this, one 

should remove the trivial solutions s 0=  or s L=  or u 0=  by transforming equation (7) into 

the following nonlinear mathematical program  

   

   
s sN N

2

0 0 j i i j
(s,u ) i 1 j 1, j i ij

1
(s ,u ) Argmin (s,u) G (s,u)Y G (s,u)Y

= = ≠

  = φ = − α  
∑ ∑      (8) 

                         

 

where sN 2≥  denotes the number of  sensors used and ijα  are some weights.  

For the material and geometric data given in the fourth section, Figure 2 gives the 

objective function which corresponds to ij 1α = , and in the case where the two sensors  #2 and 

#4 are used. This figure shows that the points satisfying: s 0=  or s L=  or u 0= , constitute 

clearly trivial solutions of the minimization problem. The exact solution which corresponds to 

the given data in the direct problem taken to be ( 0s 0.417m= , 0u 0.0417m= ) is shown in 

figure (2b) as a star. This solution is out of reach directly by any minimization procedure of 

the fitness function φ  for the case ij 1α = . This states the necessity for this function to be 

transformed in order to remove all the trivial solutions. 
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Fig. 2. The fitness function φ  for ij 1α = ; (a) the unmodified fitness function surface,  

(b) contours of the unmodified fitness function 

 

Equation (8) will admit the physical solution 0 0(s ,u ) as the unique solution if the introduced 

weights are able to eliminate the parasitic solutions. Their role consists in transforming the 

loss function 
s sN N

2

j i i j

i 1 j 1, j i

G (s,u)Y G (s,u)Y
= = ≠

−∑ ∑  which is strictly equivalent to equation (7), by  

enlarging its values for (s,u)  that are close to the boundary set: s 0=  or s L=  or u 0= . The 

two parameters that define the impact location 0s  and 0u  can then be obtained as the unique 

minimum of the loss function φ . Yen and Wu [4] have proposed the following expressions for 

the weights 
2

ij i jG (s,u)Yα = . 

 Many algorithms can be used to solve the mathematical problem as defined by equation 

(8). The most performant ones are however those derived form evolutionary algorithms, since 

they can deal more easily with situations where the fitness function is not explicit and 

containing implicit unknown parameters.  In this paper the optimization procedure is based on 

the PSO algorithm [12], known to be quite efficient in these conditions.  

 

 
Case 1 Case 2 Case 3 Case 4 
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i jG (s,u)Y
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i jG (s,u) G (s,u)+
 

i jG (s,u) G (s,u)+
 

2 2

i j j iG (s,u)Y G (s,u)Y+
 

 

Table 1: Considered expressions for the weight coefficients ijα   

 



 To solve the localization problem and to assess the effect due to a particular choice of the 

weight coefficients ijα  on convergence of the PSO algorithm, three novel expressions will be 

introduced for these. They are given by the last three columns of Table 1, while the first 

column of this Table recalls the Yen and Wu [4] weight coefficients.  

 Because of periodicity of equation (8) with regards to 0s  and 0u  which can be seen easily 

form equation (4), to stabilize the minimization procedure and obtain the practical solution, the 

unconstrained mathematical program defined by equation (8) is completed by adding the 

following geometric constraints 

 

      
0

0 0 0

0 u L / 2

u s L u

≤ ≤
≤ ≤ −

         (9) 

 

 According to equation (8), the cost function depends also on the number of sensors and 

their positions. The influence of the weights ijα  on the PSO algorithm performance will be 

analyzed then in conjunction with the sensor network configuration. The objective is to 

determine sensitivity of the procedure with respect to various sensors configurations. 

Convergence rate of the PSO algorithm as function of the selected weights as given by Table 1 

will also be studied.  

 

2.3 Proposed localization procedure based on Particle Swarm Optimization algorithm  

 

 PSO algorithm is an adaptive algorithm which is based on cognitive behavior of a given 

population of individuals [12]. Each individual represents a potential solution. It moves its 

position in search space and updates its velocity according to its own flying experience and 

that of its neighbors, aiming for a better position for itself at the next move. This requires the 

selection of three parameters, two acceleration constants denoted 1c  and 2c  and an inertia 

weight w , which are shown to affect largely convergence of the PSO algorithm. A detailed 

study on the effects of these parameters and convergence properties of PSO algorithm is given 

in [13]. 

 The performance of the PSO algorithm in terms of accuracy and computational time has 

been shown to be better than that of GA based approaches. A multitude of applications have 

assessed the relevance of the PSO approach. It is able to provide high quality solutions in 

comparison with experiment or with other known methods [10,14,15,16]. Even if there is no 

clear link to physics or mathematics that could justify rationally this performance, the merit of 

the PSO algorithm is associated to the fact that it works satisfactorily in practice.  



 The direct formulation of beam impact problem enables evaluating the transfer 

matrices intervening in the nonlinear constrained mathematical program defined by equations 

(8) and (9). The PSO algorithm implemented under Matlab software package can then be used 

to find the minimum of the localization problem, equations (8) and (9), which determines the 

impact zone characteristics 0 0(s ,u ) . In all the subsequent applications the parameters of the 

PSO algorithm are fixed at the following values 1c 0.5= , 2c 1.25=  and w 0.4= . The random 

parts are simulated by using the random number generator as provided by the Matlab built-in 

function rand. Iterations of the PSO algorithm are continued until the maximum number of 

100 iterations is achieved.  

To study the effect of the number of implemented sensors sN  and their positions on the 

ability of the PSO algorithm to converge to the desired solution with enough accuracy, three 

configurations of sensors implementation are examined. They are chosen among all the 

possible configurations that can be obtained from the set of sensors shown in figure 1. Table 2 

gives the definition of the configurations that will be tested in the following. 

  

Configuration Number of sensors List of sensors 

1 2 #2 and #4 

2 3 #1, #2 and #3 

3 3 #1, #2 and #4 

 

Table 2. Considered configurations for strain sensors implementation 

 

 Each configuration of sensors is to be tested according to the selected case of weights 

coefficients ijα  which are given in Table 1. The objective is to assess the following issues: 

- which weighing coefficients ijα  are the best for providing better pressure location solution in 

terms of accuracy?   

- which ijα  achieve the best cost effective solution in terms of the number of iterations 

required to get convergence of the PSO algorithm?   

- How the results can change for a given selection of the ijα  with respect to a considered 

configuration of sensors: number of sensors used and their positions? 

- How does behave the  PSO algorithm in comparison with the GA?   

 

3. Results and discussion 

 



 The direct problem of beam impact is considered with the following material and 

geometric data: 10E 7.06 10 Pa= × ; L 0.5m= ; -3b 5 10 m= × ; -3e 5 10 m= × ; -32660 kg.mρ = ; 

 m 2%ξ = ; 0s 0.417m= ; 0u 0.0417m=  and a 0.25 m= . The interval time duration is fixed at  

cT 1s= . Figure 3 shows the half sine impulse pressure applied to the beam. The maximum 

pressure is taken to be 510 Pa  and the pulse duration is T 0.2s= . This impulse was used to 

calculate by using the direct problem the normal longitudinal strains at the upper fiber of the 

beam where the sensors were located. 
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Fig. 3.  Time history of the impulse impact pressure 

 

Figure 4 shows convergence of the PSO algorithm iterations for the different values of 

coefficients ijα  as given in Table 1. The fineness function used is that associated to the 

configuration number 1 of sensors which corresponds to line 2 of Table 2.  Figure 5 shows 

convergence of the PSO iterations for the configuration number 2 of sensors. Figure 6 shows 

convergence behavior of the PSO algorithm for configuration number 3 which uses the sensors 

#1, #2 and #4. For comparison with the GA results, figure 7 gives convergence of the solution 

as function of the iteration number when the fitness function is that associated to combination 

3 of Table 1, that is to say the same conditions than those of figure 6. 

Figure 4 shows that convergence fails to be reached for all cases when using the two sensors 

#2 and #3. This is true for all combinations of coefficients ijα , notice that for the case 2 of 

these coefficients the converged solution is not very far from the exact solution. But, the need 

that the localization problem should be solved with high accuracy in order to ease force signal 

reconstruction impedes to retain this combination of two sensors. 

 In case of configuration number 2 of sensors where the three sensors  #1, #2 and #3 are 

used, figure 5, the two cases 2 and 4 of coefficients ijα  succeeded in converging towards the 



exact solution, while cases 1 and 3 fail. Both cases 2 and 4 need about 75 iterations to achieve 

convergence. 

 For the last configuration of sensors, combination 3 for which the sensors  #1, #2 and 

#4 are used, figure 6, convergence is reached by the three cases 1, 2 and 4 and fails for the 

case 3 of coefficients ijα . One can notice that the case 2 is the fastest one, since about 38 

iterations are sufficient to obtain the exact solution. 

Using the GA confirmed that the case 2 of coefficients ijα  is the most favorable one as 

figure 7 shows that only this case and case 4 can provide the exact solution. However, the case 

2 is the best one since the total number of required GA iterations is about 43 against almost the 

double for the case 4. 
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(b) 

Fig.4. Configuration 1 of sensors (#2 and #3); evolution of impact centre (a) and extent 

(b) as function of PSO iterations for a given case of coefficients ijα   
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(b) 

Fig.5. Configuration 2 of sensors  (#1, #2 and #3); evolution of impact centre (a) and 

extent (b) as function of PSO iterations for a given case of coefficients ijα   
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(b) 

Fig.6. Configuration 3 of sensors  (#1, #2 and #4); evolution of impact centre (a) and 

extent (b) as function of PSO iterations for a given case of coefficients ijα  
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(b) 

Fig.7. Configuration 3 of sensors (#1, #2 and #4); evolution of impact centre (a) and 

extent (b) as function of GA iterations for a given case of coefficients ijα  

   

 One can notice then that the coefficients 
22

ij i jG (s, u) G (s,u)α = +   which correspond to 

the case 2 constitute the best choice as convergence is always reached when using three 

sensors and more quickly than for the case 4 of these coefficients. Both the PSO based and the 

GA algorithms agree on this result.  

 It should be mentioned that the PSO algorithm admits a net advantage over the GA since 

this last fails to start iterations normally and early divergence was observed in many occasions. 

So a lot number of trials were needed in order that iterations reproduce correctly in the 

process. This is due to the fact that this algorithm handles less effectively constrained 

optimization problems than does the PSO algorithm and a bad chosen initial population can 

impede convergence to occur. The main merit of the PSO is that it is more accurate and more 



robust than the GA. As to computational cost, the PSO and the GA were found to require the 

same order of CPU-time without counting the number of trials needed where this last diverges.  

 From the above discussion one can make the following recommendations. 

- Two sensors are not sufficient to perform accurately solution of the localization problem. 

Weight coefficients defined by the case 2 of Table 1 provide a result which is not very far 

from the exact solution, while all the others fail by a large amount.   

- When using three sensors the coefficients 
22

ij i jG (s, u) G (s,u)α = +  corresponding to the 

case 2 of Table 2 constitute the best weighting combination. They provide the exact solution 

with the fewest number of iterations. 

- The PSO algorithm was found to be more robust providing repeatable results unlike the 

GA which fails to converge sometimes, depending on the initial population used.     

 

4.  Conclusions  

 

An optimization technique based on PSO algorithm was used to achieve force location in case 

of an elastic structure having the form of a beam when subjected to a sudden impact. The 

impact was assumed to be non punctual and resulting in a distributed uniform pressure over 

the impacted zone. The proposed methodology took into account both the effect of the number 

of sensors used and their positions. It has enabled to determine the most favorable combination 

of weighting coefficients that are introduced to remove the parasitic solutions appearing when 

formulating the inverse localization problem by means of the Maxwell-Betti theorem. This 

combination proved to be effective in performing regularization of the force location problem 

when using a combination of three sensors. It enabled to achieve good accuracy and minimum 

computational time. Besides, the PSO algorithm revealed to be more effective in comparison 

with the GA, since it was found to be less sensitive to initialization and requiring almost the 

same CPU-time than this last. 

It should be noticed that the above remarks hold for the impact problem considered in this case 

study. Further investigation is required in order to assess that the weighting coefficients found 

in this work continue to guarantee convergence of the PSO algorithm when applied to the 

inverse location problem for other kind structures. 
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