Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications
Rodolphe Cattin, Pierre Briole, H. Lyon-Caen, Pascal Bernard, Patrick Pinettes

To cite this version:
Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications

R. Cattin,* P. Briole, H. Lyon-Caen,† P. Bernard and P. Pinettes
Institut de Physique du Globe de Paris, Département de sismologie, UMR CNRS 7580, France

Accepted 1998 October 27. Received 1998 October 2; in original form 1997 October 7

SUMMARY
We study the effect of a superficial layer overlying a half-space on the surface displacements created by a dip-slip dislocation on a planar rectangular fault using a 2-D finite element model. The effect of the density and Poisson’s ratio is negligible. On the other hand, the contrast in Young’s modulus between the top layer and the half-space below significantly affects the modelled coseismic displacements. The horizontal displacements are more sensitive than the vertical displacements to the existence of the top layer. Near the fault, a low-rigidity layer with a Young’s modulus of 10 GPa can increase the horizontal displacements by up to 40 per cent. An analytical 3-D half-space model is used to interpret this effect in terms of an ‘equivalent’ homogeneous model. The presence of a top layer can be partly simulated in a homogeneous half-space by perturbing the depth and the slip on the fault from their ‘real’ values to ‘equivalent’ values. For a given displacement field observed at the surface, the perturbations in fault depth and slip can reach 1 km and 25 per cent respectively. The fault dip angle is not model-dependent. We conclude that for the accurate estimation of fault depth and slip from coseismic geodetic data, rigidity contrasts existing within the upper crust must be taken into account. Not taking into account the effect of an existing low-rigidity layer also leads to an underestimation of seismic moment release. This may in part be the cause of apparent discrepancies between seismic and geodetic moment releases in particular areas such as the Gulf of Corinth, Greece.

Key words: coseismic displacements, crustal structure, elastic dislocation, normal-faulting earthquakes, Gulf of Corinth.

INTRODUCTION
A dislocation buried in an elastic half-space (Okada 1985, 1992) is a simple model that has often been used to explain most observed coseismic displacements, in agreement with seismological observations (e.g. Marshall et al. 1991; Hudnut et al. 1994; Ruegg et al. 1996). The fault parameters are usually obtained by inverting coseismic displacement assuming a homogeneous half-space.

Today, the availability of data from dense GPS networks and Interferometric Synthetic Aperture Radar (InSAR) images provides a higher spatial coverage and more accurate observations of the coseismic deformations. The interpretation of these higher-quality data requires refinements of the standard model used to simulate the coseismic displacements to be made. In particular, the effect of the rheological parameters of the crust on the modelled displacements has seldom been estimated (Roth 1990; Arnadottir et al. 1991; Ma & Kusznir 1994; Savage 1998). Recently, Sabadini & Vermeersen (1997) have shown that the elastic stratification of the lithosphere may have a large influence on coseismic displacement calculated for a deep source. In this paper we analyse the effect of a layer at the top of the upper crust on a shallow normal-faulting earthquake using analytical and numerical modelling. This is a common problem as normal-faulting earthquakes often occur within or at the edges of thick sedimentary basins. Our modelling uses the geometry of the Gulf of Corinth, where Bernard et al. (1997) have shown that the geodetic data associated with the $M_s=6.2$ 1995 Aigion earthquake are better explained when a superficial low-rigidity layer is included in the model.

In the first part of this paper, we use a 2-D finite element layered model (LM) to calculate the coseismic displacements associated with a dip-slip fault buried in an elastic half-space overlain by a superficial layer. We use this direct 2-D layered

* Now at: Laboratoire de Géophysique, Bruyères-le-Châtel, France. E-mail: cattin@ldg.bruyeres.cea.fr
† Now at: École Normale Supérieure, Département de Géologie, URA CNRS 1316, France.

© 1999 RAS
model to quantify, for various dip angles of the fault, the effects of rheological parameters and thickness of the top layer on the modelled displacements. In the second part, we discuss how these effects can bias the interpretation in terms of fault parameters when a homogeneous half-space model is assumed (e.g. Okada 1985). Using a given set of surface displacements obtained from the LM, we use an inversion algorithm based on Okada’s 3-D analytic half-space solution (HM) to recover ‘equivalent’ fault parameters that we compare to the initial values. We quantify the departure from the initial values by modelling the coseismic displacements within this homogeneous half-space. Finally, we discuss some geophysical implications for the seismic deformation calculated by summing seismic moment tensors under the assumption of a homogeneous seismogenic layer (e.g. Jackson & McKenzie 1988).

MODELS

Presentation of the models

To calculate the coseismic displacements associated with slip on a buried fault in a LM, we use a finite element code (Hassani 1994) first developed to calculate quasi-static strain of an elastoviscoelastic discontinuous media. This code uses an explicit difference scheme coupled with a dynamic relaxation method to solve 2-D steady-state thermomechanical problems. In this study, space is meshed with 8000 triangular elements. In order to analyse the effects of the superficial layer on the coseismic displacements at the surface, we use a simple LM parametrization (Fig. 1a). The Earth’s surface is considered as a stress-free boundary, and in order to keep the structure stable the nodes along the other boundaries are held fixed in the normal direction. We consider a constant dislocation held fixed in the normal direction. We consider a constant dislocation \( u \) on a 10 km wide fault \((W = 10 \text{ km})\) with dip angle \( \alpha \). The fault is entirely located within the elastic half-space which is overlain by a top layer of thickness \( h \). The fault ends at \( z = 3 \) km below the free surface. The rheological parameters of the half-space are fixed: the density \( \rho \) is 2800 \( \text{kg m}^{-3} \), the Poisson’s ratio \( v \) is 0.27 and the Young’s modulus \( E \) is \( 10^{11} \) Pa.

The horizontal and vertical displacements calculated with the LM are then inverted using the HM. For the inversion, we use a code (Briole et al. 1986) based on the least-squares minimization developed by Tarantola & Valette (1982). The forward analytical model assumes a uniform dislocation \( u \) on a rectangular fault plane \((L, W, z, \alpha)\) in an elastic homogeneous half-space (Okada 1985) (Fig. 1b).

Validation of the approach

We first compare our 2-D calculations to Savage’s (1998) results obtained using an exact elastic solution in the form of Fourier integrals for an edge dislocation in a layered model. The comparison for a vertical dip-slip fault buried in a half-space over lain by a 5 km thick low-rigidity layer is shown in Fig. 2. The agreement between the two calculations is very good (the maximum discrepancy is less than 0.5 per cent of the dislocation \( u \)) and validates our 2-D calculations.

The second step is to intercalibrate our 2-D and 3-D calculations. For this, we invert the vertical and horizontal displacements calculated in a 2-D homogeneous half-space for

![Figure 1](http://gji.oxfordjournals.org/)

**Figure 1.** (a) 2-D dislocation model in a layered half-space with an elastic thin layer overlying an elastic half-space (LM). We impose a constant dislocation \( u = 1 \) m on a fault with a dip angle \( \alpha \), a top depth \( z = 3 \) km and a width \( W = 10 \) km. \( E, \rho, \nu \) and \( h \) are the Young’s modulus, the density, the Poisson’s ratio and the thickness of the top layer, respectively; \( E', \rho' \) and \( v' \) are the Young’s modulus, the density and the Poisson’s ratio of the half-space, respectively. (b) 3-D dislocation model in a homogeneous half-space (HM) used to invert the coseismic displacements calculated with the LM. \( W \) is fixed at 10 km and \( L/W \sim 3 \) in the calculations (see text for discussion), while \( z, u \) and \( \alpha \) are left free.

![Figure 2](http://gji.oxfordjournals.org/)

**Figure 2.** Vertical and horizontal coseismic displacement for a vertical dip-slip fault in a 2-D homogeneous (solid line) and a 2-D layered model (dashed line) calculated with our approach and by Savage (1998) (plotted points). The fault extends from a depth of 9 to 19 km. The top layer of the model has the following parameters: \( E/E' = 0.25 \), \( \nu = v' = 0.25 \), \( u = 2 \) m and \( h = 5 \) km.
a given fault geometry to find the ‘equivalent’ 3-D fault geometry. Fig. 3 displays the results for an initial fault defined by $u = 1 \text{ m}$, $W = 10 \text{ km}$, $z = 3 \text{ km}$ and $x = 40^\circ$. In the inversion, $W$ is fixed and $u$, $z$, $x$ and $L$ are free. The equivalent 3-D model leads to similar vertical and horizontal displacements and corresponds to values of $u$, $z$ and $x$ which differ by less than 0.25, 3 and 1 per cent respectively from the initial model. However, the ratio $L/W$ determined in the inversion is $\sim 3$. The fault is not infinitely long because the 2-D calculations are made in a finite box (300 km long) with constraints of no horizontal displacement on the borders. We show in Fig. 4(a) that it is only for $L/W \geq 10$ that the calculated vertical and horizontal displacements become very close to true 2-D calculations. The variations of $L/W$ with respect to the box size for the fault geometry described above indicate that to reach the condition $L/W \geq 10$ we should use a 600 km long box (Fig. 4b). Because the space is meshed with elements of a constant size, we could not use such a large box and had to restrain our calculations to a 300 km long box corresponding to $L/W \sim 3$. As discussed above, all other parameters of the fault model are accurately retrieved; it is these parameters that we are interested in.

**PARAMETRIC STUDY OF THE EFFECT OF THE LOW-RIGIDITY TOP LAYER ON THE COSEISMIC DISPLACEMENTS**

In this part, we use the LM to study separately the influence of the thin layer’s parameters ($\rho$, $v$, $E$ and $h$) and the effects of the fault geometrical parameters ($a$) on the coseismic displacements.

![Figure 3](image_url)

**Figure 3.** (Top) Map of the surface coseismic displacements calculated with the HM. The rectangle is the fault projected at the surface. The solid line gives the cross-section direction perpendicular to the length of the fault. (Bottom) Comparison of displacements calculated with the LM without top-layer rigidity (open circles) with displacements obtained by inversion using the HM (solid line) with a fault length $L = 28.2 \text{ km}$, for an initial fault defined by $u = 1 \text{ m}$, $W = 10 \text{ km}$, $z = 3 \text{ km}$ and $x = 40^\circ$.

© 1999 RAS, *GJI* 137, 149–158
The measured ratio of the Young’s modulus between consolidated or unconsolidated sedimentary rocks and granite ranges from 0.1–0.7 (e.g. Jaeger & Cook 1979; Blangy et al. 1993). When the ratio of the Young’s modulus between the half-space and the thin layer \(E/E’\) decreases from 1 to 0.1, the horizontal displacements near the fault increase by 40 per cent. This sensitivity of the horizontal coseismic displacements is not linear with \(E/E’\). When \(E/E’\) decreases from 0.1 to 0.01 the variation of horizontal displacements is small (<10 per cent). When \(E/E’\) is small (<0.1) the horizontal surface displacements tend to mimic the deformation at the depth of the interface between the two layers (the low-rigidity layer passively follows the underlying deformation).

In conclusion, the effects of density contrasts and Poisson’s ratio (ranging from 0.2–0.3) are negligible. The only parameter that has a significant effect (>10 per cent) on the modelled coseismic displacements is the contrast of the Young’s modulus between the top layer and the half-space below.

**Geometrical parameter: thickness of the low-rigidity layer and fault dip angle**

In the following, we assume that \(\delta \rho = 0.3 \text{ kg m}^{-3}, \delta \nu = 0\) and \(E/E’ = 0.1\) and we study the influence of the thickness \(h\) of the low-rigidity layer. The vertical displacements are not distorted (<10 per cent) when \(h\) increases from 0 to 1, 2 and 3 km (Fig. 6). In contrast, \(h\) has a large influence on the surface coseismic horizontal displacements. Near the fault, the horizontal displacements increase by 20 and 45 per cent when \(h\) increases from 0 to 1 km and 0 to 3 km respectively.

The last parameter studied in this section is the fault dip angle \(\alpha\). We use a thickness \(h\) of 2 km. Again, the vertical displacement is mostly unchanged (<6 per cent) when \(\alpha\) ranges from 20–60° with or without the low-rigidity layer (Fig. 7). Whatever the dip is, the horizontal displacements near the fault are sensitive (>30 per cent variation) to the presence of the low-rigidity layer.

In order to better compare the influence of \(E, \alpha\) and \(h\), we use the normalized displacement parameter

\[
U_i^{\text{normal}} = \frac{\delta U_i - \delta U_i^{\text{homogeneous}}}{\delta U_i^{\text{homogeneous}}},
\]

where \(i\) is the displacement component and \(\delta U_i = U_i^{\text{max}} - U_i^{\text{min}}\) (see Fig. 5). The sensitivity of normalized displacements to the low-rigidity layer is almost the same for \(\alpha\) ranging from 20–60° (Fig. 8). In contrast, the normalized horizontal displacements range from 0 to ~40 per cent when \(E/E’\) decreases from 1 to 0.1, and they range from ~20 to 45 per cent when the thickness of the low-rigidity layer increases from 1 to 3 km.

Furthermore, as we have already shown, the horizontal displacements are more sensitive to the presence of the low-rigidity layer than the vertical component. This behaviour is also mentioned by Savage (1998). In order to explain this result we calculate \(u_i\) and \(u_z\) versus depth in the HM with the parameters described above \((\alpha = 1 \text{ m, } W = 10 \text{ km, } L = 28.2 \text{ km, } z = 3 \text{ km, } \alpha = 40°)\). There is no vertical gradient for \(u_z\) in the upper part of the model, whilst \(u_i\) exhibits strong vertical gradients, which makes \(u_i\) potentially very sensitive to near-surface structure (Fig. 9). The horizontal component is thus more sensitive to shallow Young’s moduli layering than the vertical component.

© 1999 RAS, *GJI* 137, 149–158
HOMOGENEOUS HALF-SPACE ‘EQUIVALENT’ MODEL

In order to quantify the ‘errors’ made in fault geometry and slip due to the assumption of homogeneity we calculate the displacements due to a dislocation embedded in a layered half-space (LM) and we interpret it in the context of an equivalent homogeneous half-space (HM), as is usually done. To do this, we invert with the HM the horizontal and vertical displacements generated previously with the LM to calculate \( u, z \) and \( \alpha \).

We start our inversions using as \( a \ priori \) values the parameters of the LM \((u = 1 \text{ m}, z = 3 \text{ km}, \alpha = 40^\circ)\). We make the

Figure 5. Effect of the Young’s modulus of the top layer on the vertical and horizontal coseismic displacements. The Young’s modulus of the lower half-space \( (E') \) is 100 GPa.

Figure 6. Effect of the thickness \( h \) of the low-rigidity layer on the horizontal \( (u_x) \) and vertical \( (u_z) \) coseismic displacements with \( z = 40^\circ \) and \( E/E' = 0.1 \).

© 1999 RAS, GJI 137, 149–158
fault width 10 km and the fault length 28.2 km, as determined by the inversion of the displacements calculated with the LM without any low-rigidity top layer (see the ‘models’ section). Two sets of inversions are made, the first with the two components of the displacement and the second with only the horizontal displacements since these are often the only components available.

For all models, we observe that the inverted dip angle matches the ‘true’ dip angle of the LM. The only parameters sensitive to the presence of the low-rigidity top layer are the

Figure 7. Effect of the dip angle of the fault on the horizontal ($u_x$) and vertical ($u_z$) coseismic displacements with $h=2$ km and $E/E'=0.1$.

Figure 8. Normalized displacement variations with $E$, $x$ and $h$. The low-rigidity layer has a larger influence on the horizontal displacements than on the vertical displacements.

© 1999 RAS, GJI 137, 149–158
depth of the upper edge of the fault and the slip on the fault. Thus, for each model we study the effect of the low-rigidity layer on these parameters by using inverted {\(z\) true and the slip variation

\[
\frac{\partial u}{u} = \frac{u_{\text{inverted}} - u_{\text{true}}}{u_{\text{true}}},
\]

(2)

where 'true' means 'as used in the LM'. In the reference model, the following parameters are used: \(E = 10\) GPa, \(h = 2\) km and \(\alpha = 40^\circ\).

When the Young’s modulus of the low-rigidity layer varies between 50 and 5 GPa (0.5 > \(E/E' > 0.05\) (Fig. 10), \(\partial u/u\) does not change (< 3 per cent) and \(\partial z\) decreases from –345 to –750 m. Moreover, the half-space equivalent model cannot fully explain the horizontal displacements near the projection of the fault. The discrepancy is ~20 per cent. When we invert only the horizontal displacements, this discrepancy becomes very low (< 2 per cent) and \(\partial u/u\) varies between 7 and 17 per cent, and \(\partial z\) decreases from –550 to –255 m. This behaviour is consistent with the results of Savage (1998), which suggest that ‘the neglect of the low-modulus layer in the edge dislocation problem causes one to underestimate the depth of the dislocation’.

We now study the effect of the thickness of the top layer. The fault depth is the only parameter that has a significant effect on coseismic displacements. Although vertical displacements are not affected, calculated horizontal displacements exhibit a vertical gradient. This difference can explain the different sensitivities of the two components to the presence of a thin low-rigidity layer.

**CONCLUSIONS**

Our parametric study has shown that the only rheological parameter that has a significant effect on coseismic displacements is the Young’s modulus ratio \(E/E'\) between the upper layer and the underlying half-space. Although vertical displacements are not affected, calculated horizontal...
displacements may vary by more than 40 per cent when $E/E'$ varies from 1 to 0.1.

Using a homogeneous half-space to interpret the coseismic displacements leads to shallower faults than in reality in all cases and tends to overestimate the slip by 10–20 per cent when horizontal displacements alone are considered. This is consistent with Savage’s (1998) conclusions. Still, in most cases the homogeneous equivalent model is not able to explain simultaneously vertical and horizontal displacements, and close to the fault discrepancies of generally 10–20 per cent remain.

Figure 10. Equivalent homogeneous half-space for various Young’s modulus contrasts with $x=40^\circ$ and $h=2$ km. (Top) The coseismic displacements are calculated with the 'equivalent' HM (solid line), with the LM (dashed line) and with the HM but with the LM parameters (thick solid line). The ‘equivalent’ model is determined by using the two displacement components. (Bottom) The solid line indicates the fault position in the ‘equivalent’ HM and the dashed line that in the LM. $\delta u/\mu$ and $\delta z$ are the slip variation and the depth variation calculated with two components; the values for the horizontal component only are given in brackets.

Figure 11. Equivalent homogeneous half-space for various thicknesses of the low-rigidity layer with $x=40^\circ$ and $E/E'=0.1$. See Fig. 10 caption.
The largest depth variations (~1 km) are obtained for shallow-dipping faults (Fig. 12) and when the thickness of the low-rigidity layer is high (Fig. 11). The 1995 Aigion earthquake in the Corinth rift occurred on a 33° dipping normal fault with a centroid depth of 7.2 km. In this case Bernard et al. (1997) had to lower the depth of the fault by 2 km to explain the observed horizontal displacements. This is about twice the maximal value obtained with the examples studied here. This may be due to a locally thicker sedimentary layer or to a greater depth of the fault than we have assumed in our calculations. In any case, the fact that the equivalent homogeneous model in general does not fully explain horizontal and vertical displacements stresses the need for computing dislocations in a 3-D layered medium.

The behaviour of coseismic displacements shown here may have some important consequences on conclusions derived from seismic moment tensor summations (e.g. Ekström & England 1989; Jackson & McKenzie 1988). In these studies, a key parameter in estimating the regional seismic deformation is the seismogenic layer thickness or elastic thickness in which the seismic deformation is confined. This thickness is usually taken as the maximum depth of the crustal seismicity in a given area. The calculations presented in this paper show that the apparent thickness of the seismogenic layer depends on the thickness of the top low-rigidity layer, if present. In the presence of well-developed sedimentary basins, the underestimation of horizontal displacements created by a given earthquake can reach ~40 per cent (see Fig. 5). In the Gulf of Corinth area, estimations of seismic moment rates and geodetic rates of deformation differ by a factor of about 2 (Ambraseys & Jackson 1990; Papazachos & Kiratzi 1992; Clarke et al. 1997). We suggest that part of this discrepancy is due not to a strain energy accumulation that will eventually be released in large earthquakes (Clarke et al. 1997) or to aseismic deformation (Papazachos & Kiratzi 1992), but rather to the presence of a thick sedimentary basin that makes the seismogenic layer thinner than assumed in previous strain-rate calculations. The role of superficial layers may be important in other areas such as the Basin and Range Province, where recent GPS measurements indicate unexpected rapid deformation rates (Martinez et al. 1998).

ACKNOWLEDGMENTS
We are grateful to R. Armijo, J. B. de Chabalier and J. C. Ruegg for useful discussions about the structure of the Gulf of Corinth. We would like to thank Y. Okada for having provided us with his Fortran routines for his 1992 paper and J. Chéry and R. Hassani for the finite element code. We would also like to thank R. Sabadini and two anonymous reviewers for their helpful comments on the original version of the manuscript.

REFERENCES


