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Abstract: In this paper we study the kernel change-point algorithm (KCP)
proposed by Arlot, Celisse and Harchaoui [4], which aims at locating an
unknown number of change-points in the distribution of a sequence of in-
dependent data taking values in an arbitrary set. The change-points are
selected by model selection with a penalized kernel empirical criterion. We
provide a non-asymptotic result showing that, with high probability, the
KCP procedure retrieves the correct number of change-points, provided
that the constant in the penalty is well-chosen; in addition, KCP estimates
the change-points location at the optimal rate. As a consequence, when
using a characteristic kernel, KCP detects all kinds of change in the distri-
bution (not only changes in the mean or the variance), and it is able to do
so for complex structured data (not necessarily in Rd). Most of the analysis
is conducted assuming that the kernel is bounded; part of the results can
be extended when we only assume a finite second-order moment.
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1. Introduction

In many situations, some properties of a time series change over time, such
as the mean, the variance or higher-order moments. Change-point detection
is the long standing question of finding both the number and the localization
of such changes. This is an important front-end task in many applications. For
instance, detecting changes occuring in comparative genomic hybridization array
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data (CGH arrays) is crucial to the early diagnosis of cancer [34]. In finance,
some intensively examined time series like the volatility process exhibit local
homogeneity and it is useful to be able to segment these time series both for
modeling and forecasting [38, 49]. Change-point detection can also be used to
detect changes in the activity of a cell [45], in the structure of random Markov
fields [43], or a sequence of images [30, 1]. Generally speaking, it is of interest
to the practitioner to segment a time series in order to calibrate its model on
homogeneous sets of datapoints.

Addressing the change-point problem in practice requires to face several im-
portant challenges. First, the number of changes can not be assumed to be
known in advance — in particular, it can not be assumed to be equal to 0 or 1
—, hence a practical change-point procedure must be able to infer the number
of changes from the data. Second, changes do not always occur in the mean
or the variance of the data, as assumed by most change-point procedures. We
need to be able to detect changes in other features of the distribution. Third,
parametric assumptions — which are often made for building or for analyz-
ing change-point procedures — are often unrealistic, so that we need a fully
non-parametric approach. Fourth, data points in the time series we want to
segment can be high-dimensional and/or structured. If the dimensionality is
larger than the number of observations, a non-asymptotic analysis is manda-
tory for theoretical results to be meaningful. When data are structured — for
instance, histograms, graphs or strings —, taking their structure into account
seems necessary for detecting efficiently the change-points.

We focus only on the offline problem in this article, that is, when all obser-
vations are given at once, as opposed to the situation where data come as a
continuous stream. We refer to Tartakovsky, Nikiforov and Basseville [51] for an
extensive review of sequential methods, which are adapted to the later situation.
Numerous offline change-point procedures have been proposed since the seminal
works of Page [44], Fisher [21] and Bellman [9], which are mostly parametric in
essence. We refer to Brodsky and Darkhovsky [13, Chapter 2] for a review of
non-parametric offline change-point detection methods. Among recent works in
this direction, we can mention the Wild Binary Segmentation (WBS, [22]) and
the non-parametric multiple change-point detection procedure (NMCD, [56]).
Some authors also consider the case of high-dimensional data when only a few
coordinates of the mean change at each change-point [53, and references therein],
or the problem of detecting gradual changes [52]; this paper does not address
these slightly different problems.

To the best of our knowledge, no offline change-point procedure addressed
simultaneously the four challenges mentioned above, until the kernel change-
point procedure (KCP) was proposed by Arlot, Celisse and Harchaoui [4]. In
short, KCP mixes the penalized least-squares approach to change-point detec-
tion [17, 39] with semi-definite positive kernels [5]. It is not the only procedure
that uses positive semi-definite kernels to detect changes in a times series. Apart
from Harchaoui and Cappé [27], who introduced KCP for a fixed number of
change-point, and Arlot, Celisse and Harchaoui [4] who extended KCP to an
unknown number of change-points, we are aware of several closely related work.
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Maximum Mean Discrepancy [MMD, 24] has been used for building two sample
tests; a block average version of the MMD, named the M -statistic, has lead to
an online change-point detection procedure [41]. A kernel-based statistic, named
kernel Fisher discriminant ratio, has been used by Harchaoui, Moulines and Bach
[28] for homogeneity testing and for detecting one change-point. Sharipov, Tewes
and Wendler [48] build an analogue of the CUSUM statistic for Hilbert-valued
random variables in order to detect a single change in the mean, and could be
applied in our setting to the images of the observations in the feature space.
Kernel change detection [18] is an online procedure that uses a kernel to build
a dissimilarity measure between the near past and future of a data-point.

On the computational side, the KCP segmentation can be computed effi-
ciently thanks to a dynamic programming algorithm [27, 4], which can be made
even faster [16]. An oracle inequality for KCP is proved by Arlot, Celisse and
Harchaoui [4]; this is not exactly a result on change-point estimation, but a
guarantee on estimation of the “mean” of the time series in the RKHS associ-
ated with the kernel chosen. The good numerical performance of KCP in terms
of change-point estimation is also demonstrated in several experiments.

So, a key theoretical question remains open: does KCP estimate correctly the
number of change-points and their locations with a large probability? If yes, at
which speed does KCP estimate the change-point locations?

This paper answers these questions, showing that KCP has good theoretical
properties for change-point estimation with independent data, under a bound-
edness assumption (Theorem 3.1 in Section 3.1). This result is non-asymptotic,
hence meaningful for high-dimensional or complex data. In the asymptotic set-
ting — with a fixed true segmentation and more and more data points observed
within each segment —, Theorem 3.1 implies that KCP estimates consistently
all changes in the “kernel mean” of the distribution of data, at speed log(n)/n
with respect to the sample size n. Since we make no assumptions on the mini-
mal size of the true segments, this matches minimax lower bounds [14]. We also
provide a partial result under a weaker finite variance assumption (Theorem 3.2
in Section 3.3) and explain in Section 5 how our proofs could be extended to
other settings, including the dependent case. These findings are illustrated by
numerical simulations in Section 4.

An important case is when KCP is used with a characteristic kernel [23], such
as the Gaussian or the Laplace kernel. Then, any change in the distribution
of data induces a change in the “kernel mean”. So, Theorem 3.1 implies that
KCP then estimates consistently and at the minimax rate all changes in the
distribution of the data, without any parametric assumption and without prior
knowledge about the number of changes.

Our results also are interesting regarding to the theoretical understanding
of least-squares change-point procedures. Indeed, when KCP is used with the
linear kernel, it reduces to previously known penalized least-squares change-
point procedures [54, 17, 39, for instance]. There are basically two kinds of results
on such procedures in the change-point literature: (i) asymptotic statements on
change-point estimation [54, 55, 6, 37] and (ii) non-asymptotic oracle inequalities
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[17, 39, 4], which are based upon concentration inequalities and model selection
theory [10] but do not directly provide guarantees on the estimated change-
point locations. Our results and their proofs show how to reconciliate the two
approaches when we are interested in change-point locations, which is already
new for the case of the linear kernel, and also holds for a general kernel.

2. Kernel change-point detection

This section describes the general change-point problem and the kernel change-
point procedure [4].

2.1. Change-point problem

Set 2 ≤ n < +∞ and consider X1, . . . , Xn independent X -valued random vari-
ables, where X is an arbitrary (measurable) space. The goal of change-point
detection is to detect abrupt changes in the distribution of the Xis. For any
D ∈ {1, . . . , n} and any integers 0 = τ0 < τ1 < · · · < τD = n, we define
the segmentation τ :=

[
τ0, . . . , τD

]
of {1, . . . , n} as the collection of segments

λ` = {τ`−1 + 1, . . . , τ`}, ` ∈ {1, . . . , D}. We call change-points the right-end of
the segments, that is the τ`, ` ∈ {1, . . . , D}. We denote by T Dn the set of seg-
mentations with D segments and Tn :=

⋃n
D=1 T Dn the set of all segmentations

of {1, . . . , n}. For any τ ∈ Tn, we write Dτ for the number of segments of τ .
Figure 1 provides a visual example.

• • • • • • • • • •τ

Fig 1. We often represent the segmentations as above. The bullet points stand for the elements
of {1, . . . , n}. Here, n = 10, Dτ = 3, τ0 = 0, τ1 = 3, τ2 = 7 and τ3 = 10.

An important example to have in mind is the following.

Example 2.1 (Asymptotic setting). Let K ≥ 1, 0 = b0 < b1 < · · · < bK <
bK+1 = 1 and P1, . . . , PK+1 some probability distributions on X be fixed. Then,
for any n and i ∈ {1, . . . , n}, we set ti := i/n and the distribution of Xi is
Pj(i) where j(i) is such that ti ∈ [bj , bj+1). In other words, we have a fixed
segmentation of [0, 1], given by the bj , a fixed distribution over each segment,
given by the Pj , and we observe independent realizations from the distributions
at discrete times t1, . . . , tn. The corresponding true change-points in {0, . . . , n}
are the bnbjc, j = 1, . . . ,K. For n large enough, there are K + 1 segments.
Figure 2 shows an example. Let us emphasize that in this setting, n going to
infinity does not mean that new observations are observed over time. Recall
that we consider the change-point problem a posteriori : a larger n means that
we have been able to observe the phenomenon of interest with a finer time
discretization. Also note that this asymptotic setting is restrictive in the sense
that segments size asymptotically are of order n; we do not make this assumption



D. Garreau and S. Arlot/Change-point detection with kernels 5

in our analysis, which also covers asymptotic settings where some segments have
a smaller size.

0.0 0.2 0.4 0.6 0.8 1.0−2

−1

0

1

2

3

Fig 2. Illustration of the asymptotic setting (Example 2.1) in the case of changes in the mean
of the Xi. Here, X = R, Xi = f(ti) + εi with ε1, . . . , εn i.i.d. and centered, and f : [0, 1]→ R
is a (fixed) piecewise constant function (shown in red). The goal is to recover the number of
abrupt changes of f (here, 2) and their locations (b1 = 0.5 and b2 = 0.7). Note that other
kinds of changes in the distribution of the Xi can be considered, see Section 4.

2.2. Kernel change-point procedure (KCP)

Let k : X ×X → R be a positive semidefinite kernel, that is, a measurable
function such that the matrix (k(xi, xj))1≤i,j≤m is positive semidefinite for any

m ≥ 1 and x1, . . . , xm ∈ X [46]. Classical examples of kernels are given by [4,
section 3.2], among which:

– the linear kernel : klin(x, y) = 〈x, y〉Rp for x, y ∈ X = Rp.
– the polynomial kernel of order d ≥ 1: kpoly

d (x, y) =
(
〈x, y〉Rp + 1)d for

x, y ∈ X = Rp.
– the Gaussian kernel with bandwidth h > 0: kG

h (x, y) = exp[−‖x−y‖2/(2h2)]
for x, y ∈ X = Rp.

– the Laplace kernel with bandwidth h > 0: kL
h(x, y) = exp[−‖x−y‖/(2h2)]

for x, y ∈ X = Rp.
– the χ2-kernel: kχ2(x, y) = exp

(
− 1

2

∑p
i=1

(xi−yi)2
xi+yi

)
for x, y ∈ X the p-

dimensional simplex.



D. Garreau and S. Arlot/Change-point detection with kernels 6

As done by Harchaoui and Cappé [27] and Arlot, Celisse and Harchaoui [4],
for a given segmentation τ ∈ T Dn , we assess the adequation of τ with the kernel
least-squares criterion

R̂n(τ) :=
1

n

n∑
i=1

k(Xi, Xi) (2.1)

− 1

n

D∑
`=1

 1

τ` − τ`−1

τ∑̀
i=τ`−1+1

τ∑̀
j=τ`−1+1

k(Xi, Xj)

 .
Elementary algebra shows that, when X = Rp and k = klin, R̂n is the usual
least-squares criterion. Minimizing this criterion over the set of all segmentations
always outputs the segmentation with n segments reduced to a point, that is
[0, . . . , n]; this is a well-known overfitting phenomenon. To counteract this, a
classical idea [36, for instance] is to minimize a penalized criterion crit(τ) :=

R̂n(τ)+pen(τ), where pen : Tn → R+ is called the penalty. Formally, the kernel
change-point procedure (KCP) of Arlot, Celisse and Harchaoui [4] selects the
segmentation

τ̂ ∈ arg min
τ∈Tn

{
crit(τ)

}
where crit(τ) = R̂n(τ) + pen(τ) . (2.2)

In this paper, we focus on the classical choice of a penalty proportional to the
number of segments, similarly to AIC, BIC and Cp criteria. Namely, we consider

pen(τ) = pen`(τ) :=
CM2Dτ

n
, (2.3)

where C is a positive constant and M is specified in Assumption 1 later on.
As mentioned in the Introduction, slightly different penalty shapes can be con-
sidered, as suggested by Arlot, Celisse and Harchaoui [4]. Our results could be
extended to the penalty of Arlot, Celisse and Harchaoui [4], but we choose to
consider the linear penalty (2.3) only for simplicity.

2.3. The reproducing kernel Hilbert space

Let H be the reproducing kernel Hilbert space (RKHS) associated with k [5],
together with the canonical feature map Φ : X → H

Φ : X → H
x 7→ Φ(x) := k(·, x) .

We write 〈·, ·〉H (resp. ‖·‖H) for the inner product (resp. the norm) of H. For
any i ∈ {1, . . . , n}, define Yi := Φ(Xi) ∈ H. In the case where k = klin, then

Yi = 〈·, Xi〉Rp and the empirical risk R̂n reduces to the least-squares criterion

R̂n(τ) =
1

n

Dτ∑
`=1

τ∑̀
i=τ`−1+1

(
Xi −X`

)2
,
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where X` is the empirical mean of the Xi over the segment {τ`−1 + 1, . . . , τ`}.
It is well-known that penalized least-squares procedures detect changes in the
mean of the observations Xi, see Yao [54]. Hence the kernelized version of this
least-squares procedure, KCP, should detect changes in the “mean” of the Yi =
Φ(Xi), which are a nonlinear transformation of the Xi.

More precisely, assume that H is separable and that

∀i ∈ {1, . . . , n}, E
[√

k(Xi, Xi)
]
< +∞ .

Then µ?i , the Bochner integral of Yi, is well-defined [40]. The condition above is
satisfied in our setting (when either Assumption 1 or Assumption 2 holds true,
see Section 2.5), and H is separable in most cases [20]. The Bochner integral
commutes with continuous linear operators, hence the following property holds,
which will be of common use:

∀g ∈ H, 〈µ?i , g〉H = E
[
g(Xi)

]
= E

[
〈Yi, g〉H

]
.

We now define the “true segmentation” τ? ∈ Tn by

µ?1 = · · · = µ?τ?1 , µ?τ?1 +1 = · · · = µ?τ?2 , · · · µ?τ?Dτ?−1+1 = · · · = µ?n

and ∀i ∈ {1, . . . , Dτ? − 1}, µ?τ?i 6= µ?τ?i+1

(2.4)

with 1 ≤ τ?1 < · · · < τ?Dτ?−1 ≤ n. We call the τ?i s the true change-points. It
should be clear that it is always possible to define τ?.

A kernel is said to be characteristic if the mapping P 7→ EX∼P [Φ(X)] is
injective, for P belonging to the set of Borel probability measures on X [50].
In simpler terms, when k is a characteristic kernel, Xi and Xi+1 have the same
distribution if and only if µ?i = µ?i+1, and τ? indeed corresponds to the set of
changes in the distribution of the Xi. For instance, all strictly positive definite
kernels are characteristic, including the Gaussian kernel, see Sriperumbudur
et al. [50]. Therefore, in the setting of Example 2.1, for n large enough, Dτ? =
K + 1 and τ?` = bnb`c for ` = 1, . . . ,K.

For a general kernel, some changes of PXi , the distribution of Xi, might
not appear in τ?. For instance, with the linear kernel, τ? only corresponds to
changes of the mean of the Xi. In most cases, a characteristic kernel is known
and we can choose to use KCP with a characteristic kernel; then, as we prove
in the following, KCP eventually detects any change in the distribution of the
observations. But one can also choose a non-characteristic kernel on purpose,
hence focusing only on some changes in the distribution of the Xi. For instance,
the polynomial kernel of order d is not characteristic and leads to the detection
of changes in the first d moments of the distribution; with the linear kernel,
KCP detects changes in the mean of the Xi.

From now on, we focus on the problem of detecting the changes of τ? only,
whether the kernel is characteristic or not.
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2.4. Rewriting the empirical risk

It is convenient to see the images of the observations by the feature map as an
element of Hn. To this extent, we define Y := (Y1, . . . , Yn), as well as µ? :=
(µ?1, . . . , µ

?
n) ∈ Hn and ε := Y − µ? ∈ Hn. We identify the elements of Hn

with the set of applications {1, . . . , n} → H, naturally embedded with the inner
product and norm given by

∀x, y ∈ Hn, 〈x, y〉 :=

n∑
i=j

〈xj , yj〉H and ‖x‖2 :=

n∑
j=1

‖xj‖2H .

We now rewrite the empirical risk as a function of τ and Y . For any segmenta-
tion τ ∈ Tn, define Fτ the set of applications {1, . . . , n} → H that are constant
over the segments of τ . We see Fτ as a subspace of Hn as a vector space. Take
f ∈ Hn, we define Πτf the orthogonal projection of f onto Fτ with respect
to ‖·‖:

Πτf ∈ arg min
g∈Fτ

‖f − g‖ .

It is shown by Arlot, Celisse and Harchaoui [4] that for any f ∈ Hn and any
` ∈ {1, . . . , Dτ},

∀i ∈ {τ`−1 + 1, . . . , τ`}, (Πτf)i =
1

|τ` − τ`−1|

τ∑̀
j=τ`−1+1

fj . (2.5)

We are now able to write the empirical risk as

R̂n(τ) =
1

n
‖Y − µ̂τ‖2 , (2.6)

where µ̂τ = ΠτY , following [27, 4].

2.5. Assumptions

A key ingredient of our analysis is the concentration of ε. Intuitively, the per-
formance of KCP is better when ε concentrates strongly around its mean, since
without noise we are just given the task to segment a piecewise-constant signal.
It is thus natural to make assumptions on ε in order to obtain concentration
results. We actually formulate assumptions on the kernel k, which translate
automatically onto ε.

As done by Arlot, Celisse and Harchaoui [4], the main hypothesis used in our
analysis is the following.

Assumption 1. A positive constant M exists such that

∀i ∈ {1, . . . , n}, k(Xi, Xi) ≤M2 < +∞ a.s.
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If Assumption 1 holds true,

∀i ∈ {1, . . . , n}, ‖Yi‖H =
√
k(Xi, Xi) ≤M a.s.

and Arlot, Celisse and Harchaoui [4] show that ‖εi‖H ≤ 2M almost surely.
Assumption 1 is always satisfied for a large class of commonly used kernels,

such as the Gaussian, Laplace and χ2 kernels.
Note that Assumption 1 is weaker than assuming k to be bounded — that

is, k(x, x) ≤ M for any x ∈ X , which is equivalent to k(x, x′) ≤ M for any
x, x′ ∈ X since k is positive definite. For instance, if X = Rp and the data Xi

are bounded almost surely, Assumption 1 holds true for the linear kernel and
all polynomial kernels, which are not bounded on Rp.

In the setting of Example 2.1, Assumption 1 holds true when

∀j ∈ {1, . . . ,K}, k(x, x) ≤M2 for Pj-a.e. x ∈ X .

It is sometimes possible to weaken Assumption 1 into a finite variance as-
sumption.

Assumption 2. A positive constant V < +∞ exists such that

max
1≤i≤n

E
[
‖εi‖2H

]
≤ V.

Since vi := E[‖εi‖2H] = E [k(Xi, Xi)]−‖µ?i ‖
2
H, Assumption 2 holds true when

∀i ∈ {1, . . . , n}, E
[
k(Xi, Xi)

]
≤ V .

As a consequence, Assumption 1 implies Assumption 2 with V = M2. Note that
Assumption 2 is satisfied for the polynomial kernel of order d provided that

∀i ∈ {1, . . . , n}, E
[
‖Xi‖2d

]
< +∞.

In the setting of Example 2.1, Assumption 2 holds true with

V = max
1≤`≤K+1

EX∼P`
[
k(X,X)

]
,

provided this maximum is finite.

3. Theoretical guarantees for KCP

We are now able to state our main results. In Section 3.1, we state the main
result of the paper, Theorem 3.1, which provides simple conditions under which
KCP recovers the correct number of segments and localizes the true change-
points with high probability, under the bounded kernel Assumption 1. Then,
Section 3.2 details a few classical losses between segmentations which can be
considered in addition to the one used in Theorem 3.1. Corollary 3.1 formulates
a result on τ̂ in terms of the Frobenius loss. Finally, Section 3.3 states a partial
result on KCP — requiring the number of change-points Dτ? to be known —
under the weaker Assumption 2.
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3.1. Main result

We first need to define some quantities. The size of the smallest jump of µ? in H
is

∆ := min
i / µ?i 6=µ?i+1

∥∥µ?i − µ?i+1

∥∥
H . (3.1)

Intuitively, the higher ∆ is, the easier it is to detect the smallest jump with our
procedure. The quantity

∥∥µ?i − µ?i+1

∥∥
H is often called the (population) maxi-

mum mean discrepancy [MMD, 24] between the distributions of Xi and Xi+1.
In the scalar setting (with the linear kernel), the ratio ∆/σ (where σ2 is the
variance of the noise) is called the signal-to-noise ratio [7] and is often used as
a measure of the magnitude of a change in the signal. In Example 2.1,

∆ = min
1≤j≤K

∥∥∥µ?Pj − µ?Pj+1

∥∥∥
H

where µ?Pj denotes the (Bochner) expectation of Φ(X) when X ∼ Pj .
For any τ ∈ Tn, we denote the (normalized) sizes of its smallest and of its

largest segment by

Λτ :=
1

n
min

1≤`≤Dτ
|τ` − τ`−1| and Λτ :=

1

n
max

1≤`≤Dτ
|τ` − τ`−1| . (3.2)

It should be clear that the smaller Λτ? is, the harder it is to detect the segment
that achieves the minimum in equation (3.2). For instance, in the particular
case of Example 2.1,

Λτ? −−−−−→
n→+∞

min
0≤j≤K

|bj+1 − bj | and Λτ? −−−−−→
n→+∞

max
0≤j≤K

|bj+1 − bj | .

For any τ1 and τ2 ∈ Tn, we define

d(1)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

{
min

1≤j≤Dτ2−1

∣∣τ1
i − τ2

j

∣∣} ,
which is a loss function (a measure of dissimilarity) between the segmentations

τ1 and τ2. Note that d
(1)
∞ is not a distance; other possible losses between seg-

mentations and their relationship with d
(1)
∞ are discussed in Section 3.2.

Theorem 3.1. Suppose that Assumption 1 holds true. For any y > 0, an event
Ω of probability at least 1 − e−y exists on which the following holds true. For
any C > 0, let τ̂ be defined as in Eq. (2.2) with pen defined by Eq. (2.3). Set

Cmin :=
74

3
(Dτ? + 1)(y + log n+ 1) and Cmax :=

∆2

M2

Λτ?

6Dτ?
n .

Then, if
Cmin < C < Cmax , (3.3)

on Ω, we have

Dτ̂ = Dτ? and
1

n
d(1)
∞
(
τ?, τ̂

)
≤ v1(y) :=

148Dτ?M
2

∆2 · y + log n+ 1

n
.

We delay the proof of Theorem 3.1 to Section 6.4. Some remarks follow.
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Theorem 3.1 is a non-asymptotic result: it is valid for any n ≥ 1 and there is
nothing hidden in o(1) remainder terms. The latter point is crucial for complex
data — for instance, X = Rp with p > n — since in this case, assuming X fixed
while n→ +∞ is not realistic.

Nevertheless, it is useful to write down what Theorem 3.1 becomes in the
asymptotic setting of Example 2.1. As previously noticed, Dτ? , Λτ? , ∆2 and
M2 then converge to positive constants as n→ +∞. Therefore, Cmin is of order
log(n), Cmax is of order n and we always have Cmin < Cmax for n large enough.
The upper bound on C matches classical asymptotic conditions for variable
selection [47]. The necessity of taking C of order at least log(n) is shown by
Birgé and Massart [11] in a variable selection setting, which includes change-
point detection as a particular example; Birgé and Massart [11], Abramovich
et al. [2] provide several arguments for the optimality of taking a constant C
of order log(n). When C satisfies (3.3), the result of Theorem 3.1 implies that
P (Dτ̂ = Dτ?)→ 1. For the linear kernel in Rd, this is a well-known result when
the distribution of the Xi changes only through its mean. The first result dates
back to Yao [54, Section 2] for a Gaussian noise, later extended by Liu, Wu and
Zidek [42] and Bai and Perron [6, Section 3.1] under mixingale hypothesis on the
error, and Lavielle and Moulines [37] under very mild assumptions satisfied for a
large family of zero-mean processes [for the precise statement of the hypothesis,
see 37, Section 2.1]. Theorem 3.1 also shows that the normalized estimated
change-points of τ̂ converge towards the normalized true change-points at speed
at least log(n)/n.

Up to a logarithmic factor, this speed matches the minimax lower bound
n−1 which has been obtained previously for various change-point procedures
[32, 12, 33, for instance] including least-squares [37], assuming that Λτ? ≥ κ > 0.
When Dτ? ≥ 3 and the assumption on Λτ? is removed —that is, segments of
length much smaller than n are allowed, which is compatible with Theorem 3.1
since it is non-asymptotic—, Brunel [14, Theorem 6] shows a minimax lower
bound of order log(n)/n. Therefore, in this setting, KCP achieves the minimax
rate. We do not know whether KCP remains minimax optimal (without the log
factor) under the assumption Λτ? ≥ κ > 0.

Note finally that KCP also performs well for finite samples, according to the
simulation experiments of Arlot, Celisse and Harchaoui [4].

Theorem 3.1 emphasizes the key role of ∆2/M2, which can be seen as a gener-
alization of the signal-to-noise ratio, for the change-point detection performance
of KCP. The larger is this ratio, the easier it is to have Eq. (3.3) satisfied and the
smaller is v1(y). This suggests to choose k (theoretically at least) by maximizing
∆2/M2, as we discuss in Section 5. Note that ∆2/M2 is invariant by a rescaling
of k, hence the result of Theorem 3.1 is unchanged when k is rescaled.

The hypothesis in Eq. (3.3) is actually three-fold. First, we use that C > Cmin

to get Dτ̂ ≤ Dτ? . We have to assume C large enough since a too small penalty
leads to selecting (with KCP or any other penalized least-squares procedure)
the segmentation with n segments, that is Dτ̂ = n. Second, C < Cmax is used to
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get Dτ̂ ≥ Dτ? . Such an assumption is required since taking a penalty function
too large in Eq. (2.2) would result in selecting the segmentation with only one
segment, that is, Dτ̂ = 1. Third, Cmax has to be greater than Cmin for providing
a non-empty interval of possible values for C. This inequality is also used in the

proof of the upper bound on d
(1)
∞
(
τ?, τ̂

)
when we already know that Dτ̂ = Dτ? .

In Example 2.1, the Cmin < Cmax hypothesis translates into Λτ? � log(n)/n.
That is, the size of the smallest segment has to be of order log n/n. This is known
to be a necessary condition to obtain the minimax rate in multiple change-point
detection [14, section 2].

Theorem 3.1 helps choosing C, which is a key parameter of KCP, as in any
penalized model selection procedure. However, in practice, we do not recom-
mend to directly use equation (3.3) for choosing C for two reasons: Cmin, Cmax

depend on unknown quantities Dτ? ,Λτ? ,∆, and the exact values of the con-
stants in Cmin, Cmax might be pessimistic compared to what we can observe
from simulation experiments. We rather suggest to use a data-driven method
for choosing C, see Section 5.

If we know Dτ? , we can replace τ̂ by

τ̂(Dτ?) ∈ arg min
τ∈T Dτ?n

{
R̂n(τ)

}
.

Then, assuming that Λτ? > v1(y) — which is weaker than assuming Cmin <
Cmax —, the proof of Theorem 3.1 shows that, on Ω, we have

1

n
d(1)
∞
(
τ?, τ̂(Dτ?)

)
≤ v1(y) .

3.2. Loss functions between segmentations

Theorem 3.1 shows that τ̂ is close to τ? in terms of d
(1)
∞ . Several other loss

functions (measures of dissimilarity) can be defined between segmentations [29].
We here consider a few of them, which are often used or natural for the change-
point problem.

Let us first consider losses related to the Hausdorff distance. For any τ1

and τ2 ∈ Tn, we define

d(1)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

{
min

1≤j≤Dτ2−1

∣∣τ1
i − τ2

j

∣∣}
d(2)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

{
min

0≤j≤Dτ2

∣∣τ1
i − τ2

j

∣∣}
d

(i)
H (τ1, τ2) := max

{
d(i)
∞ (τ1, τ2),d(i)

∞ (τ2, τ1)
}

for i ∈
{

1, 2
}
.

Whenever Dτ1 = Dτ2 , we define

d(3)
∞ (τ1, τ2) := max

1≤i≤Dτ1−1

∣∣τ1
i − τ2

i

∣∣ .
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Note that d
(3)
∞ is symmetric thus there is no need to define d

(3)
H . One could

also define d
(1)
H as the Hausdorff distance between the subsets {τ1

1 , . . . , τ
1
Dτ1−1}

and {τ2
1 , . . . , τ

2
Dτ2−1} with respect to the distance δ(x, y) = |x− y| on R. These

definitions are illustrated by Figure 3.

• • • • • • • • • • • • • • • • • • •τ1

τ2

d
(2)
∞ (τ2, τ1)

d
(1)
∞ (τ1, τ2)

d
(2)
∞ (τ1, τ2)

Fig 3. Illustration of the definition of d
(i)
∞ , with n = 19, τ1 =

[
0, 8, 17, 19

]
and τ2 =[

0, 7, 14, 19
]
. In this example, Dτ1 = Dτ2 = 3. We can compute d

(1)
∞ (τ1, τ2) = d

(1)
∞ (τ2, τ1) =

d
(2)
∞ (τ2, τ1) = d

(3)
∞ (τ1, τ2) = 3 and d

(2)
∞ (τ1, τ2) = 2.

Interestingly, all these loss functions coincide whenever n−1d
(1)
∞ (τ1, τ2) is

small enough. The following lemma makes this claim rigorous.

Lemma 3.1. We have the following two properties.

(i) For any τ1, τ2 ∈ Tn such that

1

n
d(1)
∞ (τ1, τ2) <

1

2
min

{
Λτ1 ,Λτ2

}
,

we have Dτ1 = Dτ2 and

d(1)
∞ (τ1, τ2) = d(2)

∞ (τ1, τ2) = d(3)
∞ (τ1, τ2) = d

(1)
H (τ1, τ2) = d

(2)
H (τ1, τ2).

(ii) For any τ1, τ2 ∈ Tn such that

Dτ1 = Dτ2 and
1

n
d(1)
∞ (τ1, τ2) <

Λτ1

2
,

we have
d(1)
∞ (τ1, τ2) = d(1)

∞ (τ2, τ1) = d
(1)
H (τ1, τ2) .

Lemma 3.1 is proved in Section B.1. As a direct application of Lemma 3.1

we see that the statement of Theorem 3.1 holds true with d
(1)
∞ replaced by any

of the loss functions that we defined above, at least for n large enough.

Another loss between segmentations is the Frobenius loss [35], which is defined
as follows. For any τ1, τ2 ∈ Tn,

dF(τ1, τ2) := ‖Πτ1 −Πτ2‖F ,
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where Πτ is the orthogonal projection onto Fτ , as defined in Section 2.4, and
‖·‖F denotes the Frobenius norm of a matrix:

∀A ∈ RN×M , ‖A‖2F :=

N∑
i=1

M∑
j=1

A2
ij .

A closed-form formula for dF can be derived from the matrix representation
of Πτ that is given by (2.5): for any i, j ∈ {1, . . . , n},

(Πτ )i,j =

{
1
|λ| if i and j belong to the same segment λ of τ

0 otherwise.

An interesting feature of the Frobenius loss is that it is smaller than one
only when τ1 and τ2 have the same number of segments, whereas Hausdorff
distances can be small with very diffferent numbers of segments. Indeed, we
prove in Section B.2 that

|Dτ1 −Dτ2 | ≤ dF(τ1, τ2)2 ≤ Dτ1 +Dτ2 . (3.4)

The next proposition shows that there is an equivalence (up to constants)
between the Hausdorff and Frobenius losses between segmentations, provided
that they are close enough.

Proposition 3.1. Suppose that Dτ1 = Dτ2 and 1
nd

(1)
∞ (τ1, τ2) < Λτ1/2, then(

dF(τ1, τ2)
)2 ≤ 12Dτ1

Λτ1

1

n
d(1)
∞ (τ1, τ2) .

If in addition 1
nd

(1)
∞ (τ1, τ2) < Λτ1/3, then

2

3Λτ1

1

n
d(1)
∞ (τ1, τ2) ≤

(
dF(τ1, τ2)

)2
.

Proposition 3.1 was first stated and proved by [35, Theorem B.2]. We prove
it in Section B.2 for completeness.

As a corollary of Theorem 3.1 and Proposition 3.1, we get the following
guarantee on the Frobenius loss between τ? and the segmentation τ̂ estimated
by KCP.

Corollary 3.1. Under the assumptions of Theorem 3.1, on the event Ω defined
by Theorem 3.1, for any τ̂ satisfying (2.2) with pen defined by (2.3), we have:

dF(τ?, τ̂) ≤ 43Dτ?√
Λτ?

· M
∆

√
y + log n+ 1

n
.

Note that Corollary 3.1 gives a better result (at least for large n) than the
obvious bound

dF(τ?, τ̂) ≤ Dτ? +Dτ̂ − 2 .
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Proof. On the event Ω, we have 1
nd

(1)
∞ (τ?, τ̂) < Λτ?/(Dτ? + 1) and Dτ? = Dτ̂ .

Therefore, according to Proposition 3.1,(
dF(τ?, τ̂)

)2 ≤ 12Dτ?

Λτ?

1

n
d(1)
∞ (τ?, τ̂) ≤ 1776D2

τ?(y + log n+ 1)

nΛτ?
· M

2

∆2 .

Up to this point, we assessed the quality of the segmentation τ by considering
the proximity of τ with τ?. Another natural idea is to measure the distance
between µ? and µ?τ in Hn. It is closely related to the oracle inequality proved by

Arlot, Celisse and Harchaoui [4], which implies an upper bound on ‖µ? − µ̂τ̂‖2.

We can also observe that there is a simple relationship between ‖µ? − µ?τ‖
2

and
the Frobenius distance between τ and τ?. Indeed,

‖µ? − µ?τ‖
2

= ‖(Πτ? −Πτ )µ?‖2 ≤ ‖Πτ? −Πτ‖22 ‖µ?‖
2 ≤

(
dF(τ?, τ̂)

)2 ‖µ?‖2 .
(3.5)

Equation (6.9) in the proof of Theorem 3.1 shows that on Ω, under the assump-
tions of Theorem 3.1,

‖µ? − µ?τ̂‖
2 ≤ 74

(
y + log(n) + 1

)
Dτ?M

2

which is slightly better (but similar) to what Corollary 3.1, equation (3.5) and

the bound ‖µ?‖2 ≤M2n imply.

3.3. Extension to the finite variance case

Theorem 3.1 is valid under a boundedness assumption (Assumption 1). What
happens under the weaker Assumption 2? As a first step, we provide a result
for

τ̂(Dτ? , δn) ∈ arg min
τ∈T Dτ?n /Λτ≥δn

{
R̂n(τ)

}
(3.6)

for some δn > 0. In other words, we restrict our search to segmentations τ of the
correct size — hence Dτ? must be known a priori — and having no segment with
less than nδn observations. We discuss how to relax this restriction right after
the statement of Theorem 3.2. Note that the dynamic programming algorithm
of Harchaoui and Cappé [27] can be used for computing τ̂(Dτ? , δn) efficiently.

Similarly to ∆, we define ∆ := maxi
∥∥µ?i − µ?i+1

∥∥
H.

Theorem 3.2. Suppose that Assumption 2 holds true. For any δn, y > 0, define:

v2(y, δn) := 24(Dτ?)2 ∆
√
V

∆2

y√
n

+ 8Dτ?
V

∆2

y2

nδn
.

For any y > 0, an event Ω2 exists such that

P (Ω2) ≥ 1− 1

y2
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and, on Ω2, we have the following : for any δn ∈ (0,Λτ? ] and any τ̂(Dτ? , δn)
satisfying Eq. (3.6), if v2(y, δn) ≤ Λτ? ,

1

n
d(1)
∞
(
τ?, τ̂(Dτ? , δn)

)
≤ v2(y, δn) . (3.7)

We postpone the proof of Theorem 3.2 to Section 6.5. Let us make a few
remarks.

As for Theorem 3.1, our result is non-asymptotic. However, it is interesting
to write it down in the setting of Example 2.1. If n goes to infinity, then the
assumption Λτ? ≥ δn is satisfied whenever δn → 0. If we furthermore require
that nδn →∞, then Eq. (3.7) implies that

1

n
d(1)
∞
(
τ?, τ̂(Dτ? , δn)

) P−−−−−→
n→+∞

0 ,

by taking a well-chosen y of order
√
n +
√
nδn. In the particular case of the

linear kernel, this result is known under various hypothesis [37, for instance]; it
is new for a general kernel.

More precisely, if we take δn = n−1/2, Theorem 3.2 implies that

1

n
d(1)
∞

(
τ?, τ̂(Dτ? , n

−1/2)
)

goes to zero at least as fast as `n/
√
n, where (`n)n≥1 is any sequence tending

to infinity, for instance `n = log(n). This speed seems suboptimal compared to
previous results [37, for instance] — which do not consider the case of a general
kernel —, but we have not been able to prove tight enough deviation bounds
for getting the localization rate log(n)/n under Assumption 2.

How does Theorem 3.2 compares to Theorem 3.1? First, as noticed by Re-
mark 6.4 in Section 6.4, the result of Theorem 3.1 also holds true for τ̂(Dτ? , δn)
as long as Λτ? ≥ δn. Second, v1(y) is usually smaller than v2(y, δn) — its order
of magnitude is smaller when n→ +∞ —, and the lower bound on the proba-
bility of Ω is better than the one for Ω2. There is no surprise here: the stronger
Assumption 1 helps us proving a stronger result for τ̂(Dτ? , δn). Nevertheless,
these only are upper bounds, so we do not know whether the performance of
τ̂(Dτ? , δn) actually changes much depending on the noise assumption. For in-
stance, as already noticed, we do not believe that the localization speed log(n)/n
requires a boundedness assumption; in particular cases at least, it has been ob-
tained for unbounded data [37, 12].

The dependency in k of the speed of convergence of τ̂(Dτ? , δn) is slightly less
clear than in Theorem 3.1. The signal-to-noise ratio appears through ∆2/V , as
expected, but the size ∆ of the largest true jump also appears in v2. At the very
least, it is clear that ∆2/V should not be too small.

As noted by Lavielle and Moulines [37], it may be possible to get rid of
the minimal segment length δn, either by imposing stronger conditions on ε —
which are not met in our setting — or by constraining the values of µ̂ to lie in
a compact subset Θ ⊂ HDτ?+1.
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4. Numerical simulations

One consequence of our main result, Theorem 3.1, is that for a bounded ker-
nel, the KCP procedure is consistent in the asymptotic setting presented in
Example 2.1. We now illustrate this fact by a simulation study.
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Fig 4. In red, the three piecewise constant functions used in the simulations of Section 4. In
blue, a noisy version of these functions. Both µ1 and µ2 have 4 jumps; µ3 has 9 jumps.

Detecting changes in the mean with the Gaussian kernel Let us con-
sider the archetypic change-point detection problem —finding changes in the
mean of a sequence of independent random variables— and show how these
changes are localized more precisely when more data are available.

We define three functions µm : [0, 1] → R, 1 ≤ m ≤ 3, previously used by
Arlot and Celisse [3], which cover a variety of situations (see Fig. 4). For each
m ∈ {1, 2, 3} and several values of n between 102 and 103, we repeat 103 times
the following:

– Sample n independent Gaussian random variables gi ∼ N (0, 1);
– Set Xi = µm(i/n) + gi —Fig. 4 shows one sample for each m ∈ {1, 2, 3};
– Perform KCP with Gaussian kernel and linear penalty on X1, . . . , Xn; the

penalty constant is chosen as indicated in Section 5, the bandwidth is set
to 0.1, and the maximum number of change-points is set to 30;

– Compute d
(2)
H (τ?, τ̂n).

The results are collected in Fig. 5, where each graph corresponds to a regres-
sion function µm. We represent in logarithmic scale the mean distance between
the true segmentation and the estimated segmentation for each value of n. The
error bars are±σ̂/

√
N , where σ̂ is the empirical standard deviation overN = 103

repetitions. We want to emphasize that, though these experiments illustrate our
main result Theorem 3.1, they are carried out in a slightly different setting since
the penalty constant C is not chosen according to equation (3.3), but using the
dimension jump heuristic [8].
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Fig 5. Convergence of 1
n

d
(2)
H (τ?, τ̂n) towards 0 when the number of data points n is increasing.

A linear regression between logn and 1
n

d
(2)
H (τ?, τ̂n) for n ≥ 300 yields slope estimates −0.97,

−1.04 and −1.00, respectively.

The three segmentation problems considered here are quite different in na-
ture, but all lead to a linear convergence rate (slopes close to −1 on the graphs
of Figure 5) with different constants (different values for the intercept on the
graphs of Figure 5). Recall that Theorem 3.1 combined with Lemma 3.1 states
that, with high probability,

1

n
d

(2)
H (τ?, τ̂n) . ṽ1 =

Dτ?M
2

∆2 · log n

n
.

Hence, whenever Dτ? , ∆ and M are fixed, 1
nd

(2)
H (τ?, τ̂n) converges to 0 at rate

at least log n/n when the number of data points increases. In our experimental
setting, these quantities are fixed, and the observed convergence rate matches
our theoretical upper bound. The performance of KCP still depends on the
regression function µm experimentally, by a constant multiplicative factor, like
the theoretical bound ṽ1.

Detecting changes in the number of modes Let us now consider data
X1, . . . , Xn ∈ R whose distribution vary only through the number of modes.
Can we accurately detect such changes with the KCP procedure? The data are
generated according to the following process for several n:

– Set τ?1 = bn/3c and τ?2 = b2n/3c;
– DrawX1, . . . , Xτ?1

, Xτ?2 +1, . . . , Xn according to a standard Gaussian distri-
bution, and Xτ?1 +1, . . . , Xτ?2

according to a (1/2, 1/2)-mixture of Gaussian
distributions N (δ, 1 − δ2) and N (−δ, 1 − δ2), with δ = 0.999; the Xi are
independent.

We test KCP with various kernels assuming that the number of change-points
(Dτ? = 3) is known; this simplification avoids possible artifacts linked to the
choice of the penalty constant. Results are shown on Figure 6. The Xi all have
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zero mean and unit variance, hence a classical penalized least-squares procedure
—KCP with the linear kernel— is expected to detect poorly the changes in the
distribution of the Xi, as confirmed by Figure 6 (for instance, according to the
right panel, it is not consistent). On the contrary, a Gaussian kernel with well-
chosen bandwidth yields much better performance according to the middle and
right panels of Figure 6 (with a rate of order 1/n).
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Fig 6. Left: One sample X1, . . . , Xn for n = 103. Middle: Performance of KCP with vari-
ous kernels (n = 200). Methods 1 to 8: Gaussian kernel with bandwidth set via the median
heuristic (method 1 ), or fixed equal to 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 (methods 2, . . . , 9, re-

spectively). Method 9 : linear kernel. Right: Estimated values of n−1d
(2)
H (τ?, τ̂n) vs. n in log

scale, for KCP with a Gaussian kernel with bandwidth 0.01 (blue solid line; estimated slope
−1.05) and with the linear kernel (red dashed line; estimated slope 0.16).

5. Discussion

Before proving our main results, let us discuss some of their consequences re-
garding the KCP procedure.

Fully non-parametric consistent change-point detection We have proved
that for any kernel satisfying some reasonably mild hypotheses, the KCP pro-
cedure outputs a segmentation closeby the true segmentation with high proba-
bility.

An important particular example is the “asymptotic setting” of Example 2.1,
where we have a fixed true segmentation τ? and fixed distributions P1, . . . , PK+1

from which more and more points are sampled. How fast can KCP recover
τ?, without any prior information on the number of segments Dτ? or on the
distributions P1, . . . , PK+1?

Let us take a bounded characteristic kernel — for instance the Gaussian
or the Laplace kernel if X = Rd —, so that Assumption 1 holds true. Then,
Theorem 3.1 shows that KCP detects consistently all changes in the distribution
of the Xi, and localizes them at speed log(n)/n. This speed also depends on the
adequation between the kernel k and the differences between the Pj , through the
ratio ∆2/M2. Obtaining such a fully non-parametric result for multiple change-
points with a general set X —we only need to know a bounded characteristic
kernel on X— has never been obtained before. To the best of our knowledge,
non-parametric consistency results for the detection of arbitrary changes in the
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distribution of the data have only been obtained for real-valued data [56] or for
the case of a single change-point [15, 13].

Choice of k An important question remains: how to choose the kernel k?
In Theorem 3.1, k only appears through the “signal-to-noise ratio” ∆2/M2,
leading to better theoretical guarantees when this signal-to-noise ratio is larger:

a larger value for Cmax and a smaller bound v1 on d
(1)
∞
(
τ?, τ̂

)
. Therefore, a simple

strategy for choosing the kernel is to pick k that maximizes ∆2/M2, at least
among a family of kernels, for instance Gaussian kernels. This first idea requires
to know the distributions of theXi, or at least to have prior information on them.
Interestingly, when the change-points locations are known, ∆2 corresponds to
the maximum mean discrepancy [MMD, 24] between the distributions of the Xi

over contiguous segments. In this particular setting, it is feasible to estimate and
to maximize ∆2 with respect to the kernel k, as done by Gretton et al. [25]. An
interesting future development would be to build an estimator of ∆2 without
knowing the change-point locations and to maximize this estimator with respect
to the kernel k. We refer to Arlot, Celisse and Harchaoui [4, section 7.2] for a
complementary discussion about the choice of k for KCP.

Choice of C Another important parameter of the KCP procedure is the con-
stant C that appears in the penalty function. As mentioned below Theorem 3.1,
our theoretical guarantees provide some guidelines for choosing C, but these are
not sufficient to choose precisely C in practice. We recommend to follow the
advice of [4, section 6.2] on this point, which is to choose C from data with the
“slope heuristic” [8].

Modularity of the proofs and possible extensions Finally, we would like
to emphasize what we believe to be an important contribution of this paper. The
structure of the proofs of Theorems 3.1 and 3.2 — which follow the same strategy
— is modular, so that one can easily adapt it to different sets of assumptions.

Our proof strategy is not fully new, since it is similar to the one of almost all
previous papers analyzing the consistency of least-squares change-point detec-
tion procedures. In particular, we adapted some ideas of the proofs of Lavielle
and Moulines [37] to the Hilbert space setting. Nevertheless, these papers for-
mulate their main results in asymptotic terms, which can be seen as a limitation
— especially when n is small or X is of large dimension. Another approach is the
one of Lebarbier [39], Comte and Rozenholc [17], Arlot, Celisse and Harchaoui
[4] where non-asymptotic oracle inequalities — using concentration inequalities
and following the model selection results of Birgé and Massart [10] — are pro-
vided as theoretical guarantees on some penalized least-squares change-point
procedures. Up to now, these two approaches seemed difficult to combine. The
proofs of Theorems 3.1 and 3.2 show how they can be reconciled, which allows
us to mix their strengths.
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Indeed, the assumptions on the distributions of the Xi —Assumptions 1
and 2— are only used for proving bounds on two quantities —a linear term Lτ
and a quadratic term Qτ—, uniformly over τ ∈ Tn. Under Assumption 1, this is
done thanks to concentration inequalities (Lemmas 6.7 and 6.8) which have been
proved first by Arlot, Celisse and Harchaoui [4] in order to get an oracle inequal-
ity. Under Assumption 2, this is done by generalizing the method of Lavielle and
Moulines [37] to Hilbert-space valued data, through two deterministic bounds
(Lemmas 6.5 and 6.6) and a deviation inequality for

Mn := max
1≤k≤n

∥∥∥∥∥∥
k∑
j=1

εj

∥∥∥∥∥∥
H

(Lemma 6.10). The rest of the proofs does not use anything about the distribu-
tion of X1, . . . , Xn.

As a consequence, if one can generalize these bounds to another setting, a
straightforward consequence is that a result similar to Theorem 3.1 or 3.2 holds
true for the KCP procedure in this new setting. In particular, this could be used
for dealing with the case of dependent data X1, . . . , Xn. We could also consider
an intermediate assumption between Assumption 2 and Assumption 1, of the
form:

max
1≤i≤n

E
[
k(Xi, Xi)

α
]
≤ Bα < +∞

for some α ∈ (1,+∞).

6. Proofs

Let us start by describing our general strategy for proving our main results. Our
goal is to build a large probability event on which any τ̂ ∈ arg minτ∈Tn crit(τ)
belongs to some subset E of Tn. For proving this, we use the key fact that
crit(τ?) ≥ crit(τ̂), together with a lower bound on crit(τ) holding simultaneously
for all τ ∈ Tn—hence for τ = τ̂ .

In order to get such a lower bound on the empirical penalized criterion, we
start by decomposing it in Section 6.1 into terms that are simpler to control
individually: two random terms — a linear function of ε and a quadratic func-
tion of ε —, and two deterministic terms — the approximation error and the
penalty. Then, we control these terms thanks to deterministic bounds (Sec-
tion 6.2) and deviation/concentration inequalities (Section 6.3). Finally, we
prove Theorem 3.1 in Section 6.4 and Theorem 3.2 in Section 6.5.

6.1. Decomposition of the empirical risk

The first step in the proofs of Theorems 3.1 and 3.2 is to decompose the empirical
risk (2.6).
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Lemma 6.1. Let τ ∈ Tn be a segmentation. Define µ?τ = Πτµ
?. Then we can

write

nR̂n(τ) = ‖Y − µ̂τ‖2 = ‖µ? − µ?τ‖
2

+ 2 〈µ? − µ?τ , ε〉 − ‖Πτε‖2 + ‖ε‖2 . (6.1)

Proof. First, recall that µ̂τ = ΠτY and that Y = µ? + ε, hence

‖Y − µ̂τ‖2 = ‖Y −ΠτY ‖2

= ‖µ? + ε−Πτ (µ? + ε)‖2

= ‖µ? −Πτµ
?‖2 + ‖ε−Πτε‖2 + 2 〈µ? −Πτµ

?, ε−Πτε〉 .

Since Πτ is an orthogonal projection,

‖Y − µ̂τ‖2 = ‖µ? − µ?τ‖
2

+ ‖ε‖2 − 2 〈ε,Πτε〉+ ‖Πτε‖2 + 2 〈(Id−Πτ )µ?, ε〉

= ‖µ? − µ?τ‖
2

+ ‖ε‖2 − ‖Πτε‖2 + 2 〈(Id−Πτ )µ?, ε〉 .

Since each term of Eq. (6.1) behaves differently and is controlled via different
techniques depending on the result to be proven, we name each of these terms:

Lτ := 〈µ? − µ?τ , ε〉 , Qτ := ‖Πτε‖2 and Aτ := ‖µ? − µ?τ‖
2
. (6.2)

It should be clear that L stands for “linear”, Q stands for “quadratic” and A
stands for “approximation error”. We also define

ψτ := 2Lτ −Qτ +Aτ . (6.3)

Therefore a reformulation of Lemma 6.1 is

nR̂n(τ) = ψτ + ‖ε‖2 .

Notice that Lτ? = Aτ? = 0 and Qτ? ≥ 0, hence ψτ? ≤ 0. Also note that ψ, L
and Q are random quantities depending on ε.

6.2. Deterministic bounds

In this section, we provide some deterministic bounds that are used in the proofs
of Theorems 3.1 and 3.2.

6.2.1. Approximation error Aτ

We begin by the following result, which is the reason for the Λτ?∆2 term in
Theorem 3.1.

Lemma 6.2. Let τ ∈ Tn be a segmentation such that D := Dτ < Dτ? . Then

1

n
Aτ =

1

n
‖µ? − µ?τ‖

2 ≥ 1

2
Λτ?∆2 . (6.4)



D. Garreau and S. Arlot/Change-point detection with kernels 23

The proof of Lemma 6.2 can be found in Section B.3.2.

Remark 6.1. Lemma 6.2 is tight. Indeed, consider the simple case Dτ = 1 and
Dτ? = 2. Assume that n = 2m is an even number, and let τ?1 = m. It follows
from definitions (3.1) and (3.2) that, in this case,

∆ = ‖µ?1 − µ?n‖H and Λτ? =
1

2
.

According to Eq. (2.5), (µ?τ )i = 1
2 (µ?1 + µ?n), which yields

1

n
Aτ =

1

4
‖µ?1 − µ?n‖

2
H =

1

2
Λτ?∆2 .

Thus, in this particular class of examples, equality holds in (6.4).

We next state an analogous result, valid for any τ ∈ Tn, which plays a key
role in the proofs of Theorems 3.1 and 3.2.

Lemma 6.3. For any τ ∈ Tn,

1

n
Aτ ≥

1

2
min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ)

}
∆2 . (6.5)

Lemma 6.3 is proved in Section B.4.

6.2.2. Linear term Lτ and quadratic term Qτ

The proof of Theorem 3.2 relies on some deterministic bounds on Lτ and Qτ .
We start with a preliminary lemma.

Lemma 6.4. For any ε1, . . . , εn ∈ H,

1

2
max

1≤a<b≤n

∥∥∥∥∥∥
b∑

j=a

εj

∥∥∥∥∥∥
H

≤ max
1≤k≤n

∥∥∥∥∥∥
k∑
j=1

εj

∥∥∥∥∥∥
H

=: Mn . (6.6)

Proof. For every a < b, we have:∥∥∥∥∥∥
b∑

j=a

εj

∥∥∥∥∥∥
H

=

∥∥∥∥∥∥
b∑
j=1

εj −
a−1∑
j=1

εj

∥∥∥∥∥∥
H

≤

∥∥∥∥∥∥
b∑
j=1

εj

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
a−1∑
j=1

εj

∥∥∥∥∥∥
H

≤ 2Mn .

The following result is a deterministic bound on Qτ in terms of Mn.

Lemma 6.5. Let τ ∈ Tn be a segmentation. Then

Qτ ≤
4DτM

2
n

nΛτ
.
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Proof. By Eq. (2.5),

Qτ =

Dτ∑
`=1

1

|τ` − τ`−1|

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H

≤ Dτ max
1≤`≤Dτ

 1

|τ` − τ`−1|

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H


≤ Dτ

nΛτ
max

1≤`≤Dτ

∥∥∥∥∥∥
τ∑̀

j=τ`−1+1

εj

∥∥∥∥∥∥
2

H

≤ 4Dτ

nΛτ
M2
n ,

where we used Lemma 6.4 for the last inequality.

The following result is a deterministic bound on Lτ .

Lemma 6.6. For any τ ∈ Tn,

|Lτ | ≤ 6Dτ? max {Dτ? , Dτ}∆Mn .

Lemma 6.6 is proved in Section B.5.

6.3. Concentration

In this subsection, we present concentration results on Qτ , Lτ , and deviation
bounds for Mn — which will imply deviation bounds on Qτ and Lτ by Lem-
mas 6.5 and 6.6). For any j ∈ {1, . . . , n}, τ ∈ Tn and ` ∈ {1, . . . , Dτ}, we
define

vj := E
[
‖εj‖2H

]
vτ,` :=

1

τ` − τ`−1

τ∑̀
j=τ`−1+1

vj and vτ :=

D∑
`=1

vτ,` .

Concentration under Assumption 1 The first result takes care of the lin-
ear term Lτ when Assumption 1 is satisfied.

Lemma 6.7 (Prop. 3 of Arlot, Celisse and Harchaoui [4]). Suppose that As-
sumption 1 holds true. Then for any x > 0, with probability at least 1 − 2 e−x,
for any θ > 0,

|Lτ | ≤ θAτ +

(
4

3
+

1

2θ

)
M2x .

The next result deals with the quadratic term Qτ when Assumption 1 is
satisfied.

Lemma 6.8 (Prop. 1 of Arlot, Celisse and Harchaoui [4]). Suppose that As-
sumption 1 holds true. Then for any x > 0, with probability at least 1− e−x,

Qτ − vτ ≤
(
x+ 2

√
2xDτ

) 14M2

3
.
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We merge Lemmas 6.7 and 6.8 for convenience.

Lemma 6.9. Suppose that Assumption 1 holds true. Take any λ > 1 and τ ∈ Tn
be a segmentation. Then, there exists an event Ω

(0)
τ,λ of probability greater than

1− 3 e−λDτ on which:

ψτ ≥
1

3
Aτ −

74

3
λDτM

2 .

Proof. According to Lemma 6.7 with θ = 1/3 and x = λDτ , there exists an

event Ω
(1)
τ,λ on which |Lτ | ≤ 1

3Aτ + 17
6 λDτM

2, with P
(

Ω
(1)
τ,λ

)
≥ 1 − 2 e−λDτ .

Lemma 6.8 with x = λDτ gives Ω
(2)
τ,λ on which Qτ−vτ ≤ 14

3

(
λ+ 2

√
2λ
)
DτM

2,

with P
(

Ω
(2)
τ,λ

)
≥ 1− e−λDτ . Then, Ω

(0)
τ,λ := Ω

(1)
τ,λ ∩ Ω

(2)
τ,λ has a probability larger

than 1− 3 e−λDτ by the union bound. Since for any 1 ≤ ` ≤ Dτ , vτ,` ≤M2, we

have vτ =
∑Dτ
`=1 vτ,` ≤ DτM

2. Hence, by definition (6.3) of ψτ and using that

λ ≥ 1, on the event Ω
(0)
τ,λ, we have:

ψτ ≥
1

3
Aτ −

(
31

3
λ+

28

3

√
2
√
λ+ 1

)
DτM

2

≥ 1

3
Aτ − λ

(
31

3
+

28

3

√
2 + 1

)
DτM

2 .

Remark 6.2. It is also possible to obtain an upper bound for ψτ : by Lemma 6.7,

for every λ ≥ 0, on the event Ω
(2)
τ,λ ⊂ Ω

(0)
τ,λ,

ψτ ≤
5

3
Aτ +

17

3
λDτM

2 .

However, we do not need this result thereafter.

Concentration under Assumption 2 Lemma 6.5 and 6.6 directly translate
upper bounds on Mn into controls of Lτ and Qτ . Under Assumption 2, this is
achieved via the following lemma, a Kolmogorov-like inequality for the noise
in the RKHS. This result is a straightforward generalization of the inequality
obtained by Kolmogorov [31] into the Hilbert setting. A more precise result (for
real random variables only) can be found in [26], of which we follow the proof.
The scheme of Hájek and Rényi [26] adapts well in our setting even though we
do not need the full result.

Lemma 6.10. If Assumption 2 holds true, then, for any x > 0,

P (Mn ≥ x) ≤ 1

x2

n∑
j=1

vj . (6.7)

We prove Lemma 6.10 in Section B.6.
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Remark 6.3. We can reformulate Lemma 6.10 as follows. For any y > 0, there

exists an event of probability at least 1 − y−2 on which Mn < y
√∑n

i=j vj ≤
y
√
nV . Equivalently, for any z ≥ 0, there exists an event of probability at least

1− e−z such that Mn < ez/2
√∑n

i=j vj ≤ ez/2
√
nV .

6.4. Proof of Theorem 3.1

We follow the strategy described at the beginning of Section 6.

Definition of Ω Let us define Ω :=
⋂
τ∈Tn Ω

(0)
τ,λ with λ = y + log n + 1 > 1,

where we recall that Ω
(0)
τ,λ is defined in Lemma 6.9. By the union bound, and

since the Ω
(0)
τ,λ have probability greater than 1− 3 e−λDτ ,

P (Ω) ≥ 1− 3
∑
τ∈Tn

e−λDτ .

The inequality P (Ω) ≥ 1− e−y follows since

∑
τ∈Tn

e−λDτ =

n∑
d=1

(
n− 1

d− 1

)
e−λd = e−λ

(
1 + e−λ

)n−1

≤ e−λ exp
(
(n− 1) e−λ

)
=

e−y

n e
exp

(
n− 1

n
e−1−y

)
≤ e−y

exp(e−1)

n e
≤ 0.27 e−y ,

where the last inequality uses that n ≥ 2. From now on we work exclusively
on Ω.

Key argument We now make the simple (but crucial) observation that crit(τ?) ≥
crit(τ̂), hence

npen(τ̂) + ψτ̂ ≤ npen(τ?) + ψτ? ≤ npen(τ?) = CDτ?M
2 .

Since we work on Ω, by definition of Ω
(0)
τ,λ in Lemma 6.9, for any τ ∈ Tn, we

have:

ψτ ≥
1

3
Aτ −

74

3
λDτM

2 .

Therefore, we get:

CDτ?M
2 ≥ 1

3
Aτ̂ +

(
C − 74

3
λ

)
Dτ̂M

2 . (6.8)
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Proof that Dτ̂ ≤ Dτ? Since C > 74λ/3 (by the lower bound in assump-
tion (3.3)), M2 > 0 and Aτ̂ ≥ 0, Eq. (6.8) implies that

Dτ̂ ≤
C

C − 74
3 λ

Dτ? .

The lower bound in assumption (3.3) ensures that

C

C − 74
3 λ

<
Dτ? + 1

Dτ?

hence Dτ̂ ≤ Dτ? on Ω.

Proof that Dτ̂ ≥ Dτ? Since C > 74λ/3 (by the lower bound in assump-
tion (3.3)), Eq. (6.8) implies that Aτ̂ ≤ 3CDτ?M

2. A direct consequence of (3.3)
is that Aτ̂ <

1
2nΛτ?∆2, hence Dτ̂ ≥ Dτ? by Lemma 6.2.

Loss between τ̂ and τ? We have proved that Dτ̂ = Dτ? on Ω, therefore,
Eq. (6.8) can be rewritten

Aτ̂ ≤ 74λDτ?M
2 . (6.9)

By Lemma 6.3 and the definition of λ, we get

min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ̂)

}
≤ 148Dτ?M

2

∆2 · y + log n+ 1

n
= v1(y) . (6.10)

Remark that assumption (3.3) implies that

∆2

M2

Λτ?

6Dτ?
n >

74

3
(Dτ? + 1)(y + log n+ 1)

hence

Λτ? > (Dτ? + 1)
148Dτ?M

2

∆2 · y + log n+ 1

n
> v1(y) .

Therefore, Eq. (6.10) can be simplified into

1

n
d(1)
∞ (τ?, τ̂) ≤ v1(y) .

Remark 6.4. The proof of Theorem 3.1 generalizes to τ̂ defined by

τ̂ ∈ arg min
τ∈Tn /Λτ≥δn

{
crit(τ)

}
instead of (2.2), for any δn ≥ 0 such that Λτ? ≥ δn. Indeed, this assumption
allows to write crit(τ?) ≥ crit(τ̂) in the key argument, and the rest of the proof
can stay unchanged (with the same event Ω). More generally, any constraint can
be added in the argmin defining τ̂ , provided that τ? satisfies this constraint.
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6.5. Proof of Theorem 3.2

We follow the strategy described at the beginning of Section 6. Throughout the
proof, we write τ̂2 as a shortcut for τ̂(Dτ? , δn).

Key argument By definition (3.6) of τ̂2 = τ̂(Dτ? , δn), since we assume Λτ? ≥
δn,

R̂n(τ?) ≥ R̂n(τ̂2)

hence
0 ≥ ψτ? ≥ ψτ̂2 = Aτ̂2 + 2Lτ̂2 −Qτ̂2 .

By Lemma 6.5, Lemma 6.6 and the facts that Dτ̂2 = Dτ? and Λτ̂2 ≥ δn, we get

0 ≥ ψτ̂2 ≥ Aτ̂2 − 12D2
τ?∆Mn −

4Dτ?M
2
n

nδn

hence, using Lemma 6.3,

min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ̂2)

}
≤ 24D2

τ?∆

∆2

Mn

n
+

8Dτ?

∆2

M2
n

n2δn
. (6.11)

Definition of Ω2 We define

Ω2 := {Mn ≤ y
√
nV } .

By Lemma 6.10, under Assumption 2, P (Ω2) ≥ 1− y−2.

Conclusion By definition of Ω2, Eq. (6.11) implies that on Ω2:

min

{
Λτ? ,

1

n
d(1)
∞ (τ?, τ̂2)

}
≤ 24(Dτ?)2 ∆

√
V

∆2

y√
n

+ 8Dτ?
V

∆2

y2

nδn
= v2(y, δn) .

Since we assume v2(y, δn) < Λτ? , the result follows.

Appendix A: Additional notation

In this appendix are collected a large part of the technical details of the proofs
that precede. Some additional notation used solely in the appendix are intro-
duced below.

We denote by λ?1, . . . , λ
?
Dτ?

the segments of τ?, that is,

λ?i =
{
τ?i−1 + 1, . . . , τ?i

}
.

For any segment λ of τ ∈ Tn, we denote by µ?λ the value of µ?τ on λ, which does
not depend on τ and is given by equation (2.5):

µ?λ =
1

|λ|
∑
j∈λ

µ?j . (A.1)
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Appendix B: Proofs

B.1. Proof of Lemma 3.1

Proof of (i) We setDi := Dτ i for i ∈ {1, 2}. Let us show first that d
(2)
∞ (τ1, τ2) =

d
(1)
∞ (τ1, τ2). Take any i ∈

{
1, . . . , D1 − 1

}
, by the definition of Λτ1 ,∣∣τ1

i − τ2
D2

∣∣ =
∣∣τ1
i − n

∣∣ ≥ nΛτ1 > nΛτ1/2 ≥ nmin
{

Λτ1 ,Λτ2

}
/2 ,

which is greater than d
(1)
∞ (τ1, τ2) by assumption. In the same fashion we can

prove that
∣∣τ1
i − τ2

0

∣∣ > d
(1)
∞ (τ1, τ2). Hence, for any i ∈ {1, . . . , D1 − 1},

min
0≤j≤D2

∣∣τ1
i − τ2

j

∣∣ = min
1≤j≤D2−1

∣∣τ1
i − τ2

j

∣∣ ,
which proves that d

(2)
∞ (τ1, τ2) = d

(1)
∞ (τ1, τ2).

Next, we prove that D1 = D2 and d
(3)
∞ (τ1, τ2) = d

(1)
∞ (τ1, τ2). Define φ :{

1, . . . , D1 − 1
}
→
{

1, . . . , D2 − 1
}

such that{
φ(i)

}
= arg min

1≤j≤D2−1

∣∣τ1
i − τ2

j

∣∣
for all i ∈ {1, . . . , D1 − 1}. This mapping is well-defined: indeed, suppose
that j, k ∈

{
1, . . . , D2 − 1

}
both realize the minimum for some i ∈

{
1, . . . , D1 − 1

}
.

Since we assumed 1
nd

(1)
∞ (τ1, τ2) < min

{
Λτ1 ,Λτ2

}
/2,∣∣τ1

i − τ2
j

∣∣ =
∣∣τ1
i − τ2

k

∣∣ ≤ d(1)
∞ (τ1, τ2) < nmin

{
Λτ1 ,Λτ2

}
/2.

By the triangle inequality,∣∣τ2
j − τ2

k

∣∣ < nmin
{

Λτ1 ,Λτ2

}
≤ nΛτ2 ,

hence j = k. Next, we show that φ is increasing. Take i, j ∈
{

1, . . . , D1 − 1
}

such that i < j. Recall that τk· is increasing (k = 1, 2). Then

τ2
φ(i) − τ

2
φ(j) = τ2

φ(i) − τ
1
i + τ1

i − τ1
j + τ1

j − τ2
φ(j)

= τ2
φ(i) − τ

1
i −

∣∣τ1
i − τ1

j

∣∣+ τ1
j − τ2

φ(j)

≤
∣∣∣τ2
φ(i) − τ

1
i

∣∣∣− ∣∣τ1
i − τ1

j

∣∣+
∣∣∣τ1
j − τ2

φ(j)

∣∣∣
≤ 2d(1)

∞ (τ1, τ2)−
∣∣τ1
i − τ1

j

∣∣
< nmin

{
Λτ1 ,Λτ2

}
− nΛτ1 ≤ 0 .

Hence φ(i) < φ(j), so φ is increasing. As a consequence, φ is injective and we
get D1 ≤ D2. The same argument, exchanging τ1 and τ2, shows that D2 ≤ D1.
Therefore, D1 = D2 and φ is an increasing permutation of

{
1, . . . , D1 − 1

}
,

hence it is the identity. As a consequence, d
(3)
∞ (τ1, τ2) = d

(1)
∞ (τ1, τ2).

Finally, since d
(3)
∞ is symmetric, d

(i)
∞ (τ1, τ2) = d

(i)
H (τ1, τ2) for any i ∈ {1, 2, 3}.
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Proof of (ii) Since Dτ1 = Dτ2 , we can set D = Dτ1 = Dτ2 . Next, define
φ(i) := arg min1≤j≤D−1

∣∣τ1
i − τ2

j

∣∣ and Cφ(i) := |φ(i)| for all i ∈ {1, . . . , D − 1}.
Clearly, Cφ(i) ≥ 1 for any i. Let us show that we actually have Cφ(i) = 1.

Take i and j distincts elements of {1, . . . , D − 1}, and suppose that φ(i)∩φ(j)
is non-empty. Let k be any element of φ(i) ∩ φ(j). By the triangle inequality

and the definition of d
(1)
∞ ,

nΛτ1 ≤
∣∣τ1
i − τ1

j

∣∣ ≤ ∣∣τ1
i − τ2

k

∣∣+
∣∣τ2
k − τ1

j

∣∣ ≤ 2d(1)
∞ (τ1, τ2) < nΛτ1 .

Hence, the φ(i) are disjoint and we can write
∑D−1
i=1 Cφ(i) = D−1, which clearly

implies that Cφ(i) = 1.
From now on, we identify φ(i) with its unique element. Let us show that φ is

increasing similarily to what we have done for proving (i). Take i, j ∈ {1, . . . , D − 1}
such that i < j. We showed that

τ2
φ(i) − τ

2
φ(j) ≤ 2d(1)

∞ (τ1, τ2)−
∣∣τ1
i − τ1

j

∣∣ ,
thus according to the definition of Λτ1 , and our assumption,

τ2
φ(i) − τ

2
φ(j) < nΛτ1 − nΛτ1 ≤ 0.

Hence φ(i) < φ(j): φ is increasing. As a consequence,

d(1)
∞ (τ1, τ2) = d(1)

∞ (τ2, τ1) = d
(1)
H (τ1, τ2) .

B.2. The Frobenius loss

B.2.1. A formula for d2
F

We start by proving a general formula for dF, which is stated by Lajugie, Arlot
and Bach [35], we prove it here for completeness:

∀τ1, τ2 ∈ Tn, dF(τ1, τ2)2 = Dτ1 +Dτ2 − 2

Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
. (B.1)

Indeed, by definition, we have

dF(τ1, τ2)2 = Tr
(
(Πτ1 −Πτ2)2

)
= Tr(Πτ1)︸ ︷︷ ︸

=Dτ1

+ Tr(Πτ2)︸ ︷︷ ︸
=Dτ2

−2 Tr(Πτ1Πτ2)

and Tr(Πτ1Πτ2) =

n∑
i=1

n∑
j=1

1{λ1(i)=λ1(j) and λ2(i)=λ2(j)}

|λ1(i)| |λ2(i)|
=

Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
,

where we denoted by λk(i) the segment of τk to which i ∈ {1, . . . , n} belongs.
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B.2.2. Proof of Eq. equation (3.4)

Eq. equation (3.4) is stated by Lajugie, Arlot and Bach [35]. The upper bound
is a straightforward consequence of Eq. (B.1). We prove the lower bound here
for completeness. We remark that

Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
≤
Dτ1∑
k=1

Dτ2∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣
|λ1
k|

= Dτ1 ,

hence Eq. (B.1) shows that

dF(τ1, τ2)2 ≥ Dτ2 −Dτ1 .

The lower bound follows since τ1 and τ2 play symmetric roles.

B.2.3. Proof of Proposition 3.1

Throughout the proof, we write D = Dτ1 = Dτ2 , ε = n−1d
(1)
∞ (τ1, τ2) and we

denote by (λ1
k)1≤k≤D and (λ2

k)1≤k≤D the segments of τ1 and τ2, respectively.

Preliminary remark Since we assume that Dτ1 = Dτ2 and 1
nd

(1)
∞ (τ1, τ2) =

ε < Λτ1/2, point (ii) in Lemma 3.1 shows that d
(1)
∞ (τ1, τ2) = d

(1)
H (τ1, τ2) =

d
(3)
∞ (τ1, τ2). In other words, for every k ∈ {1, . . . , D−1}, we have

∣∣τ1
k − τ2

k

∣∣ ≤ nε,
and some k0 ∈ {1, . . . , D−1} exists such that

∣∣τ1
k0
− τ2

k0

∣∣ = nε. As a consequence,
for every k ∈ {1, . . . , D − 1},∣∣∣∣λ1

k

∣∣− ∣∣λ2
k

∣∣∣∣ ≤ 2nε and
∣∣λ1
k ∩ λ2

k

∣∣ ≥ ∣∣λ1
k

∣∣− 2nε . (B.2)

Upper bound for dF(τ1, τ2)2 We focus on the sum appearing in the right-
hand side of Eq. (B.1). Using Eq. (B.2), we get:

D∑
k=1

D∑
`=1

∣∣λ1
k ∩ λ2

`

∣∣2
|λ1
k| × |λ2

` |
≥

D∑
k=1

∣∣λ1
k ∩ λ2

k

∣∣2
|λ1
k| × |λ2

k|

≥
D∑
k=1

[ (∣∣λ1
k

∣∣− 2nε
)2

|λ1
k| × (|λ1

k|+ 2nε)

]
=

D∑
k=1

(
1− 2nε

|λ1
k|

)2

1 + 2nε

|λ1
k|

≥
D∑
k=1

(
1− 6nε

|λ1
k|

)
≥ D − 6εD

Λτ1

,

since for any x ≥ 0, (1−x)2

1+x ≥ 1− 3x. The upper bound follows, using Eq. (B.1).
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Lower bound for dF(τ1, τ2)2 As shown in the preliminary remark, there
exists some k0 ∈ {1, . . . , D − 1} such that

∣∣τ1
k0
− τ2

k0

∣∣ = nε. First consider the
case where τ1

k0
< τ2

k0
. Then, by definition of dF and Πτ , we have:

dF(τ1, τ2)2 :=
∑

1≤i,j≤n

(Πτ1 −Πτ2)2
i,j

≥
∑

i∈λ1
k0+1∩λ

2
k0

∑
j∈λ1

k0+1∩λ
2
k0+1

1∣∣λ1
k0+1

∣∣2
+

∑
i∈λ1

k0+1∩λ
2
k0+1

∑
j∈λ1

k0+1∩λ
2
k0

1∣∣λ1
k0+1

∣∣2
=

2
∣∣λ1
k0+1 ∩ λ2

k0

∣∣ · ∣∣λ1
k0+1 ∩ λ2

k0+1

∣∣∣∣λ1
k0+1

∣∣2 .

Now, remark that
∣∣λ1
k0+1 ∩ λ2

k0

∣∣ = nε, by the preliminary remark and our as-
sumption τ2

k0
> τ1

k0
. Using also Eq. (B.2), we get:

dF(τ1, τ2)2 ≥
2nε
(∣∣λ1

k0+1

∣∣− 2nε
)∣∣λ1

k0+1

∣∣2 ≥ 2nε

3Λτ1

,

since
∣∣λ1
k0+1

∣∣− 2nε ≥
∣∣λ1
k0+1

∣∣ /3 and
∣∣λ1
k0+1

∣∣ ≤ Λτ1 . When τ1
k0
> τ2

k0
, we apply

the same reasoning, restricting the sum over i, j in the definition of dF to i ∈
λ1
k0
∩ λ2

k0
and j ∈ λ1

k0
∩ λ2

k0+1 (plus its symmetric). We obtain the same lower
bound, which concludes the proof.

B.3. Lower bounds on the approximation error

This section provides the proofs of Lemmas 6.2 and 6.3.

B.3.1. Preliminary lemma

We start with a lemma useful in the two proofs.

Lemma B.1. If a segment λ ⊂ {1, . . . , n} intersects only two segments of τ?,
λ?i and λ?i+1, then we have:

∑
j∈λ

∥∥µ?j − µ?λ∥∥2

H =
|λ ∩ λ?i | ·

∣∣λ ∩ λ?i+1

∣∣
|λ ∩ λ?i |+

∣∣λ ∩ λ?i+1

∣∣ ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
(B.3)

≥

(
|λ ∩ λ?i |
|λ?i |

∧
∣∣λ ∩ λ?i+1

∣∣∣∣λ?i+1

∣∣
)
·
|λ?i | ·

∣∣λ?i+1

∣∣
|λ?i |+

∣∣λ?i+1

∣∣ · ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
.

(B.4)
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Proof. We first prove Eq. (B.3). Since λ only intersects λ?i and λ?i+1, we have:∑
j∈λ

∥∥µ?j − µ?λ∥∥2

H =
∑

j∈λ∩λ?i

∥∥µ?j − µ?λ∥∥2

H +
∑

j∈λ∩λ?i+1

∥∥µ?j − µ?λ∥∥2

H

= |λ ∩ λ?i | ·
∥∥∥µ?λ?i − µ?λ∥∥∥2

H
+
∣∣λ ∩ λ?i+1

∣∣ · ∥∥∥µ?λ?i+1
− µ?λ

∥∥∥2

H
.

(B.5)

Since µ?λ is given by Eq. (A.1), we obtain

∥∥∥µ?λ?i − µ?λ∥∥∥2

H
=

∥∥∥∥∥∥ 1

|λ|
∑
j∈λ

(
µ?λ?i − µ

?
j

)∥∥∥∥∥∥
2

H

=

∥∥∥∥∥∥ 1

|λ|
∑

j∈λ∩λ?i+1

(
µ?λ?i − µ

?
λ?i+1

)∥∥∥∥∥∥
2

H

=

∣∣λ ∩ λ?i+1

∣∣2
|λ|2

∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
.

The same computation on λ ∩ λ?i+1 yields∥∥∥µ?λ?i+1
− µ?λ

∥∥∥2

H
=
|λ ∩ λ?i |

2

|λ|2
∥∥∥µ?λ?i+1

− µ?λ?i
∥∥∥2

H
.

Therefore, Eq. (B.5) and the fact that |λ| = |λ ∩ λ?i |+
∣∣λ ∩ λ?i+1

∣∣ yield Eq. (B.3).
Now, we remark that for any a, b, c, d > 0,

abcd

ab+ cd
=

1
ab

max(a,c) + cd
max(a,c)

×min(a, c)× bd ≥ min(a, c)
bd

b+ d
.

Taking a = |λ ∩ λ?i | / |λ?i |, b = |λ?i |, c =
∣∣λ ∩ λ?i+1

∣∣ / ∣∣λ?i+1

∣∣ and d =
∣∣λ?i+1

∣∣, we
get Eq. (B.4).

B.3.2. Proof of Lemma 6.2

In fact, we prove a slightly stronger statement. We show that, for any n ≥ 2,
for any Dτ? ∈ {2, . . . , n}, for any D ∈ {1, . . . , Dτ? − 1} and any τ ∈ T Dn ,

‖µ? − µ?τ‖
2 ≥ min

1≤i≤Dτ?−1

{
|λ?i | ·

∣∣λ?i+1

∣∣
|λ?i |+

∣∣λ?i+1

∣∣ · ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H

}
. (B.6)

Then,

‖µ? − µ?τ‖
2 ≥ Γ ·∆2 where Γ =

(
n max

1≤i≤Dτ?−1

{
1

|λ?i |
+

1∣∣λ?i+1

∣∣
})−1

.

Since we always have

Λτ? ≥ Γ ≥ 1

2
Λτ? ,

Eq. equation (6.4) follows.
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Proof of Eq. (B.6) by induction We show by strong induction on Dτ? that,
for any Dτ? ≥ 2, for any D ∈ {1, . . . , Dτ? − 1}, any n ≥ Dτ? and any τ ∈ T Dn ,
Eq. (B.6) holds true.

First, if Dτ? = 2, the result follows by Eq. (B.4) in Lemma B.1 since we then
have i = 1 and

|λ ∩ λ?1|
|λ?1|

=
|λ ∩ λ?2|
|λ?2|

= 1 .

Suppose now that the result is proved for all Dτ? ∈ {2, . . . , p} and consider
a change-point problem (τ?, µ?) with Dτ? = Dτ? = p + 1 and n ≥ p + 1. Let
D < p + 1 and some segmentation τ ∈ T Dn be fixed. Then one of these two
scenarios occurs: (i) there exists λ?i with 2 ≤ i ≤ Dτ? − 1 that does not contain
any change-point of τ , or (ii) λ?2,...,λ?Dτ?−1 all contain a change-point of τ .

Case (i) Suppose that there exists an inner segment λ?i of τ?, 2 ≤ i ≤ Dτ?−1,
that does not contain any change-point of τ (see Figure 7). Therefore, there
exists k ∈ {1, . . . , D} such that λ?i $ λk. By definition, there are i − 1 change-
points of τ? to the left of λ?i and k−1 change-points of τ to the left of λ?i . Suppose
that k < i. We define τ◦ as the segmentation obtained by adding τ?i to τ (see

Figure 7). Then ‖µ? − µ?τ‖
2 ≥ ‖µ? − µ?τ◦‖2 because τ◦ is finer than τ . Reducing

τ◦ to a segmentation τ̃◦ of {1, 2, . . . , τ?i } in k segments and τ? to a segmentation
τ̃? of {1, 2, . . . , τ?i } in i segments and defining µ̃? = (µ?1, . . . , µ

?
τ?i

) ∈ Hi, we get
back to a situation covered by the induction since i ≤ Dτ? − 1 and k < i. So,

‖µ̃? − µ̃?τ̃◦‖2 ≥ inf
1≤j≤i−1

{ ∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ̃?λ?j+1
− µ̃?λ?j

∥∥∥2

H

}

≥ inf
1≤j≤Dτ?−1

{ ∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ?λ?j+1
− µ?λ?j

∥∥∥2

H

}

and we get the result since ‖µ? − µ?τ◦‖2 ≥ ‖µ̃? − µ̃?τ̃◦‖2. A symmetric reasonning
can be applied if k ≥ i, considering change-points to the right of λ?i and using
that D − k + 1 < Dτ? − i+ 1 since D < Dτ? .

λ?i

λk

τ̃?

τ?

τ

τ◦

τ̃◦

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig 7. Proof of Lemma 6.2, Case (i): λ?i is a segment of τ? that is included in a segment
of τ . The segmentation τ◦ is obtained by joining τ?i to the segmentation τ .

Case (ii) Suppose that each inner segment of τ? contains a change-point of τ .
Since there are Dτ?−2 inner segments of τ? and D−1 ≤ Dτ?−2 change-points
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of τ , there is at most (hence exactly) one change-point of τ in each inner segment
of τ?. Then D = Dτ? − 1 and we are in the situation depicted in Figure 8.

τ?

τ

· · ·

· · ·

λ?1 λ?2 λ?D λ?D+1

λ1 λ2 λD

α2

∣∣λ?2∣∣ (1− α2)
∣∣λ?2∣∣ αD

∣∣λ?D∣∣ (1− αD)
∣∣λ?D∣∣

Fig 8. Proof of Lemma 6.2, Case (ii): D = Dτ? − 1 and each inner segment of τ? contains
exactly one change-point of τ .

We can use Eq. (B.4) in Lemma B.1 to lower bound the contribution of each

λ ∈ τ to ‖µ? − µ?τ‖
2
. For 2 ≤ i ≤ D = Dτ? − 1, define αi := |λ?i ∩ λi−1| / |λ?i |.

Then, we have

‖µ? − µ?τ‖
2 ≥ (1 ∧ α2)

|λ?1| · |λ?2|
|λ?1|+ |λ?2|

·
∥∥∥µ?λ?2 − µ?λ?1∥∥∥2

H

+

D−1∑
j=2

([
(1− αj) ∧ αj+1

]
·
∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ?λ?j+1
− µ?λ?j

∥∥∥2

H

)

+
[
(1− αD) ∧ 1

] |λ?D| · ∣∣λ?D+1

∣∣
|λ?D|+

∣∣λ?D+1

∣∣ · ∥∥∥µ?λ?D+1
− µ?λ?D

∥∥∥2

H

≥ [1 ∧ α2 +(1− α2) ∧ α3 + · · ·+ (1− αD−1) ∧ αD + (1− αD) ∧ 1]

× inf
1≤j≤Dτ?−1

{ ∣∣λ?j ∣∣ · ∣∣λ?j+1

∣∣∣∣λ?j ∣∣+
∣∣λ?j+1

∣∣ · ∥∥∥µ?λ?j+1
− µ?λ?j

∥∥∥2

H

}
.

Since αi ≥ 0 for any 2 ≤ i ≤ Dτ? − 1, it is straightforward to show that

α2 + (1− α2) ∧ α3 + · · ·+ (1− αD) ≥ 1 ,

which concludes the proof.

B.4. Proof of Lemma 6.3

Let us define δ := min
{
nΛτ? ,d

(1)
∞ (τ?, τ)

}
. If δ = 0, then Eq. equation (6.5)

holds true. We assume from now on that δ > 0.
Because nΛτ? ≥ δ, for any 1 ≤ i ≤ Dτ? −1, we can write

∣∣τ?i+1 − τ?i
∣∣ ≥ δ. On

the other hand, because d
(1)
∞ (τ?, τ) ≥ δ, there exists i ∈ {1, . . . , Dτ? − 1} such

that, for any j ∈ {1, . . . , D − 1}, |τ?i − τj | ≥ δ. Since δ ≤ nΛτ? , this also holds
true for j = 0 and j = D. Let us define, as illustrated by Figure 9,

λ◦ := {τ?i − δ + 1, . . . , τ?i , τ
?
i + 1, . . . , τ?i + δ} .
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• × • ×

• • • • • × • • × •τ?

τ

λ◦

τ?i τ?i+1

Fig 9. Construction of λ◦ in the proof of Lemma 6.3. In this case, δ = 2 since Λτ? = 2/10
(the rightmost segment of τ? is of size 2) and d∞(τ?, τ) = 3 (achieved in τ?i ).

Since λ◦ is included in a segment of τ ,

‖µ? − µ?τ‖
2 ≥

∑
j∈λ◦

∥∥µ?j − (µ?τ )j
∥∥2

H ≥
∑
j∈λ◦

∥∥µ?j − µ?λ◦

∥∥2

H .

Because of the hypothesis we made, λ◦ only intersects λ?i and λ?i+1 among the
segments of τ?, so Eq. (B.3) in Lemma B.1 shows that∑

j∈λ◦

∥∥µ?j − µ?λ◦

∥∥2

H =
|λ◦ ∩ λ?i | ·

∣∣λ◦ ∩ λ?i+1

∣∣
|λ◦ ∩ λ?i |+

∣∣λ◦ ∩ λ?i+1

∣∣ ∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H

=
δ

2

∥∥∥µ?λ?i+1
− µ?λ?i

∥∥∥2

H
≥ δ

2
∆2 ,

hence the result.

B.5. Proof of Lemma 6.6

In this proof, since τ is fixed, we denote by λ1, . . . , λD the segments of τ , that
is, λi = {τi−1 + 1, . . . , τi}.

First, notice that

Lτ = 〈µ? − µ?τ , ε〉 =

Dτ?∑
i=1

〈
µ?λ?i ,

∑
j∈λ?i

εj

〉
H

−
Dτ∑
i=1

〈
µ?λi ,

∑
j∈λi

εj

〉
H

. (B.7)

Now, if Dτ < Dτ? we arbitrarily define λDτ+1 = · · · = λDτ? = ∅, so that∑
j∈λi εj = 0 for every i ∈ {Dτ + 1, . . . , Dτ?}. Similarly, if Dτ? < Dτ , we define

λ?Dτ?+1 = · · · = λDτ = ∅. We also define µ?∅ = µ?n by convention. Then, defining

D+ := max
{
Dτ? , Dτ

}
, we can rewrite Eq. (B.7) as follows:

Lτ =

D+∑
i=1

〈
µ?λ?i ,

∑
j∈λ?i

εj

〉
H

−
D+∑
i=1

〈
µ?λi ,

∑
j∈λi

εj

〉
H

=

D+∑
i=1

〈
µ?λ?i − µ

?
λi ,
∑
j∈λ?i

εj

〉
H

+

D+∑
i=1

〈
µ?λi ,

∑
j∈λ?i

εj −
∑
j∈λi

εj

〉
H

=

D+∑
i=1

〈
µ?λ?i − µ

?
λi ,
∑
j∈λ?i

εj

〉
H

+

D+∑
i=1

〈
µ?λi − µ

?
n,
∑
j∈λ?i

εj −
∑
j∈λi

εj

〉
H

,
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since
D+∑
i=1

(∑
j∈λ?i

εj −
∑
j∈λi

εj

)
= 0 .

Then, by the triangle inequality and Cauchy-Schwarz inequality,

|Lτ | ≤
D+∑
i=1

∥∥∥µ?λ?i − µ?λi∥∥∥H
∥∥∥∥∥∥
∑
j∈λ?i

εj

∥∥∥∥∥∥
H

+

D+∑
i=1

∥∥µ?λi − µ?n∥∥H
∥∥∥∥∥∥
∑
j∈λ?i

εj −
∑
j∈λi

εj

∥∥∥∥∥∥
H

≤ diam conv
{
µ?j / j ∈ {1, . . . , n}

}
×

D+∑
i=1

∥∥∥∥∥∥
∑
j∈λ?i

εj

∥∥∥∥∥∥
H

+

D+∑
i=1

∥∥∥∥∥∥
∑
j∈λ?i

εj

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
∑
j∈λi

εj

∥∥∥∥∥∥
H


≤ 3D+ diam conv

{
µ?j / j ∈ {1, . . . , n}

}
× sup

1≤a<b≤n

∥∥∥∥∥∥
b∑

j=a

εj

∥∥∥∥∥∥
H

where we used that µ?λ ∈ conv
{
µ?j / j ∈ {1, . . . , n}

}
for any segment λ. Since the

diameter of the convex hull of a finite set of points is equal to the diameter of
the set, we have

diam conv
{
µ?j / j ∈ {1, . . . , n}

}
= diam

{
µ?j / j ∈ {1, . . . , n}

}
≤ (Dτ? − 1)∆ < Dτ?∆ .

Using also Lemma 6.4, we get the result.

B.6. Proof of Lemma 6.10

Let us put ζ := ‖ε1 + · · ·+ εn‖2H. Since for any j 6= k, E
[
〈εj , εk〉H

]
= 0 (see

Remark B.1), by definition of vj ,

E [ζ] = E
[
‖ε1 + · · ·+ εn‖2H

]
=

n∑
j=1

vj .

We recognize the right-hand side of equation (6.7) up to 1/x2. For any r > 1,
let us denote by Ar the event

∀1 ≤ s < r, ‖ε1 + · · ·+ εs‖H < x and ‖ε1 + · · ·+ εr‖H ≥ x ,

and by A1 the event ‖ε1‖H ≥ x. These events are disjoints, thus we can write

P
(

max
1≤k≤n

‖ε1 + · · ·+ εk‖H ≥ x
)

= P

(
n⋃
r=1

Ar

)
=

n∑
r=1

P (Ar) . (B.8)
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The law of total expectation and the positiveness of ζ yield

E [ζ] ≥
n∑
r=1

E
[
ζ
∣∣Ar]P (Ar) .

Finally, let ` ≤ r < k be integers. Since ε` is independent from εk conditionally
to σ(ε1, . . . , εr), ε` is independent from εk conditionally to Ar. Furthermore, εk
is independent from Ar and

E
[
〈εk, ε`〉H

∣∣Ar] =
〈
E [εk] ,E

[
ε`
∣∣Ar]〉H = 0 .

Because of this relation and the positivity of the (real) conditional expectation,
for any integers r ≤ k ≤ j,

E
[
ζ
∣∣Ar] = E

[
‖ε1 + · · ·+ εn‖2H

∣∣Ar] ≥ E
[
‖ε1 + · · ·+ εr‖2H

∣∣Ar] ≥ x2 .

Therefore, E
[
ζ
∣∣Ar] ≥ x2, which gives E [ζ] ≥ x2

∑
P (Ar). This concludes the

proof, thanks to Eq. (B.8).

Remark B.1. The independence between εj and εk for j 6= k yields E
[
〈εj , εk〉H

]
=

0. Indeed, we dispose of a conditional expectation on H [19, chapter 5], which
satisfies the same properties than the conditional expectation with real random
variables. Hence we can write

E
[
〈εj , εk〉H

]
= E

[
E
[
〈εj , εk〉H

∣∣εk]] = E
[〈
E
[
εj
∣∣εk] , εk〉H]

= E
[
〈E [εj ] , εk〉H

]
= 0.

Note that the εjs expectation vanishes by hypothesis.
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tion. Sankhyā: The Indian Journal of Statistics, Series A 370–381.

[56] Zou, C., Yin, G., Feng, L. and Wang, Z. (2014). Nonparametric max-
imum likelihood approach to multiple change-point problems. Annals of
Statistics 42 970–1002.

https://arxiv.org/abs/1606.06246

	Introduction
	Kernel change-point detection
	Change-point problem
	Kernel change-point procedure (KCP)
	The reproducing kernel Hilbert space
	Rewriting the empirical risk
	Assumptions

	Theoretical guarantees for KCP
	Main result
	Loss functions between segmentations
	Extension to the finite variance case

	Numerical simulations
	Discussion
	Proofs
	Decomposition of the empirical risk
	Deterministic bounds
	Approximation error A
	Linear term L and quadratic term Q

	Concentration
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Additional notation
	Proofs
	Proof of Lemma 3.1
	The Frobenius loss
	A formula for dF2
	Proof of Eq. eq.distfrob.ineq
	Proof of Proposition 3.1

	Lower bounds on the approximation error
	Preliminary lemma
	Proof of Lemma 6.2

	Proof of Lemma 6.3
	Proof of Lemma 6.6
	Proof of Lemma 6.10

	Acknowledgments
	References

