Time-Frequency Representations as Phase Space Reconstruction in Symbolic Recurrence Structure Analysis

Abstract : Recurrence structures in univariate time series are challenging to detect. We propose a combination of symbolic and recurrence analysis in order to identify recurrence domains in the signal. This method allows to obtain a symbolic representation of the data. Recurrence analysis produces valid results for multidimensional data, however, in the case of univariate time series one should perform phase space reconstruction first. In this chapter, we propose a new method of phase space reconstruction based on signal's time-frequency representation and compare it to the delay embedding method. We argue that the proposed method outperforms the delay embedding reconstruction in the case of oscillatory signals. We also propose to use recurrence complexity as a quantitative feature of a signal. We evaluate our method on synthetic data and show its application to experimental EEG signals.
Type de document :
Pré-publication, Document de travail
To appear as a book chapter in the Springer series “Contributions to Statistics”. 2016
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01415997
Contributeur : Mariia Fedotenkova <>
Soumis le : mardi 13 décembre 2016 - 19:29:00
Dernière modification le : mercredi 11 janvier 2017 - 16:33:59
Document(s) archivé(s) le : mardi 28 mars 2017 - 00:33:57

Fichier

book_chapter.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01415997, version 1

Collections

Citation

Mariia Fedotenkova, Peter Beim Graben, Jamie Sleigh, Axel Hutt. Time-Frequency Representations as Phase Space Reconstruction in Symbolic Recurrence Structure Analysis. To appear as a book chapter in the Springer series “Contributions to Statistics”. 2016. 〈hal-01415997〉

Partager

Métriques

Consultations de la notice

636

Téléchargements de fichiers

115