Influence of Disorder For the Polymer Pinning Model

Abstract : When studying disordered systems, the influence of disorder on the phase transition is a central question: one wants determine whether an arbitrary quantity of disorder modifies the critical properties of the system, with respect to the non-disordered case. We present here an overview of the mathematical results obtained to answer that question for the polymer pinning model. In the IID case, the picture of disorder relevance/irrelevance is by now established, and follows the so-called Harris criterion: disorder is irrelevant if ν hom > 2 and relevant if ν hom < 2, where ν hom is the order of the homogeneous phase transition. In the correlated case, Weinrib and Halperin predicted that, if the two point correlation decays as a power law with exponent a > 0, then the Harris criterion would be modified if a < 1: disorder should be relevant whenever ν hom < 2 max(1, 1/a). It turns out that this prediction is not accurate: the key quantity is not the decay exponent a, but the occurrence of rare regions with atypical disorder. An infinite disorder regime may appear, in which the relevance / irrelevance picture is crucially modified. We also mention another recent approach to the question of the influence of disorder for the pinning model: the persistence of disorder when taking the scaling limit of the system.
Type de document :
Article dans une revue
ESAIM: Proceedings and Surveys, EDP Sciences, 2015, 51, pp.74 - 88. <10.1051/proc/201551005>
Liste complète des métadonnées
Contributeur : Quentin Berger <>
Soumis le : lundi 12 décembre 2016 - 18:10:36
Dernière modification le : lundi 29 mai 2017 - 14:24:39
Document(s) archivé(s) le : mardi 28 mars 2017 - 01:13:20


Fichiers produits par l'(les) auteur(s)




Quentin Berger. Influence of Disorder For the Polymer Pinning Model. ESAIM: Proceedings and Surveys, EDP Sciences, 2015, 51, pp.74 - 88. <10.1051/proc/201551005>. <hal-01415104>



Consultations de
la notice


Téléchargements du document