
HAL Id: hal-01415056
https://hal.science/hal-01415056

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditional expected likelihood technique for compound
Gaussian and Gaussian distributed noise mixtures

Yuri Abramovich, Olivier Besson, Ben Johnson

To cite this version:
Yuri Abramovich, Olivier Besson, Ben Johnson. Conditional expected likelihood technique for com-
pound Gaussian and Gaussian distributed noise mixtures. IEEE Transactions on Signal Processing,
2016, vol. 64 (n° 24), pp. 6640-6649. �10.1109/TSP.2016.2613073�. �hal-01415056�

https://hal.science/hal-01415056
https://hal.archives-ouvertes.fr


 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 16464 

To cite this version: Abramovich, Yuri and Besson, Olivier and Johnson, Ben Conditional 
expected likelihood technique for compound Gaussian and Gaussian distributed noise 
mixtures. (2016) IEEE Transactions on Signal Processing, vol. 64 (n° 24). pp. 6640-6649. 
ISSN 1053-587X 

To link this article: http://dx.doi.org/10.1109/TSP.2016.2613073 



Conditional Expected Likelihood Technique
for Compound Gaussian and Gaussian

Distributed Noise Mixtures
Yuri I. Abramovich, Fellow, IEEE, Olivier Besson, Senior Member, IEEE, and Ben A. Johnson, Senior Member, IEEE

Abstract—Expected likelihood (EL) technique for quality as-
sessment of parameter estimates of signals embedded in Gaus-
sian noise is extended in this paper over the case where useful
signals are immersed in a mixture of compound Gaussian and
Gaussian-distributed noises. The main problem here is that ana-
lytical expressions for distributions of such mixtures do not exist in
most cases. Moreover, in some cases like K-distributed noise only,
where closed-form expressions for the data distribution are avail-
able, the traditional Cramér–Rao bound does not exist. This makes
the EL technique even more important for parameter estimation
performance assessment. In this paper, for the so-called condi-
tional model, we introduce test statistics whose distribution for the
true (actual) parameters does not depend on these parameters and
specifics of texture distribution, which makes them applicable for
EL applications. We illustrate the utility of this EL technique by
studying and predicting the performance breakdown of some di-
rection of arrival estimators in a mixture of K-distributed and
Gaussian noise.

Index Terms—Direction of arrival estimation, expected likeli-
hood, noise mixture.

I. INTRODUCTION

D IRECTION of arrival (DoA) estimation of multiple
sources is a difficult problem that very rarely can be pro-

vided with the globally optimum solution, maximum likelihood
(ML) in most cases. Indeed, only an exhaustive global search
can guarantee strict optimality of its solution. For this reason,
in most practical applications, different ML-proxy techniques
are used. Most advanced are the so-called subspace-based tech-
niques such as MUSIC [1] whereby instead of a global search
over P DoA, one-dimensional (1D) search for the P max-
ima of the pseudo-spectrum function is required. In [2]–[4]
it was proven that these techniques may be treated as large-
sample equivalents of the accurate ML estimator for T → ∞
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independent and identically distributed (i.i.d.) Gaussian snap-
shots. In fact, it was proven in [2]–[4] that asymptotic (T → ∞)
DoA mean-square error (MSE) in this case tends to the Cramér-
Rao bound. Similar results have been derived for other subspace
techniques such as MODE [5] or ESPRIT [6].

However, it was proven in [7] that, when M → ∞, T → ∞
and M/T → c, where M is the number of array elements, the lo-
calization function of MUSIC is not consistent and that MUSIC
is not capable of consistently resolving sources within O(1/M)
angular distance. This inconsistency manifests itself in the so-
called threshold area where, due to small sample support T
and/or signal to noise ratio (SNR), the mean-square error of
MUSIC is well above the CRB. This departure, which corre-
sponds to the appearance of severely erroneous DoA estimates
(outliers), occurs under threshold conditions (T, SNR) where
the genuine ML estimator still provides CRB-consistent esti-
mation accuracy [8]. Mestre, based on random matrix theory,
proposed in [7], [9], [10] an enhancement of MUSIC, namely
G-MUSIC,which provides consistent estimates of the pseudo-
spectrum function in the M → ∞, T → ∞,M/T → c regime.
Johnson et al. [8] investigated in detail the performance of G-
MUSIC compared to that of ML, and provided explanations on
why it improves over MUSIC without yet filling the gap between
G-MUSIC-specific and ML-intrinsic threshold conditions.

For MUSIC, G-MUSIC as well as for other methods, much
attention has been devoted on how to detect (“predict”) the on-
set of the threshold regime, and how to possibly rectify (“cure”)
these method-specific outliers. A pivotal tool for such analy-
sis of performance breakdown prediction is the so-called ex-
pected likelihood (EL) technique developed in [11]–[14]. The
original EL approach was derived in the Gaussian case to test
whether a candidate matrix, say Rc , is a plausible covariance
matrix for the observed data X ∈ CM ×T . It amounts to testing
H0 : E

{
XXH

}
= Rc against H1 : E

{
XXH

}
= R where R

is unknown, and relies on the likelihood ratio for this test. A
fundamental property is that LR(R0), where R0 is the true
covariance matrix of X, has a distribution that depends only
on M and T . Therefore, this distribution can be computed and
used to assess the plausibility of Rc . For DoA estimation prob-
lems where the covariance matrix depends on some parameter
vector η (typically η includes DoA, sources power and white
noise power), this approach enables one to assess the quality
of an estimate η̂ by computing LR(R(η̂)) and comparing it to
LR(R(η0)) where η0 is the true parameter vector. Naturally,
the latter is not known a priori, but for the considered condi-
tional [11], [12] and unconditional [14] Gaussian models, the
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introduced LR(R(η0)) is shown to have a distribution that does
not depend on η0 , being specified by (M,T ) for unconditional
models and by (M,T, P ) for conditional models. Specifically,
it was demonstrated in [8] that MUSIC-produced sets of DoA
estimates that contain an outlier generate LR values that are sta-
tistically far smaller than the ones specified by the probability
density function (p.d.f.) of LR(R(η0)). Thus the problem of
statistically reliable prediction of MUSIC and G-MUSIC spe-
cific breakdown has been addressed in [8]. Analysis of LR values
generated by G-MUSIC demonstrated that G-MUSIC-specific
outliers also produce LR values outside of the LR(R(η0)) dis-
tribution support. We also demonstrated that for certain small
sample support T and/or SNR values, even genuine ML tech-
nique implemented via search for global likelihood function
(LF) maximum starts to consistently produce estimation out-
liers. Yet, in this case, these ML-specific outliers are as likely as
the true DoA values, which means the onset of the limits of the
ML estimation paradigm, since the ML is no longer associated
with the CRB accuracy in this ML-breakdown region. This EL
analysis established the gap between the ML-proxy (MUSIC,
G-MUSIC) specific and MLE-intrinsic threshold conditions and
led to techniques capable of outliers rectification by driving the
LR values produced by rectified DoA estimates into support of
the LR(R(η0)) distribution. Majority of these results has been
derived for Gaussian distributions although the EL approach
was recently extended to complex elliptically symmetric distri-
butions in [15]–[17], but mostly for the purpose of covariance
matrix estimation.

In some applications, e.g., in HF direction finding applica-
tions, external noise is dominated by lightning strikes and being
practically white for linear uniform arrays is strongly non-
Gaussian. Also, in radar applications, the main source of ex-
ternal disturbance, in this instance clutter, is better described
by a non-Gaussian distribution [18]–[21]. In [22], we addressed
DoA estimation in pure K-distributed noise. The thermal Gaus-
sian noise was neglected, on the ground that the non-Gaussian
(external) to Gaussian (internal) noise ratio is generally high.
Due to the availability of the p.d.f. of the observations in closed-
form, it was possible to derive the CRB (whenever it existed)
as well as the ML estimator. However, an outcome of [22] was
that internal noise should be taken into account even for high
external to thermal noise ratio as, with very spiky clutter, some
texture values can fall well below the thermal noise power.
Therefore in [23] we addressed the more complicated problem
of multiple DoA estimation of useful signals immersed into a
mixture of K-distributed and Gaussian noises. A practical iter-
ative DoA estimation scheme was introduced and compared to
potential competitors such as the recently proposed robust G-
MUSIC (RG-MUSIC) technique [24], [25]. In the large sample
support or high SNR scenario, most methods were close to a
lower bound derived under the (rather unrealistic) assumption
of known texture of the compound Gaussian noise. The latter
bound was achieved by the corresponding (clairvoyant) ML es-
timator which assumes all texture values known. In addition to
being a not realistic assumption, in [23] the search for ML esti-
mates was conducted in the close vicinity of the true DoA values,
and therefore it does not reflect the threshold behavior of the

genuine (global search) ML estimator. Moreover, as expected,
for small sample support and/or SNR values, we observed strong
departure from the clairvoyant lower bound. Yet, the behavior
of all methods in this threshold area is not fully understood.
Indeed, a major problem here is that the analytical distribution
for such a noise mixture does not exist in closed-form, and
therefore availability of a CRB or of the exact ML estimator
as references is still an open problem in this case. In fact, in
absence of an analytical expression for the likelihood function,
the standard approach where brute-force global ML search for
the optimal DoA estimates in the threshold area enables one to
reveal the ML threshold conditions is not applicable. Therefore,
an approach, similar to EL, is definitely required that would
be capable of evaluating the proximity of the likelihood metric
for the derived DoA estimates to the statistical values of this
metric calculated at the true DoA values. This is the aim of this
paper.

Specifically, the paper is organized as follows. In Section II,
we present the model at hand, briefly review the DoA estima-
tors derived in [23] and we propose a new estimator which
enables one to relax some assumptions made in [23]. Then,
we introduce two test statistics which meet the requirements
for EL application, i.e., their distributions, when evaluated at
the true parameters, depend only on (M,T, P ). Therefore, they
allow for assessment of the estimators introduced above, espe-
cially in the threshold area. This is the aim of the simulations of
Section III where we evaluate the mean-square error of the
various estimators and show that outliers can be safely de-
tected by the EL approach. The analysis enables one to reveal
the estimators-specific as well as the ML-intrinsic breakdown
conditions.

II. DATA MODEL, DOA ESTIMATORS AND EXPECTED

LIKELIHOOD APPROACH

A. Data Model

The data model is essentially that of [23] and is given by

xt = A(θ)st +
√

τtnt + σwwt (1)

where θ =
[
θ1 · · · θP

]T
is the vector of the DoA and A(θ) =[

a(θ1) · · · a(θP )
]

is the manifold matrix of the M -element
array. We assume a conditional model for which the emitted
waveforms st are treated as deterministic unknowns. nt and wt

are independent and identically distributed vectors drawn from
nt ∼ CN (0, I) and wt ∼ CN (0, I). σ2

w stands for the thermal
noise power. τt is a positive variable which we choose to treat
as deterministic unknown, similarly to S. The choice of a con-
ditional model rather than an unconditional model where S and
τ would be considered random with a prior distribution is due
to the fact that these prior distributions may not be completely
known and that derivation of maximum likelihood estimators is
simpler in the conditional model.

B. DoA Estimation

For the sake of clarity, we first provide a quick overview of the
two main estimators derived in [23] and then we propose a new



TABLE I
APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION OF A AND τ

FOR KNOWN σ2
w

exact ML estimator which relaxes some assumptions made in
[23]. Under the stated assumptions, the p.d.f. of the data matrix
X =

[
x1 · · · xT

]
is given by

p(X;θ, τ ,S) ∝
T∏

t=1

[(
τt + σ2

w

)−M

exp
{
−

(
τt + σ2

w

)−1 ‖xt − A(θ)st‖2
}]

(2)

where ∝ means proportional to, τ =
[
τ1 · · · τT

]T
and S =[

s1 · · · sT

]
. In [23] we first investigated a clairvoyant max-

imum likelihood estimator of θ, assuming that τ and σ2
w are

known. This clairvoyant ML estimator of θ was obtained as

θML
|τ ,σ 2

w
= arg min

θ

T∑

t=1

xH
t P⊥

A(θ)xt

τt + σ2
w

(3)

where P⊥
A(θ) = I − A(θ)

(
A(θ)H A(θ)

)−1 A(θ)H . In [23],
only a local search for the maximum of the concentrated likeli-
hood function in (3) was implemented, meaning that θML

|τ ,σ 2
w

was sought in close vicinity of the true DoA θ0 . A lower
bound, namely the averaged-over-τ CRB conditioned on τ ,
i.e., E {CRB(θ|τ )} was also derived. With the local search
of the maximum implemented, it was observed that the mean-
square error (MSE) was very close to this bound, whatever
SNR. However, the performance of the genuine ML estima-
tor, which consists of a global search for the maximum of∑T

t=1(τt + σ2
w )−1xH

t P⊥
A(θ)xt was not studied in [23], which

would have revealed the ML-intrinsic performance breakdown
conditions. We will fill this gap in the next section.

In order to relax the assumption of known τt , we also con-
sidered an approximate maximum likelihood estimation of both
the unstructured steering matrix A and τ , assuming only σ2

w is
known. This method relies on the fact that, for a given A, the
MLE of τt is

τML
t|A ,σ 2

w
= max

(
M−1xH

t P⊥
Axt , σ

2
w

)
− σ2

w (4)

while, for known τ , the MLE of A is

AML
|τ ,σ 2

w
= PP

(
T∑

t=1

xtxH
t

τt + σ2
w

)

(5)

where PP (.) stands for the P principal subspace of the ma-
trix between parentheses. The approximate maximum likelihood
(AML) estimator of A and τ was thus implemented through the
iterative procedure described in Table I. We let AAML

|σ 2
w

denote

the value obtained at the end of the simulations. The DoA were
then estimated as

θAML
|σ 2

w
= MUSIC

[
AAML

|σ 2
w

]
(6)

where MUSIC [.] stands for the conventional MUSIC algorithm
applied to a M × P matrix whose columns form a basis for the
signal subspace.

In the present paper, we go one step further by assuming
that neither τ nor σ2

w are known and we derive the maximum
likelihood estimator of θ and γt = τt + σ2

w . Indeed, when σ2
w

is unknown, one should consider γt = τt + σ2
w as a whole un-

known since the p.d.f. of the data matrix X is given by

p(X;θ,γ,S) ∝
T∏

t=1

[
γ−M

t exp
{
−γ−1

t ‖xt − A(θ)st‖2
}]

(7)

where γ =
[
γ1 · · · γT

]T
. It is readily verified that

max
S

p(X|A(θ),γ,S)∝
T∏

t=1

γ−M
t exp

{
−γ−1

t xH
t P⊥

A(θ)xt

}
. (8)

Moreover,

max
γt

γ−M
t exp

{
−γ−1

t xH
t P⊥

A(θ)xt

}
∝

(
xH

t P⊥
A(θ)xt

)−M

(9)

so that the ML estimator of θ is obtained as

θML = arg max
θ

T∏

t=1

(
xH

t P⊥
A(θ)xt

)−M

= arg max
θ

−
T∑

t=1

log
(
xH

t P⊥
A(θ)xt

)
. (10)

In the simulations section, we will compare the performance of
θML to that of θML

|τ ,σ 2
w

.

C. Expected Likelihood Approach

In order to assess the various estimators above and others,
i.e., in order to detect potential outliers, we suggest to resort to
the EL principle and, consequently, we look for a test statistic
(actually a likelihood ratio) whose distribution, when evaluated
at the true parameters, does not depend on S or τ or θ0 but only
on known parameters. Then, to assess the quality of any given
estimate, the test statistic evaluated at the estimated parameters
will be checked against the test statistic at the true parameters.
If a discrepancy is observed, typically when the LR for the esti-
mated parameters fall outside the support of the LR for the true
parameters, then the estimates are deemed erroneous. Towards
this end, one could think of using the likelihood function in (10),
evaluated at some estimate θ̂, for assessment of the latter, by
comparison with the LF evaluated at the true DoA θ0 . However,
when evaluated at the true steering matrix A0 , one has

xH
t P⊥

A0
xt = [

√
τtnt + σwwt ]

H P⊥
A0

[
√

τtnt + σwwt ]

= [
√

τtnt + σwwt ]
H U0UH

0 [
√

τtnt + σwwt ]

d= (τt + σ2
w )w̃H

t U0UH
0 w̃t (11)



where
d= means “distributed as”. In the previous equation,

we used the fact that, when τt is deterministic,
√

τtnt +
σwwt ∼ CN

(
0, (τt + σ2

w )IM

)
and hence it is distributed as√

τt + σ2
w w̃t where w̃t ∼ CN (0, IM ). Moreover U0 is an

M × (M − P ) semi-unitary matrix whose columns form an
orthonormal basis for R(A0)⊥, the subspace orthogonal to A0 ,
and hence UH

0 w̃t ∼ CN (0, IM −P ). This likelihood function
depends on τt , and hence its distribution is dependent on the
statistics of τt . To get rid of this dependency, one might con-
sider, for any estimate θ̂ and corresponding basis U(θ̂) for the
associated noise subspace, the following data

zt(θ̂) =
U(θ̂)H xt∥

∥
∥U(θ̂)H xt

∥
∥
∥

(12)

which, for the true θ0 , follows a complex angular central Gaus-
sian (ACG) distribution with parameter matrix IM −P , since

zt(θ0) =
UH

0 xt∥
∥UH

0 xt

∥
∥

d=
UH

0 w̃t∥
∥UH

0 w̃t

∥
∥ .

In other words, zt(θ0) is uniformly distributed on the unit
sphere. It follows that quality of an estimate θ̂ may be assessed
by proximity of the scatter matrix of zt(θ̂) to the identity matrix.
This suggests the use of the traditional sphericity test [26]

ST
(
θ̂
)

=
det(R(θ̂))

[
(M − P )−1Tr{R(θ̂)}

]M −P
(13)

where

R(θ̂) = T−1
T∑

t=1

zt(θ̂)zH
t (θ̂). (14)

Note that, since zt(θ̂) is unit norm, ST (θ̂) ∝ det(R(θ̂)).
The sphericity test measures the spreading of the eigenval-
ues of the matrix R(θ̂), whose sum is equal to one. The
maximum is achieved when all eigenvalues are equal, which
amounts to R(θ̂) being the identity matrix. The suggested
here “expected likelihood” test is a monotonic function of
det(R(θ̂)) where the threshold for acceptance or rejection of
θ̂ is defined by the distribution of det(R(θ0)), which is that
of det(T−1 ∑T

t=1 zt(θ0)zH
t (θ0)) with zt(θ0) uniformly dis-

tributed on the complex sphere. Note that, in the absence of an
analytical expression for the p.d.f. of this statistic, the thresh-
old is computed from Monte-Carlo simulations. The introduced
test checks the “whiteness” of data after projection onto the
subspace orthogonal to A(θ̂). The EL sphericity test meets all
requirements: its distribution, when evaluated at the true DoA
θ0 , does not depend on the DoA nor on the statistics of the
texture distribution, and is only specified by M , P and T .

The sphericity test, which is meant at testing the spreading
of the eigenvalues of R(θ̂) can also be viewed a generalized
likelihood ratio for testing whether the covariance matrix of a
Gaussian distributed data is the identity matrix. Since, zt(θ0)
follows a complex angular central Gaussian (ACG) distribution
with parameter matrix IM −P , this suggests using the likelihood
ratio for testing whether the scatter matrix of zt(θ̂) is the identity

matrix, considering that zt(θ̂) follows an ACG distribution.
Such generalized likelihood ratio test for ACG distributions
was indeed derived in [16], [17]. Let Z =

[
z1 · · · zT

]
be a

(M − P ) × T matrix where each zt follows a complex ACG
distribution with scatter matrix Σ0 . Let Σc be a candidate for
this scatter matrix. Then the LR for testing Σc is

LRACG = det(ΣMLΣ−1
c )T

T∏

t=1

[
zH

t Σ−1
c zt

zH
t Σ−1

MLzt

]−(M −P )

(15)

where ΣML obeys

ΣML =
M − P

T

T∑

t=1

ztzH
t

zH
t Σ−1

MLzt

. (16)

As shown in [16], [17], this LR, when evaluated at the true
scatter matrix Σ0 (equal to IM −P in our case) has a distribution
that depends on M , P and T only. Therefore, such a likelihood
ratio, applied to zt(θ̂), can serve as a means to detect if the data is
white after projection. The difference compared to the sphericity
test is that these LR are not based on the same assumptions.
Note also that LRACG is more complicated to compute than the
sphericity test.

III. SIMULATIONS

We consider a uniform linear array of M = 20 elements
spaced a half-wavelength apart and a scenario with two sources,
whose DoA are θ1 = 16◦ and θ2 = 18◦. The waveforms are gen-
erated from a Gaussian distribution with covariance matrix PsI2 .
The compound-Gaussian noise follows a Weibull distribution:
the τt are Gamma distributed with shape parameter ν and scale
parameter ν−1 so that E {τt} = 1. We set ν = 0.2 in the sequel.
The total noise power is thus 1 + σ2

w and the non Gaussian to
Gaussian noise ratio is simply nGGNR = 10 log10 σ−2

w . The sig-
nal to noise ratio is defined as SNR = 10 log10(Ps/(1 + σ2

w )).
105 Monte-Carlo simulations were run to estimate the mean-
square error (MSE) of the various estimators.

As for θML
|τ ,σ 2

w
and θML, the search for the maximum of the

corresponding likelihood function was carried out using two
protocols:

1) In a first implementation, the region {−π/2 ≤ θ1 <
π/2; θ1 < θ2)} was sampled on a grid with step Δθ = 1◦

and the search for the maximum of the LF was carried out
on this grid, yielding an initial estimate (θ(0)

1 , θ
(0)
2 ). Then,

the search was refined on [θ(0)
1 − Δθ/2, θ

(0)
1 + Δθ/2] ×

[θ(0)
2 − Δθ/2, θ

(0)
2 + Δθ/2]. This method is referred to

as “global” in the figures, since it provides the global
maximum of the LF.

2) A second implementation consists in searching the max-
imum of the LF in the vicinity of the true DoA: more
precisely, the maximum was constrained to be at most a
half beam-width apart from θ0 . This method is referred
to as “local” in the figures.

We also consider RG-MUSIC [24], [25] which computes a
consistent estimate (in the random matrix theory sense) of the
noise projection matrix from the eigenvalue decomposition of



Fig. 1. Mean square error of estimators versus SNR. ν = 0.2.



Fig. 2. Probability density function of sphericity test and LLRACG for various SNR. T = 40, ν = 0.2 and nGGNR = 30 dB.



Fig. 3. Probability density function of sphericity test and LLRACG for various SNR. T = 80, ν = 0.2 and nGGNR = 30 dB.



R̂RG-MUSIC = limk→∞ R̂k with

R̂k+1 =
1
T

T∑

t=1

u

(
1
M

xH
t R̂−1

k xt

)
xtxH

t .

In the simulations u(x) = (1 + α)/(α + x) with α = 0.01.

A. Mean-Square Error of DoA Estimates

We first focus on evaluating the mean-square error of the
various estimators, with two main objectives: 1) reveal the
MLE-intrinsic performance breakdown conditions i.e., the SNR
conditions under which the global search for the maximum of
the likelihood function completely fails in providing reliable
estimates and 2) compare θML

|τ ,σ 2
w

of [23] which assumes both

τt and σ2
w are known to the present θML which does not make

this assumption. Fig. 1 displays the MSE versus SNR. Two
main observations can be made. First, θML

|τ ,σ 2
w

and θML provide
the same MSE, whatever the type of implementation, local or
global search for the maximum. This means that θML is an in-
teresting option as it does not require as many assumptions as
θML
|τ ,σ 2

w
. Secondly, a significant difference is seen between the

two implementations. When a local search is performed, both
θML
|τ ,σ 2

w
and θML stick to E {CRB(θ|τ )} whatever SNR, which

confirms that the latter is a local bound. In contrast, with the
global search for the maximum, under some SNR threshold,
both θML

|τ ,σ 2
w

and θML significantly depart form the bound reveal-
ing the intrinsic-ML performance breakdown conditions. As
was already observed for MUSIC and G-MUSIC, RG-MUSIC
and θAML

|σ 2
w

begin to produce bad results at SNR where the global
MLE is still consistent, and the difference can be significant,
e.g., 20 dB at T = 40 and nGGNR = 30 dB. As will be shown
below, the distribution of the sphericity test or the likelihood
ratio enables one to capture this phenomenon.

B. Distribution of the Likelihood Ratios and Detection
of Outliers

In order to understand these different breakdown conditions,
the sphericity test (ST) and LLRACG = log LRACG are instru-
mental, as illustrated in Figs. 2 and 3 where we plot their distri-
butions, for three values of SNR: SNR = −18 dB where even
ML breaks, SNR = −6 dB where ML produces consistent es-
timates while RG-MUSIC and θAML

|σ 2
w

do not, and SNR = 12 dB
where all algorithms achieve the lower bound. It is clear that,
when even MLE breaks down, it produces estimates whose ST
or LLR is commensurate with that at the true DoA, which is
a symptom of complete failure. On the other hand, for SNR =
−6 dB, it is clearly seen that only RG-MUSIC and θAML

|σ 2
w

pro-
duce DoA estimates whose ST or LLR is outside the support of
the p.d.f. for θ0 . Finally, at SNR = 12 dB, all estimates produce
ST or LLR commensurate with those at θ0 .

We now illustrate how the EL principle, through examination
of ST and LLRACG enable one to detect outliers, i.e., severely
erroneous DoA estimates. Towards this end, we proceeded in the
following way. For each method, among the 105 Monte-Carlo
simulations, we decided that an estimate θ̂ is a “true outlier” if

Fig. 4. Probability of detecting outliers using the EL approach for RG-MUSIC
and θAML

|σ 2
w

. Pf a = 10−2 , T = 40, ν = 0.2 and nGGNR = 30 dB.

‖θ̂ − θ0‖2 is superior to 100 times the corresponding Cramér-
Rao bound. Next, the sphericity test or the log likelihood ratio
were computed for this θ̂: whenever they are below a threshold,
θ̂ is declared an outlier according to the EL principle. The
probability of correct outlier detection is the ratio of the number
of declared outliers in the set of true outliers to the number of true
outliers. The thresholds of the ST or the LR were set to ensure
a probability of false alarm equal to 10−2 when ST or LLR
are calculated with the true scatter matrix IM −P . Figs. 4 and 5
plot the actual percentage of outliers and the probability of
detecting them by comparing the ST or LLR to a threshold.
As can be observed, for very low SNR where even ML breaks
down, there is no way to detect these outliers. However, in the
threshold area, where ML is accurate but RG-MUSIC or θAML

|σ 2
w

produce erroneous estimates, the latter can be rather reliably



Fig. 5. Probability of detecting outliers using the EL approach for RG-MUSIC
and θAML

|σ 2
w

. Pf a = 10−2 , T = 80, ν = 0.2 and nGGNR = 30 dB.

detected using the EL principle. We notice that LLRACG is
slightly better than the sphericity test. However, the difference
is not important and ST is easier to obtain than LLRACG.

To illustrate further how this comparison of ST or LLR to
a threshold can help, we plot in Figs. 6 and 7 the MSE ob-
tained when all estimates below the LLR threshold have been
removed. Clearly, an improvement is observed, especially in the
threshold area where the MSE is noticeably decreased. How-
ever, the gap between θAML

|σ 2
w

or RG-MUSIC and θML is not
completely filled with the selected false alarm threshold. By
raising this threshold, we may improve MSE of the selected
estimates further at expense of discarding more legitimate
estimates.

Fig. 6. MSE of RG-MUSIC and θAML
|σ 2

w
with/without thresholding . Pf a =

10−2 , T = 40, ν = 0.2 and nGGNR = 30 dB.

Fig. 7. MSE of RG-MUSIC and θAML
|σ 2

w
with/without thresholding . Pf a =

10−2 , T = 40, ν = 0.2 and nGGNR = 60 dB.

IV. CONCLUSIONS

In this paper we continued our investigation into the DoA
estimation problem for signals immersed in a mixture of exter-
nal compound Gaussian noise and internal Gaussian noise, with
the main focus on studying the threshold performance of DoA
estimation routines. Since the p.d.f. of the noise mixture is not
available, we resorted to the maximum likelihood methodology
by treating random texture values as deterministic unknown
parameters. The conditional likelihood function and associ-
ated likelihood ratio which tests sphericity of the projected out
snapshots have been introduced for DoA estimates quality as-
sessment using the expected likelihood principle. Specifically,



the introduced sphericity test and likelihood ratio for the true
DoA is described by distribution that does not depend on
DoA nor on texture distribution, but is fully specified by an-
tenna dimension, number of sources and sample support. Ef-
ficiency of estimation-method-specific outliers detection and
ML-intrinsic breakdown prediction by the EL approach has been
demonstrated.
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